HYDROGEOLOGICAL INVESTIGATION PROPOSED BRIARWOOD HILLSBURGH DEVELOPMENT 5916 Trafalgar Road North, Town of Erin, Ontario

Prepared for:

Hillsburgh Heights Inc.

636 Edward Avenue, Suite 14 Richmond Hill, Ontario L4C 0V4

2179 Dunwin Drive, Unit 4 Mississauga, ON L5L 1X2

Project No. 2100428AH

August 3, 2022

August 3, 202

Project No. 2100428AH

Hillsburgh Heights Inc. 636 Edward Avenue, Suite 14 Richmond Hill, Ontario L4C 0V4

Email: Fausto@briarwoodhomes.ca

Attention: Mr. Fausto Saponara

Dear Mr. Saponara

RE: Hydrogeological Investigation for Proposed Briarwood Hillsburgh Development 5916 Trafalgar Road North, Town of Erin, Ontario

HLV2K Engineering Limited (HLV2K) is pleased to provide the hydrogeological investigation report for the above mentioned project. The report presents HLV2K's understanding of the hydrogeological setting of the study area based on exploratory drilling, data collection, analyses, and review.

We trust that this information meets your present requirements. If we can be of additional assistance in this regard, please contact this office.

For and on behalf of HLV2K Engineering Limited,

k. Mohamadi

Kourosh Mohammadi, Ph.D., P.Eng. President & Principal Engineer

TABLE OF CONTENT

1	IN	TRODUCTION	1
	1.1	General	1
	1.2	Purpose	1
2	ME	ETHOD OF INVESTIGATION	2
	2.1	General	2
	2.2	Boreholes and Monitoring Wells	2
	2.3	Groundwater Monitoring	3
	2.4	In-Situ Hydraulic Conductivity Testing	3
	2.5	In-Situ Percolation Test	3
3	SI	TE CONDITIONS	4
	3.1	Physical Setting	4
	3.2	Climatic Conditions	4
	3.3	Physiography and Drainage	4
	3.4	Geological Mapping	5
	3.5	Subsurface Soil Conditions	5
4	GF	ROUNDWATER CONDITIONS	6
	4.1	Regional Groundwater Recharge	6
	4.2	Groundwater Level Fluctuations	6
	4.3	Percolation Test Results	9
	4.4	Groundwater Use in the Study Area	9
5	GF	ROUNDWATER DEWATERING ESTIMATES 1	0
6	W	ELLHEAD PROTECTION AREA 1	0
7	PR	REDICTED EFFECTS 1	0
	7.1	Groundwater Use	0
	7.2	Surface Water Resources	.0
	7.3	Potential for Dewatering-Related Consolidation Settlement1	1
8	SU	IMMARY AND CONCLUSION 1	1
9	ST	ATEMENT OF LIMITATIONS1	L 2
10) CL	.OSURE	12
R	EFER	ENCES	3

FIGURES

Figure 1	Site Location
Figure 2	Borehole Location Plan
Figure 3	Physiographic Map
Figure 4	Surficial Geology
Figure 5	Bedrock Geology
Figure 6	Water Well Use Map
Figure 7	Wellhead Protection Area Close to Site
Figure 8	Location of the Wetland

TABLES

Table 1: Information on Boreholes and Groundwater Monitoring Wells	3
Table 2: Climate Data Summary (1981 – 2010) – Fergus Shand Dam Station (ID 6142400)	4
Table 3: Summary of Groundwater Level Observations in Monitoring Wells	7
Table 4: Summary of Infiltration Test Results	9

APPENDICES

Appendix A	Borehole Logs and Grain Size Analysis
Appendix B	Infiltration Tests Field Measurements and Calculations
Appendix C	Information on Water Well Records Received from MECP
Appendix D	Drawings Provided by the Client

LIST OF ACRONYMS AND DEFINITIONS

BH	Borehole
EASR	Environmental Activity and Sector Registry
К	Hydraulic Conductivity
GPM	Gallon per Minute
mbgs	Metres Below Ground Surface
MECP	Ontario Ministry of the Environment, Conservation and Parks
O.Reg.903	Ontario's Wells Regulation
PTTW	Permit To Take Water

1 INTRODUCTION

1.1 General

HLV2K Engineering Limited (HLV2K) was retained by Hillsburgh Heights Inc. (the Client) with a proposal to conduct the hydrogeological investigations for the proposed Briarwood Hillsburgh Development located at 5916 Trafalgar Road North, Town of Erin, Ontario (the Site). The Site is situated in a mixed rural, residential, and agricultural area. It is on the west side of Trafalgar Road, between Sideroad 27 to the north and Upper Canada Drive to the south. The Site is surrounded by residential housing, agricultural fields, and forested area.

At the time of investigation, the Site was vacant and covered by grass. There are two residential houses within the property. The total area of the Site is approximately 46.9 hectares (ha).

Based on the information provided by the client, the proposed development will consist of 195 single family residential lots, 174 townhouse units, one (1) school block, one (1) heritage house, two (2) storm water management (SWM) facilities, one (1) park block, and new private roads with total area of 40.4 ha. The subdivision will be fully connected to municipal services (municipal water and sanitary sewers). The location of the Site is shown on **Figure 1**.

1.2 Purpose

The purpose of the hydrogeological investigation was to characterize the existing hydrogeological conditions at and in the vicinity of the Site, assess the need for, and options for, groundwater control in association with the proposed construction, evaluate potential impacts to the local groundwater regime resulting from the proposed construction, and identify appropriate mitigative measures, as warranted.

This hydrogeological study may be utilized in support for an application for a Permit to Take Water (PTTW) for dewatering purposes during construction or registering in Environmental Activity and Sector Registry (EASR), if necessary. The purpose of completing the PTTW / EASR application is to conduct the work in compliance with Ontario Regulation 387/04 (as amended) and the Ontario Water Resources Act (OWRA). The water taking EASR is for construction projects that require more than 50,000 liters per day (L/day) of water and less than 400,000 L/day under normal conditions. A PTTW is required for any surface water or groundwater taking during construction in excess of 400 cubic metres per day (m³/day).

2 METHOD OF INVESTIGATION

2.1 General

This hydrogeological study began with a review of previously completed geotechnical and environmental reports and published information for the study area, including previously published regional physiographic and geologic mapping and watershed planning reports. Many of these documents are referred to throughout various sections of this report and the relevant details can be found in the References section following the text of the report.

In particular, the work completed in association with this hydrogeological study consisted of the following tasks:

- Reviewing and interpreting available reports and published data;
- Developing Health & Safety and Sampling and Analysis Plans for work at the Site;
- Assessing the current Site conditions, and areas of interest;
- Installing five (5) monitoring wells;
- Reviewing water well records available from the Ministry of the Environment, Conservation and Parks (MECP);
- Developing the groundwater monitoring wells installed on the Site by removing at least three well volumes of groundwater or two times to dry;
- Performing in-situ hydraulic conductivity testing (slug tests) to assess the aquifer permeability;
- Measuring groundwater levels in each of the monitoring wells located at the Site;
- Evaluating proposed construction dewatering requirements; and
- Prepare a final report on the findings of this investigation.

2.2 Boreholes and Monitoring Wells

HLV2K drilled five (5) boreholes on September 1 and 7, 2021 and installed five (5) monitoring wells (MW1 to MW5) for groundwater monitoring and sampling. One monitoring well (MW1) was installed at approximate depth of 10 m below ground surface (mbgs) and others were installed at approximately 6.2 mbgs. Borehole logs for all boreholes are provided in **Appendix A**. One piezometer to approximate depth of 1 mbgs was installed close to the wetland to monitor the shallow water level close to the wetland. In addition, HLV2K drilled 4 test holes to approximate depth of 2.4 mbgs for percolation tests.

The well survey was conducted using a GPS unit (Sokkia GCX3 with SHC500 controller). The monitoring well, test holes, and piezometer locations are shown in **Figure 2**. The details of construction of the monitoring wells are summarized in **Table 1**.

It should be noted that the ground surface elevations noted on the appended borehole logs are approximate and were used for the purpose of relating borehole soil stratigraphy and should not be used or relied on for other purposes.

MIALID	Estimated Ground	Boreho	le Bottom	Well Scree Depth	en Interval (mbgs)	Well Screen Interval Elevation (m)		
	Elevation (m)	Depth (mbgs)	Elevation (m)	from	to	from	to	
MW1	473.50	9.8	463.70	6.65	9.7	466.85	463.80	
MW2	469.37	6.2	463.17	3.05	6.1	466.32	463.27	
MW3	471.00	6.3	464.70	3.15	6.2	467.85	464.80	
MW4	458.48	6.7	451.78	3.55	6.6	454.93	451.88	
MW5	454.05	6.5	447.55	3.35	6.4	450.70	447.65	
Piezometer	448.19	0.9	447.29	0.3	0.9	447.89	447.29	

 Table 1: Information on Boreholes and Groundwater Monitoring Wells

2.3 Groundwater Monitoring

As part of this investigation, HLV2K visited the site on September 17th and 30th to measure the groundwater levels in the monitoring wells. Groundwater was encountered only in MW5 and the rest of the wells were found dry.

2.4 In-Situ Hydraulic Conductivity Testing

Monitoring wells were dry except MW5. The depth of the water in MW5 was not enough to conduct hydraulic conductivity test. Wells will be revisited in spring when the high groundwater level is expected. If enough water is encountered in any of the wells, the hydraulic conductivity test will be conducted.

2.5 In-Situ Percolation Test

HLV2K's staff visited the Site on September 1st and 7th, 2021. After receiving utility locates, four (4) 150mm borehole was drilled to approximate depth of 2.4 m below ground surface (mbgs). All loose material was removed from the sides and bottom of the hole. **Figure 2** shows the location of the test holes. Groundwater level was measured in the monitoring well in vicinity of the test hole.

The installed monitoring wells were used to measure the groundwater levels at the time of percolation tests. The borehole logs are provided in **Appendix A**.

The bottom of the hole was covered with 10 cm of sand and then the hole was filled with the water to a depth close to the surface (15 cm to 30 cm below ground surface). The water levels versus time were recorded. Field test measurements are provided in **Appendix B**.

3 SITE CONDITIONS

3.1 Physical Setting

The Site is situated in a mixed rural, residential, and agricultural area. It is on the west side of Trafalgar Road, between Sideroad 27 to the north and Upper Canada Drive to the south. The Site is surrounded by residential housing, agricultural fields, and forested area. According to the Oak Ridges Moraine Atlas which is available online at (http://www.mah.gov.on.ca/page334.aspx) and the Niagara Escarpment Plan (NEP) Maps available online at (http://www.escarpment.org/landplanning), the Site is not located within an area where either the Oak Ridges Moraine Conservation Plan or the Niagara Escarpment Plan would be applicable.

3.2 Climatic Conditions

Average monthly climate data from an Environment Canada climate station located at the Fergus Shand Dam (Station ID 6142400), approximately 14 km west of the Site, for the period between 1981 and 2010 is provided in **Table 2**, below (Environment Canada, 2021). The data indicates that the climate in the study area is typical continental with cold winters and warm summers and precipitation records showing local seasonal variation. As shown in **Table 2**, below, the mean annual precipitation is 945.7 mm/year, with annual mean rainfall of 797.8 mm/year (84% of total precipitation). Average monthly precipitation ranged from 55.9 mm in February to 96.6 mm in August. The mean annual daily temperature is 6.7 degrees Celsius (°C), ranging from -7.4 °C in January to 20.0 °C in July.

MONTH	Daily Average Temperature (°C)	Average Rainfall (mm)	Average Snow (cm)	Average Precipitation (mm)
January	-7.4	27.8	40.1	67.9
February	-6.3	25.3	30.6	55.9
March	-1.9	36.7	22.9	59.6
April	5.7	67.9	6.2	74.1
May	12.2	86.8	0.1	86.9
June	17.5	83.8	0.0	83.8
July	20.0	89.2	0.0	89.2
August	19.0	96.6	0.0	96.6
September	14.9	93.1	0.0	93.1
October	8.3	75.6	1.6	77.2
November	2.1	80.5	12.5	93.0
December	-3.9	34.7	33.9	68.6
Year	6.7	797.8	147.8	945.7

Table 2: Climate Data Summary (1981 – 2010) – Fergus Shand Dam Station (ID 6142400)

NOTE: Data was obtained from Environment Canada website (Environment Canada 2021).

3.3 Physiography and Drainage

A review of the topographic map provided online by Natural Resources Canada (Toporama) depicts the Site as located within an area that is generally high relief at an approximate elevation of 450 m to 470 m. The project is located in the Little Credit River Watershed within the Credit Valley River Conservation

Authority (CVCA) jurisdiction. The watershed is approximately 1,000 square kilometers (km²). The main branch of the Credit River originates north of Orangeville and flows southerly to Lake Ontario at Port Credit, Mississauga, ON (CVC, 2011).

According to the physiographic regions of Ontario identified by Chapman and Putnam (2007), the Site is located in Hillsburgh Sandhills (**Figure 3**). The Hillsburgh Sandhills physiographic region is found in the northwestern portion of the watershed and consists of coarse-grained sediments. It is an area of high relief with thick deposits of glacial outwash (sandy materials) overlying glacial tills and bedrock (CVC, 2011)

3.4 Geological Mapping

The geology of the Credit River watershed generally consists of ice-contact stratified drift (CVC, 2011). A regional description of the Quaternary geology for the area of the Site can be found on the Ontario Geological Survey Digital Map - Surficial geology of southern Ontario (OGS, 2010). A section of this map showing the surficial geology in the vicinity of the Site is presented on **Figure 4**.

As shown on **Figure 4**, the surficial deposits in the immediate vicinity of the Site are mapped as Orangeville Moraine with materials consisted of sand and gravel including some till or silt. The western side of the Site is modern alluvial deposits.

Bedrock is comprised of upper Silurian to lower Devonian of Guelph Formation. The bedrock surface is expected to be approximately 60 mbgs. None of the boreholes drilled for this investigation reached the bedrock. **Figure 5** shows the bedrock at the Site and its vicinity.

3.5 Subsurface Soil Conditions

The subsurface soil conditions encountered during boreholes advanced at the Site are shown on the borehole logs in **Appendix A**. A summary of the soil conditions is provided below.

Topsoil with approximate thickness of 200 to 300 mm was encountered in all boreholes. Below the topsoil, a layer of sandy silt to silty sand was encountered at all borehole locations and extended in general to approximately from 1.5 to 3.1 m below the existing ground surface. Organic matter, rootlets, gravel and cobbles were found in this layer. Below this layer, a layer of sand and gravel was encountered in all boreholes and extended to maximum explored depth of 9.8 m.

4 GROUNDWATER CONDITIONS

4.1 Regional Groundwater Recharge

Recharge is the process by which groundwater is replenished and involves the vertical infiltration of water through the subsoil deposits and geologic materials to the saturated zone. The major sources of recharge in the study area are a result of precipitation and freshet. The amount of groundwater recharge in a particular area depends on surficial geology, topography, and the extent of land development in that area. Generally, regional groundwater recharge is irregularly distributed temporally and spatially as interpreted from specific climatic conditions, local geology, and land development status.

The Site is a vacant land and is used for agriculture. Therefore, the groundwater recharge occurs under natural condition. A water balance analysis was completed for the site to estimate the change in water recharge pre and post development and will be presented in the following sections.

4.2 Groundwater Level Fluctuations

The groundwater level data collected from the monitoring wells are provided in **Table 3**, below. The screen elevations of these monitoring wells are shown in **Table 1** above and on the borehole logs provided in **Appendix A**.

Groundwater level monitoring rounds were completed from September 2021 to July 2022. As shown in **Table 3** below, the groundwater has found only in MW5 at approximate elevation of 449.5 m. The rest of the monitoring wells were dry.

Regional groundwater flow in the area typically reflects the local topography and generally occurs from topographic highs to topographic lows. The dominant regional groundwater flow direction is southerly, toward Lake Ontario.

It should be noted that groundwater conditions vary depending on factors such as temperature, season, precipitation, construction activity and other situations, which may be different from those encountered at the time of the monitoring. The possibility of groundwater level fluctuations at the Site should be considered when designing and developing the construction plans for the project.

BH ID	M	IW1	N	IW2	N	IW3	MW4		MW5		P1	
Ground Elevation (m)	473.50		469.37		471.00		458.48		454.05		448.19	
Borehole Depth (m)	9	0.80	6	.20	6	6.30 6.70		6.50		0.90		
	Depth (mbgs)	Elevation (m)										
1&7-Sep-21 (at completion)	Dry	Dry										
17-Sep-21	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.64	449.41	Dry	Dry
30-Sep-21	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.70	449.35	Dry	Dry
05-Oct-21	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.64	449.41	Dry	Dry
15-Oct-21	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.65	449.40	Dry	Dry
30-Oct-21	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.69	449.36	Dry	Dry
16-Nov-21	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.67	449.38	Dry	Dry
30-Nov-21	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.65	449.40	Dry	Dry
15-Dec-21	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.66	449.39	Dry	Dry
04-Jan-22	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.67	449.38	Dry	Dry
17-Jan-22	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.68	449.37	Dry	Dry
31-Jan-22	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.68	449.37	Dry	Dry
14-Feb-22	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.65	449.40	Dry	Dry

Table 3: Summary of Groundwater Level Observations in Monitoring Wells

BH ID	M	IW1	М	W2	N	IW3	N	IW4	М	W5	I	P1
Ground Elevation (m)	47	3.50	46	9.37	47	1.00	45	8.48	45	4.05	44	8.19
Borehole 9.80 Depth (m)		.80	6	.20	6.30		6.70		6.50		0.90	
28-Feb-22	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.63	449.42	Dry	Dry
15-Mar-22	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.55	449.50	Dry	Dry
31-Mar-22	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.51	449.54	Dry	Dry
12-Apr-22	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.42	449.63	Dry	Dry
27-Apr-22	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.35	449.70	Dry	Dry
18-May-22	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.30	449.75	Dry	Dry
01-Jun-22	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.28	449.77	Dry	Dry
16-Jun-22	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.28	449.77	Dry	Dry
30-Jun-22	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.30	449.75	Dry	Dry
15-Jul-22	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.34	449.71	Dry	Dry
27-Jul-22	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	4.36	449.69	Dry	Dry

4.3 Percolation Test Results

Table 4 below is the summary of the percolation test results. The selected value for the test presented in the table is the average of final three percolation rates during each test which is closer to the steady-state infiltration rate. Detailed calculations are provided in **Appendix B**.

Test ID	Hole Depth (mbgs)	Hole Bottom Elevation (m)	Groundwater Depth (mbgs)	Infiltration Rate (mm/hr)	Percolation Time (min/cm)
TP1	2.4	466.3	<9.8 (MW1)	600	1
TP2	2.4	466.7	<6.2 (MW2)	120	5
TP3	1.85	460.5	<6.7 (MW4)	1200	0.5
TP4	2.2	452.8	4.8 (MW5)	300	2

Table 4: Summary of Infiltration Test Results

4.4 Groundwater Use in the Study Area

A search of the MECP Water Well Information System (WWIS) database to identify active wells near the Site were conducted. The database search was requested for the area located within 500 m from the Site. The database search identified records for 90 wells.

Figure 5 presents the locations of the identified wells as well as the associated water use categories within 500 m around the Site. A detailed table showing water well record (WRR) information for these wells is provided in **Appendix C**. The classification of these wells is as follows:

- 4 monitoring/observation wells and test hole;
- 16 wells identified as abandoned; and
- 2 wells were not stated;
- 68 wells as water supply wells.

The monitoring wells/test holes identified in the database search are typically interpreted as geotechnical/geological boreholes and normally no water would be obtained or used from these boreholes. The search revealed the presence of 68 domestic water wells or other water supply wells potentially in use in the area of the Site. If groundwater use or dewatering is required for the Site, a door-to-door well survey is recommended.

5 GROUNDWATER DEWATERING ESTIMATES

Details of construction was not provided to HLV2K at the time of this investigation; however, it is our understanding that one level of basement is considered for the houses in this development. **Appendix D** shows the layout of the proposed development. The water level monitored during the investigation shows that dewatering would not be required during the construction to control the groundwater. The monitoring well depths are 6.5 to 9.8 mbgs and no groundwater encountered within this depth except in MW5 at 4.8 mbgs or elevation of 449.3 m. Perch water may be present during the construction and the contractor should be ready to control that water, if encountered.

During the excavation for foundation or underground utilities, rainwater may need to be pumped from the trenches. According to MTO IDF Curve Lookup website¹, 24-hour rainfall with a 2-year return period in Erin area is 56.5 mm. The volume of the water depends on the area of excavation at the time.

6 WELLHEAD PROTECTION AREA

A small portion of the Site (approximately 0.6 ha) in the northeast is located within the Well Head Protection Area A (WHPA-A) which represents a 100 m circle around a municipality water supply well as shown in **Figure 7**. It is also located within the Significant Groundwater Recharge Area (SGRA). A water balance analysis was conducted to estimate the recharge rate in pre and post construction. The results are provided in the following section.

7 PREDICTED EFFECTS

Based on the hydrogeological information and data analysis in this report, the potential impacts to surface water and groundwater resources in the vicinity of the Site due to excavation dewatering for construction of the proposed houses at the Site are described below.

7.1 Groundwater Use

As indicated in Section 4.3, the search of the MECP water well records indicated 68 water supply wells within approximately 500 m of the Site. The area of the Site is currently serviced with a municipal water supply. The groundwater depth at the site is expected to be below basement floor and foundation. However, if groundwater dewatering and/or use is considered for this development, a door-to-door survey is recommended.

7.2 Surface Water Resources

The only surface water feature in the vicinity of the Site is the wetland at the southwest side of the Site (**Figure 8**). Since no groundwater use/dewatering is expected for this development, the impact on surface water is not anticipated. The change in the infiltration rate or runoff due to the development is considered in the water balance analysis.

¹ http://www.mto.gov.on.ca/IDF_Curves

7.3 Potential for Dewatering-Related Consolidation Settlement

Based on the investigation completed, temporary dewatering (i.e. during construction) is not expected. No settlement due to dewatering is expected for this Site.

8 SUMMARY AND CONCLUSION

Based on the results of the subsurface investigation, hydrogeological assessment, and analysis of hydraulic conductivity testing and groundwater level monitoring data, the following summary of conclusions and recommendations is provided:

- The groundwater was not encountered in any of the monitoring wells within the depth of expected excavation and PTTW/EASR is not required for dewatering during construction. Perched water and rainfall might be present during excavation and the contractor should be ready to deal with the water, if encountered.
- The Site is located within the Significant Groundwater Recharge Area (SGRA). Based on water balance analysis, implementing mitigation measures to reduce the infiltration deficit will assist in maintaining the current level of groundwater contribution to the surface water features. As such, no negative impact is expected if LID measures are implemented to maintain the groundwater recharge similar to the existing conditions.
- A small portion of Site (approximately 0.6 ha) is within the Wellhead Protection Area A (WHPA-A), which represent a 100 m distance from one municipal supply well. The sanitary sewer and stormwater management facility should be designed as per policy SWG-13 and SWG-14 to protect the groundwater quality.
- HLV2K recommends the decommissioning of existing groundwater monitoring wells after completion of the construction of the project. In conformance with Ontario's Wells Regulation (O.Reg.903) of the Ontario Water Resources Act, the installation and eventual decommissioning of groundwater wells must be carried out by a licensed well contractor. If a well is damaged/destroyed during the construction activities, then the well should be properly decommissioned in advance of that work.

9 STATEMENT OF LIMITATIONS

The contents of this report are subject to the attached 'Statement of Limitation' sheet. The reader's attention is specifically drawn to these conditions as it is considered essential that they be followed for proper use and interpretation of this report. The Statement of Limitations is not intended to reduce the level of responsibility accepted by HLV2K, but rather to ensure that all parties who have been given reliance for this report are aware of the responsibilities each assumes in so doing.

This report was prepared by HLV2K exclusively for the account of Hillsburgh Heights Inc. (the CLIENT). Other than by the CLIENT, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of HLV2K. Any use, reliance on or decision made by any person other than CLIENT based on this report is the sole responsibility of such other person. The CLIENT and HLV2K make no representation or warranty to any other person with regard to this report and the work referred to in this report and the CLIENT and HLV2K accept no duty of care to any other person or any liability or responsibility whatsoever for any losses, expenses, damages, fines, penalties or other harm that may be suffered or incurred by any other person as a result of the use of, reliance on, any decision made or any action taken based on this report or the work referred to in this report.

10 CLOSURE

We trust that this information is satisfactory for your present requirements. Should you have any questions or require additional information, please do not hesitate to contact this office.

REFERENCES

- Chapman, L.J., and Putnam, D.F. (2007). The Physiography of Southern Ontario, Ontario Geological Survey, Miscellaneous Release—Data 228.
- CVC (2011). Credit River Watershed and Region of Peel: Natural Areas Inventory Volume 1, Credit River Conservation, September 2011.
- Environment Canada (2021). Canadian National Climate Archive, Canadian Climate Norms and Averages (1981 – 2010), Fergus Shand Dam – Station ID 6142400– Website: <u>https://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?searchType=stnName_&txtStationName=fergus+shand+dam&searchMethod=contains&txtCentralLatMin=0&txtCentralLa tSec=0&txtCentralLongMin=0&txtCentralLongSec=0&stnID=4760&dispBack=1</u>
- OGS (2010). Surficial geology of southern Ontario; Ontario Geological Survey, Miscellaneous Release— Data 128 – Revised
- OGS (2011). 1:250 000 scale bedrock geology of Ontario; Ontario Geological Survey, Miscellaneous Release---Data 126-Revision 1.

HLV2K Engineering Limited

STATEMENT OF LIMITATIONS

Your report has been developed based on your unique project specific requirements as understood by HLV2K Engineering Limited (HLV2K) and applies only to the site investigated. Project criteria typically include the general nature of the project; its size and configuration; the location of any structures on the site; other site improvements; the presence of underground utilities; and the additional risk imposed by scope-of-service limitations imposed by the client. Your report should not be used if there are any changes to the project without first asking HLV2K to assess how factors that changed subsequent to the date of the report affect the report's recommendations. HLV2K cannot accept responsibility for problems that may occur due to changed factors if they are not consulted.

Subsurface conditions are created by natural processes and the activity of man. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions, which existed at the time of subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult HLV2K to be advised how time may have impacted on the project.

The findings derived from this investigation were based on information collected and/or provided by the Client. It may become apparent that soil and groundwater conditions differ between and beyond the testing locations examined during future investigations or other work that could not be detected or anticipated at the time of this study. As such, HLV2K cannot be held liable for environmental conditions that were not apparent from the available information. The conclusions presented represent the best judgment of the assessors based on limited investigations.

Site assessment identifies actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from literature, external data source review, sampling, and subsequent laboratory testing are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how qualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions, which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, owners should retain the services of HLV2K through the development stage, to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

Your report is based on the assumption that he site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced and therefore your report recommendations can only be regarded as preliminary. Only HLV2K, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project develops. If another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and HLV2K cannot be held responsible for such misinterpretation.

To avoid misuse of the information contained in your report it is recommended that you confer with HLV2K before passing your report on to another party who may not be familiar with the background and the purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.

HLV2K Engineering Limited

Costly problems can occur when other design professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain HLV2K to work with other project design professionals who are affected by the report. Have HLV2K explain the report implications to design professionals affected by them and then review plans and specifications produced to see how they incorporate the report findings.

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way.

Logs, figures, drawings, etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel) and laboratory evaluation of field samples. These logs etc. should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

Your report is not likely to relate any findings, conclusions, or recommendations about the potential for hazardous materials existing at the site unless specifically required to do so by the client. Specialist equipment, techniques, and personnel are used to perform a geoenvironmental assessment.

Contamination can create major health, safety and environmental risks. If you have no information about the potential for your site to be contaminated or create an environmental hazard, you are advised to contact HLV2K for information relating to geoenvironmental issues.

HLV2K is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to a project, from design to construction. It is common that not all approaches will be necessarily dealt with in your site assessment report due to concepts proposed at that time. As the project progresses through design towards construction, speak with HLV2K to develop alternative approaches to problems that may be of genuine benefit both in time and in cost.

Reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than the design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from HLV2K to other parties but are included to identify where HLV2K's responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from HLV2K closely and do not hesitate to ask any questions you may have.

Third party information reviewed and used to formulate this report is assumed to be complete and correct. HLV2K used this information in good faith and will not accept any responsibility for deficiencies, misinterpretation or incompleteness of the information contained in documents prepared by third parties.

Nothing in this report is intended to constitute or provide a legal opinion.

Should additional information become available, HLV2K requests that this information be brought to our attention so that we may re-assess the conclusions presented herein.

FIGURES

Legend

Drawn: MM	Title BOREHOLES LOCATION PLAN					
Approved: KM	Project					
Date: SEP. 2021	HYDROGEOLOGICAL INVESTIGATION					
Project No .:	5916 Tralaigar Road North, Town of Erin, Ontario					
2100428AH						
	Client Hillsburgh Heights Inc.					
	0 40 80 160 FIGURE 2					

Legend

Site Boundary

9, Hillsburgh Sandhills

Drawn: MM	Title PHYSIOGRAPHIC MAP						
Approved: KM	Project						
Date: SEP. 2021	HYDROGEOLOGICAL INVESTIGATION						
Project No.: 2100428AH	5916 Trafaigar Road North, Town of Erin, Ontario						
	^{Client} Hillsburgh Heights Inc.						
	0 337.5 675 1,350 Meters FIGURE 3						

Legend

Final Status

- Abandoned
- Monitoring and Test Hole
- Not Stated
 - Water Supply
 - 500m Buffer
 - Site Boundary

X	Source: E	sri, Maxar,	GeoEye,	Earthstar (?
) USDA, US	BGS, Aero(grid, igi	l, and the

5737485

Drawn: MM	Title WATER WELL USE MAP
Approved: KM	Project
Date: SEP. 2021	HYDROGEOLOGICAL INVESTIGATION
Project No.:	5910 Halaigai Road North, 10wil of Ehil, Offano
2100428AH	
	Client Hillsburgh Heights Inc.
	0 105 210 420 Meters FIGURE 6

6704469

Lege	end
	Site Boundary
	WHPA-A
	WHPA-B
	WHPA-C

WHPA-D

Drawn: MM	Title WELLHEAD PROTECTION AREA CLOSE TO SITE
Approved: KM	Project
Date: NOV. 2021	HYDROGEOLOGICAL INVESTIGATION
Project No.:	5910 Halaigai Road North, Town of Enn, Ontano
2100428AH	
	^{Client} Hillsburgh Heights Inc.
	0 170 340 680 FIGURE 7

APPENDIX A

BOREHOLE LOGS AND GRAIN SIZE ANALYSIS

PROJECT: Briarwood Hillsburgh Development

CLIENT: Briarwood Homes

PROJECT LOCATION: 5916 Trafalgar Road North, Town of Erin, Ontario DATUM: Geodetic

BH LOCATION: See Borehole Location Plan N 4849474.973 E 568214.5891

Image: DESCRIPTION Image:		SOIL PROFILE		5	SAMPL	ES			DYNA RESIS	MIC CO	NE PEN PLOT		TION			- NAT	URAL			⊢	REMARKS	
LEV. 4733 DESCRIPTION Image: bit function of the second s	(m)		4				ATER		2	20 4	0 6	0 8	30 1	00	LIMIT		STURE	LIQUID	PEN.) NIT W		
Series B <td></td> <td>DESCRIPTION</td> <td>A PL(</td> <td>۲.</td> <td></td> <td>OWS .3 m</td> <td>ND W</td> <td>NOIT</td> <td>SHEA</td> <td></td> <td></td> <td>TH (ki</td> <td>Pa) FIELD V</td> <td>ANE</td> <td></td> <td></td> <td>w 0</td> <td></td> <td>Cu) (kF</td> <td>(kN/m</td> <td>DISTRIBUTIO</td> <td>N</td>		DESCRIPTION	A PL(۲.		OWS .3 m	ND W	NOIT	SHEA			TH (ki	Pa) FIELD V	ANE			w 0		Cu) (kF	(kN/m	DISTRIBUTIO	N
472.5 ip ip<			TRAT	UMBE	ΥΡΕ		ROU	LEVA	• QI	UICK TH		×	& Sensit LAB V/	ivity ANE	WA	TER CO		T (%)	L C	NAT	(%)	
473.3 1 SS 4 1 SS 4 2 SS 12 2 SS 12 3 SS 23 4 SS 39 470 0 470 0 469 0 469 0 469 0 469 0 470 0 471 0 469 0 470 0 470 0 469 0 469 0 470 0 469 0 470 0 471 0 469 0 470 0 471 0 469 0 469 0 469 0 469 0	473.5	Topsoil: 200mm	0 <u>11/</u>	Ż	ŕ	4	υõ		2	20 4	6	5 0	30 1	00			20 ;	30	┢	\vdash	GR SA SI C	CL
Image day, trace doubles, outles, outles, losse to compact. 1	473.3	Sandy Silt: trace gravel/cobblees.	ĺπ		00				-													
Looringed 1 <	-	trace clay, trace rootlets, oxidized, grevish brown moist loose to		1	55	4		470	-							Ψ						
470.4 3 88 23 9 9 9 9 470.4 3 88 23 9 471 9 9 470.4 3 8 23 9 471 9 9 470.4 3 5 85 39 471 9 9 471 9 9 9 9 9 9 471 9 9 9 9 9 471 9 9 9 9 9 471 9 9 9 9 9 471 9 9 9 9 9 471 9 9 9 9 9 471 9 9 9 9 9 471 9 9 9 9 9 471 9 9 9 9 9 471 9 9 9 9 9 488 9 9 9 9 9 488 9 9 9 9 9 488 9 9 9 9 9 488 9 9 9	-	compact						473	-										1			
4 2 SS 12 Bentonte 0 0 4 SS 23 4 SS 23 4 SS 23 4 0 0 4 SS 23 4 0 0 4 SS 23 4 0 0 4 SS 23 4 4 0 4 SS 23 4 4 0 4 SS 5 SS 39 4 4 SS 5 SS 39 4 SS 5 SS 39 4 SS 5 50/15C 4 SS 50/15C 4 SS 67 5 SS 67 4 SS 67	-								-													
4704 3 SS 23 Pentone 0 0 3 SS 23 4 SS 23 0 4704 4 SS 23 471 0 0 4704 5 SS 38 471 0 0 4704 4 SS 23 471 0 0 4704 4 SS 23 471 0 0 4704 4 SS 23 471 0 0 4704 488 471 0 0 0 4704 469 0 0 0 0 469 469 0 0 0 0 469 6 SS 50150 0 0 0 469 6 SS 50150 0 0 0 469 6 S 60150 0 0 0	- 1				~~~	10			-							_						
Ar0.4 Ar0.4 3.1 Sand and gravel: trace sit, trace clay, brown, molet, loose to very dense 4.4 4.4 4.4 5.5 SS 39 4.7 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	-			2	55	12			-							0						
2 3 SS 23 Arroa 4 SS 23 4 SS 30 4 SS 5 5 SS 30 469	-								-													
2 470.4 3 S 23 4 S 23 471 4 S 23 471 4 S 23 471 4 S 23 471 4 S 23 471 471 471 471 471 471 471 471	-							-Bento	nite													
4 SS 23 471 0 0 4 SS 23 471 0 0 3.1 Csky, hown, most, loose to very dense 1 5 SS 39 4 SS 5 SS 39 4 SS 5 SS 0 4 4 SS 5 SS 4 4 SS 5 4 5 SS 0 4 4 5 SS 4 5 SS 0 4 4 5 SS 4 4 4 5 5 SS 4 5 4 4 4 4 5 5 6 5 6 5 7 5 7 5	-				SS	23			-													
470.4 -	- 2			ľ					-													
3.1 Sand and gravel: trace sill, trace clay, brown, moist, loose to very dense 4 5 SS 39 4 4 5 SS 39 4 5 SS 39 4 6 - - 4 - - 4 - - <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	-								-													
470.4 3.1 Sand and gravel: trace silt, trace clay, brown, moist, loose to very dense 4 5 5 39 4 5 5 5 39 4 6 5 50'150 4 7 5 67 4 7 5 67	-								-													
3470.4 3.1 Sand and gravel: trace silt, trace s	-			4	SS	23		471							-	0						
4470.4 Image: Sand and gravel: trace silt, trace silt, trace dense 1 5 SS 39 a 5 SS 39 470 0 0 a 6 SS 50/150 469 0 0 469 6 SS 60/150 0 0 469 7 SS 67 5 5				1					-													
3.1 Sand and gravel: trace sit, trace of every dense 4 5 SS 39 4 5 SS 39 4 0 0 0 4 6 SS 50/15C 469 0 0 0 4 6 SS 50/15C 469 0 0 0 4 7 SS 67 6 469 0 0 4 7 SS 67 6 6 6 6 6 2 1	- 								-													
dense o o a o o a o o a o o a o o a o o a o o a o o a o o a o o a o o a o o a o o a o o a o o a o o a o o a o o a o o a o o	- 3.1	Sand and gravel: trace silt, trace	4 0	;					-													
		dense	. 10 l.	5	SS	39			-						0							
	-			:				470							-				1			
4 469 5 6 469 469 469 469 469 469 469 469 468 468 468 468 468 5 6 5 6 7 8 6 7 8 467 6 6 5 6 5 6 6 6 7 8 6 7 8 6 7 8 6 8 9 9 9 9 9 9	-		1.101	┣					-													
469 469 469 469 469 469 469 469	- 4			1					Ŀ													
469 469 469 469 469 469 469 469	-			2					-													
469 469 469 469 6 SS 50/150 468 468 468 468 468 6 SS 50/150 468 6 SS 50/150 6 SS 50/150 7 SS 67 6 SS 50/150 6 SS 50/150 7 SS 67 7 SS	-			·					-													
	-							469										+				
	-			1					-													
	-		ŀ, ŀ	6	SS	50/150			-						0							
	-			•					-													
Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	-			2					-													
	-		10	:				468										<u> </u>	-			
	-			;					-													
[∞] ¹ / ₁			0]					-													
Z	-			 					-													
$\underline{\mathbf{z}}$	-		0	:					-													
	 			7	SS	67		Sand	-						0			<u> </u>	-			
			10	1			[:目:	÷	-													
				1					}													
	-			ľ			[:目:		-													
				•					-													
	-	Continued Next Dage		1			[]目	÷	-													

REF. NO.: 2100428AH DRAWING NO.: 2

Diameter: 150mm Date: Sep-07-2021

DRILLING DATA

Method: Hollow Stem Auger

PROJECT: Briarwood Hillsburgh Development

SOIL PROFILE

DESCRIPTION

Sand and gravel: trace silt, trace

clay, brown, moist, loose to very

End of Borehole: borehole

1) 50 mm diameter monitoring well installed upon completion.

terminated at 9.8m

Upon completion: open & dry

dense(Continued)

CLIENT: Briarwood Homes

PROJECT LOCATION: 5916 Trafalgar Road North, Town of Erin, Ontario

DATUM: Geodetic

(m)

ELEV DEPTH

463.7

9.8

BH LOCATION: See Borehole Location Plan N 4849474.973 E 568214.5891

STRATA PLOT

•

. |0|-

8 SS 13

10 •| •| k

ŀ 9 SS 6

01

. 0

NUMBER

SAMPLES

TYPE z GROUND WATER CONDITIONS

ELEVATION

-Screen

465

464

BLOWS 0.3 m

DRILLING DATA

Method: Hollow Stem Auger

DYNAMIC CONE PENETRATION RESISTANCE PLOT

SHEAR STRENGTH (kPa) O UNCONFINED + FIELD VANE QUICK TRIAXIAL × LAB VANE

Diameter: 150mm

REF. NO.: 2100428AH

LIQUID

LIMIT

WL

-1

PLASTIC NATURAL MOISTURE LIMIT CONTENT

10 20 30

C

0

WP

н

w

-0-

WATER CONTENT (%)

Date: Sep-07-2021

20 40 60 80 100

20 40 60 80 100 POCKET PEN. (Cu) (kPa)

5

NATURAL UNIT ((kN/m³)

REMARKS

AND

GRAIN SIZE

DISTRIBUTION

(%)

GR SA SI CL

PROJECT: Briarwood Hillsburgh Development

CLIENT: Briarwood Homes

PROJECT LOCATION: 5916 Trafalgar Road North, Town of Erin, Ontario DATUM: Geodetic

BH LOCATION: See Borehole Location Plan N 4849079.566 E 567864.1193

DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE LIMIT CONTENT REMARKS GROUND WATER CONDITIONS LIQUID POCKET PEN. (Cu) (kPa) AND LIMIT NATURAL UNIT ((kN/m³) 20 40 60 100 80 (m) STRATA PLOT GRAIN SIZE WL BLOWS 0.3 m Wp w SHEAR STRENGTH (kPa) O UNCONFINED + FIELD VANE QUICK TRIAXIAL × LAB VANE ELEVATION ELEV DEPTH -0 DISTRIBUTION -1 DESCRIPTION NUMBER (%) WATER CONTENT (%) TYPE ż 20 40 60 80 100 10 20 30 GR SA SI CL 469.4 Topsoil:300mm 11 0.0 11 469.1 SS 6 0 1 0.3 Silty sand to sandy silt till: trace ŀ 469 clay, trace gravel/cobble, trace rootlets, brown, moist, loose to compact Bentonite 1 2 SS 23 С 468 467.9 1.5 Sandy silt till: trace gravel, brown, moist, dense to very dense 3 SS 52 о 467 4 SS 44 SS 5 39 466 0 -Sand 465 -Screen 6 SS50/125mm 464 Η 463.2 22 /75 6.2 End of Borehole:borehole terminated at 6.2m 1) 50 mm diameter monitoring well installed upon completion. Upon completion: open & dry

.

REF. NO.: 2100428AH DRAWING NO.: 3

Diameter: 150mm Date: Sep-07-2021

Method: Hollow Stem Auger

DRILLING DATA

PROJECT: Briarwood Hillsburgh Development

CLIENT: Briarwood Homes

PROJECT LOCATION: 5916 Trafalgar Road North, Town of Erin, Ontario DATUM: Geodetic

BH LOCATION: See Borehole Location Plan N 4849170.944 E 568075.1217

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm Date: Sep-07-2021 REF. NO.: 2100428AH DRAWING NO.: 4

	SOIL PROFILE		S	AMPL	ES			DYNAI RESIS	VIC CO TANCE	NE PEN PLOT		TION			- NATI	JRAL			⊢	REMARKS	
(m)		ЪТ				ATER		2	0 4	06	0 8	30 1	00	LIMIT	C MOIS	TURE	LIQUID	PEN.) NIT W		
ELEV	DESCRIPTION	A PLO	~		3 m	D W	NOL	SHEA	R ST	RENG	TH (kl	Pa)	ANE	W _P	\ (N D	WL	ы КР	(kN/m ³	DISTRIBUTION	1
DEPTH		RAT/	MBE	Ш	OBLO	NUO	EVAT	0 U1 • Q1	VCONF	INED RIAXIAL	+ ×	& Sensit LAB V/	ivity	WAT	TER CC	NTENT	Г (%)	9 Q Q	NATU	(%)	
471.0		ST	R	Ł	z	50	Ē	2	0 4	06	ο ε	30 1	00	1	0 2	20 3	80			GR SA SI C	L
0.0	Topsoil:300mm	<u>× '/</u>																			
470.7 0.3	Silty sand: trace gravel, trace	<u> </u>	1	SS	8									0							
	rootlets, greyish brown, moist, loose	計						-													
								-													
		臣					-Bento	l- nite													
1			2	SS	9		470)						
								-													
160 5								-													
1.5	Sand and gravel: trace silt, some	i i						-													
	cobbles, brown, moist, dense to very dense	0	3	99	36			-													
2		0.	3	33	30		469	_													
		0						-													
								-													
		0						-													
		0	4	SS	37)						
		.o .0					1														
3		. 0					468														
						日															
		0	5	SS	39			-							0						
		0						-													
		0																			
4		٥					407	-													
-		0					Sand	-													
								-													
		0						-													
		. 0.					Scroo	ŀ													
		0	6	2 95(1/130m			ŀ													
5		0		530	13011		466														
		° 0																			
		0																			
		0						-													
		0						-													
		0						-													
		0				目	465	-													
464.7			7	SS5	0/75mi	n 🗄 🗄		-							0						
6.3	End of Borehole:borehole																				
	1) 50 mm diamater manifering																				
	well installed upon completion.																				
	Upon completion: open & dry																				
	-																				

PROJECT: Briarwood Hillsburgh Development

CLIENT: Briarwood Homes

PROJECT LOCATION: 5916 Trafalgar Road North, Town of Erin, Ontario DATUM: Geodetic

BH LOCATION: See Borehole Location Plan N 4848881.638 E 568028.4108

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm Date: Sep-07-2021 REF. NO.: 2100428AH DRAWING NO.: 5

	SOIL PROFILE		S	AMPL	ES			DYNA RESIS	MIC CO TANCE	NE PEN PLOT		FION			NATI	IRAI			L	REMARKS
(m)		Ц				ATER		2	0 4	06	0 8	0 10	00	LIMIT	C MOIS	TURE TENT	LIQUID	PEN. a)	NIT W	AND
ELEV	DESCRIPTION	A PLC	2		3 m	IONS	NOL	SHE/	AR STI	RENG	TH (kF	Pa)		W _P	\(v >	WL	CKET 2u) (kP	RAL U (kN/m ³	DISTRIBUTION
DEPTH	DESCRIPTION	RATA	MBE	Щ	O.O.		EVAT	0 UI • QI	NCONF JICK TF	INED RIAXIAL	+ ×	& Sensiti LAB VA	vity	WA	TER CC	NTENT	(%)	9 <u>0</u>	NATU	(%)
458.5	T 11.050	ST	N	Ł	z	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	EL	2	0 4	06	0 8	0 10	00	1	0 2	0 3	0			GR SA SI CL
- 458 2	Topsoil:250mm	<u></u>						-												
- 0.3	Sand and gravel: trace silt, trace	0	1	SS	4			_							0					
-	brown, moist, loose to compact	0					458													
-		0						-												
-		0						-												
1			2	SS	17		-Bento	L nite						0						
-		0	-					-												
-		0						-												
_ <u>457.0</u> _ 1.5	Silty clay: trace sand, trace gravel,						457	-												
-	brown, moist, hard	H.						_												
-			3	885	0/75mi			-							0					
-								-												
456.2	Orandara da marca la la compañía de la	Į.						-												
2.3	clay, some cobbles, brown, moist,	0					456													
-	compact to very dense	0	4	SS50	/130m	m 🗄		_						0						
-		0.0						-												
3		0						-												
-		0						-												
-		0	5	SS	18			-						0						
-							455													
-		0						_												
-		· · · ·						-												
4		0				¦∙₿∴		-												
-		· 0 .				:目:		_												
-		0.0					-Sand	-												
-		0					454	-												
_		0						-												
5		0	6	SS	30			-						0						
-		0.				ĽĖĖ:₋	Scree	l n												
-		. 0.						-												
-		0					453													
_		0						-												
-																				
6		0						-												
-		0						-												
-		0	7	SS50)/100m	m		-						0						
- 151 0		0					452													
6.7	End of Borehole:borehole	····																		
	terminated at 6.7m																			
	 50 mm diameter monitoring well installed upon completion. 																			
	Upon completion:																			
	open a ury																			

DRILLING DATA

Diameter: 150mm

Method: Hollow Stem Auger

PROJECT: Briarwood Hillsburgh Development

CLIENT: Briarwood Homes

PROJECT LOCATION: 5916 Trafalgar Road North, Town of Erin, Ontario DATUM: Geodetic

(m) ELEV DEPTH

454.0 0.0

453.8

1

451.7

0.3

BH LOCA

CATION: See Borehole Location Plan I	N 48	4913	6.503	E 5684	118.30	89																
SOIL PROFILE		s	AMPL	ES	~		F	YNA RESIS	MIC CC	NE PE PLOT		TION		DIAGT		JRAL			F	REM	ARKS	;
	01			S	VATEF			2	20 4	10 6	50 8	30 1	00		MOIS CON V	TURE TENT N	LIMIT	T PEN. (Pa)	UNIT V ")	A GRAI	ND N SIZI	Ξ
DESCRIPTION	TA PL	ER		0.3 m		ATION	5	SHE/ D U	AR ST NCONF	RENG	TH (k +	Pa) FIELD \ & Sensi	/ANE tivity	—	(э <u> </u>	—	OCKE (Cu) (F	TURAL (kN/r	DISTR	BUTIC)N
	STRA	NUMB	түре	",	GROL	ELEW	ľ	• Q	UICK TI 20 4	RIAXIAI	- ×	LAB V 30 1	ANE 00	WA	TER CC 0 2	NTEN 20 3	T (%) 30		M	GR SA	si	CI
Topsoil:250mm	<u>x1 1y</u>	-		-		454	ŧ		-			-										
Silty sand: trace clay, trace gravel. trace rootlets, brown, moist, loose		1	SS	5											Þ							
		2	SS	5		-Bento 453	r oni 31-	te							0							
		3	SS	7												o				7 47	39	7
						452	2															
Sand: some gravel, some silt, trace							ŧ															
clay, brown, moist, compact to very dense		4	SS	12			-							o						15 64	17	4
						451	1È															
		5	S <i>S</i> 5()/130m	m	•								с								
						.'																
						450	sÈ															
						-Sand																
		6	SS	69		Scree	en 9							0								
						.'																
							F															
		7	SS5	0/75mi											0							

GROUNDWATER ELEVATIONS

Sept 07, 2021

Date:

End of Borehole:borehole

50 mm diameter monitoring well installed upon completion.
 Water Level Readings:

terminated at 6.5m

447.6

6.5

Water Level(mbgl):

4.8

REF. NO.: 2100428AH DRAWING NO.: 6

Date: Sep-07-2021

APPENDIX B

INFILTRATION TESTS FIELD MEASUREMENTS AND CALCULATIONS

Test Hole:	TP4	Date:	07-Sep-21	Project No.:	2100428AH
Tested By:	Bruce Kashani	Weather:	Cloud & windy		
		Depth to Water (m):	>6.5	Depth to bedrock (m): N/A
		Diameter (cm):	15	Depth (cm):	220

Horizon (m)	Soil Texture	Soil color	Comments
0.0 - 0.25	Topsoil	Brown, black	
0.25 - 2.20	Sandy silt	Brown	

Time (min)	Water Depth (cm)	∆t (min)	Δ h (cm)	Inf. Rate (cm/min)	Inf. Rate (mm/hr)	Percolation time (min/cm)	Average (min/cm)
0	15.00						
2	30.00	2	15.00	7.5	4500.0		
5	38.00	3	8.00	2.7	1600.0	0.38	
12	42.00	7	4.00	0.6	342.9	1.75	
20	53.00	8	11.00	1.4	825.0	0.73	
30	58.00	10	5.00	0.5	300.0	2.00	
40	63.00	10	5.00	0.5	300.0	2.00	
50	68.00	10	5.00	0.5	300.0	2.00	2.0

Test Hole:	TP1	Date:	01-Sep-21	Project No.:	2100428AH
Tested By:	Bruce Kashani	Weather:	Sunny		
		Depth to Water (m):	>6.5	Depth to bedrock (m): N/A
		Diameter (cm):	15	Depth (cm):	240

Horizon (m)	Soil Texture	Soil color	Comments
0.0 - 0.20	Topsoil	Brown, black	
0.20 - 2.40	Sandy silt to silty sand with gravel and cobbles	Brown	

Time (min)	Water Depth (cm)	∆t (min)	Δ h (cm)	Inf. Rate (cm/min)	Inf. Rate (mm/hr)	Percolation time (min/cm)	Average (min/cm)
0	30.00						
2	60.00	2	30.00	15.0	9000.0		
5	75.00	3	15.00	5.0	3000.0	0.20	
10	83.00	5	8.00	1.6	960.0	0.63	
20	105.00	10	22.00	2.2	1320.0	0.45	
30	115.00	10	10.00	1.0	600.0	1.00	
40	125.00	10	10.00	1.0	600.0	1.00	
50	135.00	10	10.00	1.0	600.0	1.00	1.0

Test Hole:	TP2	Date:	07-Sep-21	Project No.:	2100428AH
Tested By:	Bruce Kashani	Weather:	Cloud & windy		
		Depth to Water (m):	>6.5	Depth to be	drock (m): N/A
		Diameter (cm):	15	Depth (cm): 240	

Horizon (m)	Soil Texture	Soil color	Comments
0.0 - 0.30	Topsoil	Brown, black	
0.30 - 1.50	Silty sand to sandy silt with gravel and cobbles	Brown	
1.50 - 2.40	Sandy silt till	Brown	

Time (min)	Water Depth (cm)	Δt (min)	Δ h (cm)	Inf. Rate (cm/min)	Inf. Rate (mm/hr)	Percolation time (min/cm)	Average (min/cm)
0	30						
2	33	2	3.00	1.5	900.0		
6	39	4	6.00	1.5	900.0	0.67	
11	45	5	6.00	1.2	720.0	0.83	
16	48	5	3.00	0.6	360.0	1.67	
21	49	5	1.00	0.2	120.0	5.00	
26	50	5	1.00	0.2	120.0	5.00	
31	51	5	1.00	0.2	120.0	5.00	
36	52	5	1.00	0.2	120.0	5.00	5.0

Test Hole:	TP3	Date:	07-Sep-21	Project No.:	2100428AH
Tested By:	Bruce Kashani	Weather:	Cloud & windy		
		Depth to Water (m):	>6.5	Depth to bedrock	(m): N/A
		Diameter (cm):	15	Depth (cm):	185

Horizon (m)	Soil Texture	Soil color	Comments
0.0 - 0.25	Topsoil	Brown, black	
0.25 - 1.50	Sand and gravel	Brown	
1.50 - 2.30	Silty caly	Brown	
1.50 - 1.85	Sand and gravel	Brown	

Time (min)	Water Depth (cm)	∆t (min)	Δ h (cm)	Inf. Rate (cm/min)	Inf. Rate (mm/hr)	Percolation time (min/cm)	Average (min/cm)
0	18						
2	36	2	18.00	9.0	5400.0		
6	55	4	19.00	4.8	2850.0	0.21	
9	62	3	7.00	2.3	1400.0	0.43	
12	68	3	6.00	2.0	1200.0	0.50	
15	74	3	6.00	2.0	1200.0	0.50	
18	80	3	6.00	2.0	1200.0	0.50	
21	86	3	6.00	2.0	1200.0	0.50	0.5

APPENDIX C

INFORMATION ON WATER WELL RECORDS RECEIVED FROM MECP

Water Well Record

	DODELLOLE ID	Fundad	Manufacture	Well Depth	Water Table	Data Canadata d	
WELL_ID	BOREHOLE ID	Easting	Northing	(m)	Depth (m)	Date Completed	Final Status
5737485	10541210	568049	4848857	47.2	31.4	10-Dec-02	Water Supply
6700714	10464860	568613	4849152	33.5	19.8	19-Oct-57	Water Supply
6700738	10464884	568722	4849243	45.7	10.4	16-Feb-65	Water Supply
6700740	10464886	568722	4849233	42.7	12.2	04-449-58	Water Supply
6700740	10464887	568764	4849235	75.0	12.2	20-May-60	Water Supply
6700741	10404007	506704	4849140	20.9	4.5	20-1vidy-00	Water Supply
6700742	10464888	508801	4849079	29.9	0.1	21-IVIAF-61	water supply
6703364	10467506	568294	4849423	68.6	25.9	05-Feb-69	water Supply
6703528	10467665	568634	4848703	54.9	7.6	05-Aug-69	Water Supply
6703896	10468025	568514	4848713	50.3	8.5	01-Apr-71	Water Supply
6703961	10468086	567144	4849103	41.8	15.2	14-Jun-71	Water Supply
6704469	10468577	568174	4849553	88.4	42.1	22-Sep-72	Water Supply
6704716	10468823	568914	4849033	45.7	2.4	11-May-73	Water Supply
6704913	10469017	568918	4849017	74.7	4.6	25-Oct-73	Water Supply
6704915	10469019	568749	4849470	47.2	13.7	20-Sep-73	Water Supply
6704918	10469022	568725	4849314	27.7	9.8	18-Sep-73	Water Supply
6705909	10469993	568614	4849343	46.6	9.8	08-Jul-75	Water Supply
6705915	10469999	567864	4849643	68.0	35.1	05-Jun-75	Water Supply
6705933	10470017	568514	4849213	35.1	12.5	30-May-75	Water Supply
6706282	10470362	568764	4849213	27.4	12.5	16-Oct-76	Water Supply
6706594	10470502	EC001/	4849423	£2.0	12.8	20 May 77	Water Supply
6706000	10470000	500014	40433/3	55.0	0.5	20-1VIdy-77	Water Supply
0700900	10470970	508504	4848//3	00.0	7.b	29-Apr-78	water Supply
6/0/164	104/1227	568564	4848823	29.0	6.4	09-Jan-79	Water Supply
6707358	10471410	568714	4848823	32.9	3.7	18-Apr-80	Water Supply
6707813	10471818	568814	4849473	32.0	12.2	29-Apr-83	Water Supply
6707821	10471826	568814	4849473	20.4	12.8	08-Jun-83	Water Supply
6707858	10471859	568614	4849323	36.6	14.9	06-Jul-83	Water Supply
6707861	10471862	568664	4848923	36.6	2.4	12-May-83	Water Supply
6708154	10472069	568752	4849492	19.2	12.2	29-Jun-84	Water Supply
6708174	10472089	568803	4848861	22.9	2.1	18-Apr-84	Water Supply
6708346	10472255	568642	4848787	35.4	4.3	24-Jul-85	Water Supply
6708347	10472256	568847	4849569	33.5	12.2	04-Dec-85	Water Supply
6708360	10472268	568714	4849447	33.5	14.3	18-Dec-85	Water Supply
6708365	10472273	568793	4848858	34.1	3.0	24-Dec-85	Water Supply
6708389	10472295	567929	4848635	41 1	6.4	09-May-85	Water Supply Water Supply
6708413	10472233	568828	4840535	22.5	10.7	07 Apr 96	Water Supply
6708616	10472519	508828	4849515	33.5	10.7	07-Api-60	Water Supply
6708625	10472508	506719	4049027	29.0	0.0	01-Dec-60	Water Supply
6708625	10472517	508732	4849358	23.5	10.7	11-Aug-86	water supply
6708826	10472716	568676	4849428	15.2	6.7	13-Apr-87	water Supply
6709042	10472915	568731	4849270	48.2	12.2	10-Dec-87	Water Supply
6709050	10472923	568646	4848767	57.0	5.5	30-Nov-87	Water Supply
6709156	10473026	568808	4849283	51.8	7.6	12-Jan-88	Water Supply
6709157	10473027	568786	4849305	30.2	7.6	09-Dec-87	Water Supply
6709502	10473351	568399	4849055	15.2	5.5	20-Dec-88	Water Supply
6709578	10473427	568859	4848859	49.7	7.0	15-Dec-88	Water Supply
6710235	10474082	568896	4848874	32.0	2.7	27-Jul-89	Water Supply
6710806	10474647	568559	4848525	25.6	3.0	24-Jul-91	Water Supply
6710809	10474650	568682	4848850	34.1	6.7	24-May-91	Water Supply
6711075	10474916	568765	4848930	57.0	4.3	30-Oct-92	Water Supply
6711348	10475182	568741	4849173	48.8	12.2	19-Oct-93	Water Supply
6711628	10475461	568665	4849244	44.2	16.8	27-Oct-94	Water Supply
6712031	10475864	568983	4849133	57.9	1.8	01-May-96	Water Supply
6712436	10476269	568623	4849076	39.6	9.8	30-101-07	Water Supply
6712210	10477151	568660	/8/0120	10 A	9.5	26-Jan-00	Water Supply
6712602	10477131	500000	404313U	47.4	0.0	20-Jaii-00	Water Supply
6712624	10477450	508/30	4040045	29.0	3.0	22-INOV-UU	Water Supply
0/13031	10477464	5686//	4849256	51.8	15.2	09-Jan-01	water Supply
6/13887	10523019	568753	4849068	29.0	8.5	04-Oct-01	Water Supply
6713900	10523032	568707	4848838	38.1	4.3	25-Oct-01	Water Supply
6714075	10528610	568602	4849240	38.4	17.4	18-Jun-02	Water Supply
6714666	10548217	567286	4848578	72.5	34.1	09-Oct-03	Water Supply
6715166	11179802	568963	4848990			10-Dec-04	Abandoned
6715250	11327036	568800	4848921	4.3		10-Feb-05	Abandoned
6715394	11327180	568714	4848856	30.5	5.2	04-Jul-05	Water Supply
6715503	11327289	568674	4848836	1		02-Sep-05	Abandoned
6715772	11558293	568669	4848773	30.5	6.1	15-Jun-06	Water Supply
6715910	11695692	568647	4848772	30.5	7.0	06-Sep-06	Water Supply
7050905	23050905	568707	4848791	30.5	5.2	01-Oct-07	Water Supply
7105250	1001500270	568636	18/8700	33.5	5.2	05_May_08	Abandoned
7112/01	1001333370	560000	4040/33	777	2 /	03-ividy-00	Water Supply
7110024	1001055300	500822	4043003	21.1	5.4	07-IVIAY-U8	Water Supply
7118031	1003033330	506033	4040107	44.8	7.0	25-Sep-U8	vvaler Supply
/12/280	1002637730	568907	4849107	25.5	~ -	02-Jun-09	Abandoned
/12/282	1002637730	568897	4849121	25.0	2.7	09-Jun-09	Water Supply

Water Well Record

WELL_ID	BOREHOLE ID	Easting	Northing	Well Depth (m)	Water Table Depth (m)	Date Completed	Final Status
7139080	1002932280	568847	4849013			14-Aug-08	Abandoned
7139081	1002932280	568822	4849009			14-Aug-09	Not Stated
7160498	1003486390	568701	4848883	18.3	3.7	23-Feb-11	Water Supply
7165335	1003534010	568704	4848886			13-Jun-11	Abandoned
7174984	1003633140	568777	4848996			12-Nov-11	Abandoned
7191665	1004205580	568807	4848962			25-Sep-12	Abandoned
7194971	1004232460	568816	4849025			06-Nov-12	Abandoned
7197600	1004256250	568757	4849009			20-Dec-12	Abandoned
7201338	1004288380	568860	4848987			25-Apr-13	Abandoned
7201342	1004288390	568787	4848856			25-Apr-13	Abandoned
7219237	1004731810	567841	4849446			15-Sep-13	Abandoned
7249486	1005717520	568647	4849158			02-Sep-15	Abandoned
7264117	1006030530	568708	4849044			29-May-16	Not Stated
7266474	1006141900	568742	4849038	23.5	6.4	11-Apr-16	Water Supply
7278147	1006322440	568644	4849203			21-Dec-16	Abandoned
7304154	1006975720	568993	4849166	7.6		03-Nov-17	Monitoring and Test Hole
7305135	1006981980	568902	4848916	4.6		29-Nov-17	Monitoring and Test Hole
7305136	1006981980	568773	4848902	5.5		24-Nov-17	Monitoring and Test Hole
7305137	1006981980	568924	4848896	4.6		24-Nov-17	Monitoring and Test Hole

APPENDIX D

DRAWINGS PROVIDED BY THE CLIENT

