APPENDIX C

Background Studies

- C-1 Hydrologic Investigation Technical Memo
- C-2 Embankment Dam Assessment
- C-3 Hydrogeological Assessment Technical Memo
- C-4 Natural Environment Report
- C-5 Stage 1 Archaeological Assessment
- C-6 Cultural Heritage Evaluation Report and Heritage Impact Assessment
- C-7 Bridge Inspection Report

APPENDIX C-1

Hydrologic Investigation Technical Memo

DATE:October 3, 2016TO:CLASS EA FILEFROM:Chris ClarkRE:Hillsburgh Dam and Bridge
Preliminary Hydraulic
Analysis/AssessmentFILE:A4685E

Technical Memorandum

INTRODUCTION

As part of the Hillsburgh Dam and Bridge Class Environmental Assessment (Class EA) Triton Engineering Services Limited (TESL) has completed the following preliminary hydraulic analysis to assess the existing dam and bridge hydraulics for various configurations. This Technical Memorandum is intended to provide a preliminary evaluation of hypothetical configurations for different scenarios. The Memo does not provide sufficient detail to confirm the feasibility of the configurations or identify any potential constraints.

The Hillsburgh Dam and Bridge are located on Station Street in Hillsbugh, Ontario approximately 50 metres west of Trafalgar Road along the Upper West Credit River Watershed. The Credit Valley Conservation Authority (CVC) has provided a hydraulic model (HEC-RAS) of the Upper West Credit River which was utilized in this analysis. This analysis has assessed the hydraulics of the various configurations of the dam and control structure including; the inline stop-log control structure, dam/road height and bridge opening. The HEC-RAS simulations examined the impacts the various configurations on upstream and downstream floodlines under the Regional Storm event. The findings of this analysis were used to evaluate the Class EA's alternative solutions.

BACKGROUND INFORMATION

In 2011 a sink hole formed directly over the Hillsburgh Dam's (Station Street) monk riser structure culvert. Investigation concluded that the culvert had failed causing the sink hole. As a result, the road was deemed unsafe for vehicular travel and was closed until a repair was completed.

Given the potential impact on the watercourse, floodlines and the adjacent natural environment the CVC and the Ministry of Natural Resources and Forestry (MNRF) were consulted.

The portion of Station Street adjacent the Hillsburgh Pond is considered an earthen dam. Therefore, under the Lakes and Rivers Improvement Act (LRIA), in order to perform work on the dam a Hazard Potential Classification (HPC) for the dam must be considered. Based on

the Ontario Dam Safety Guidelines (ODSG), published 1999, identifying an appropriate HPC is based on the selection of an Inflow Design Flood (IDF).

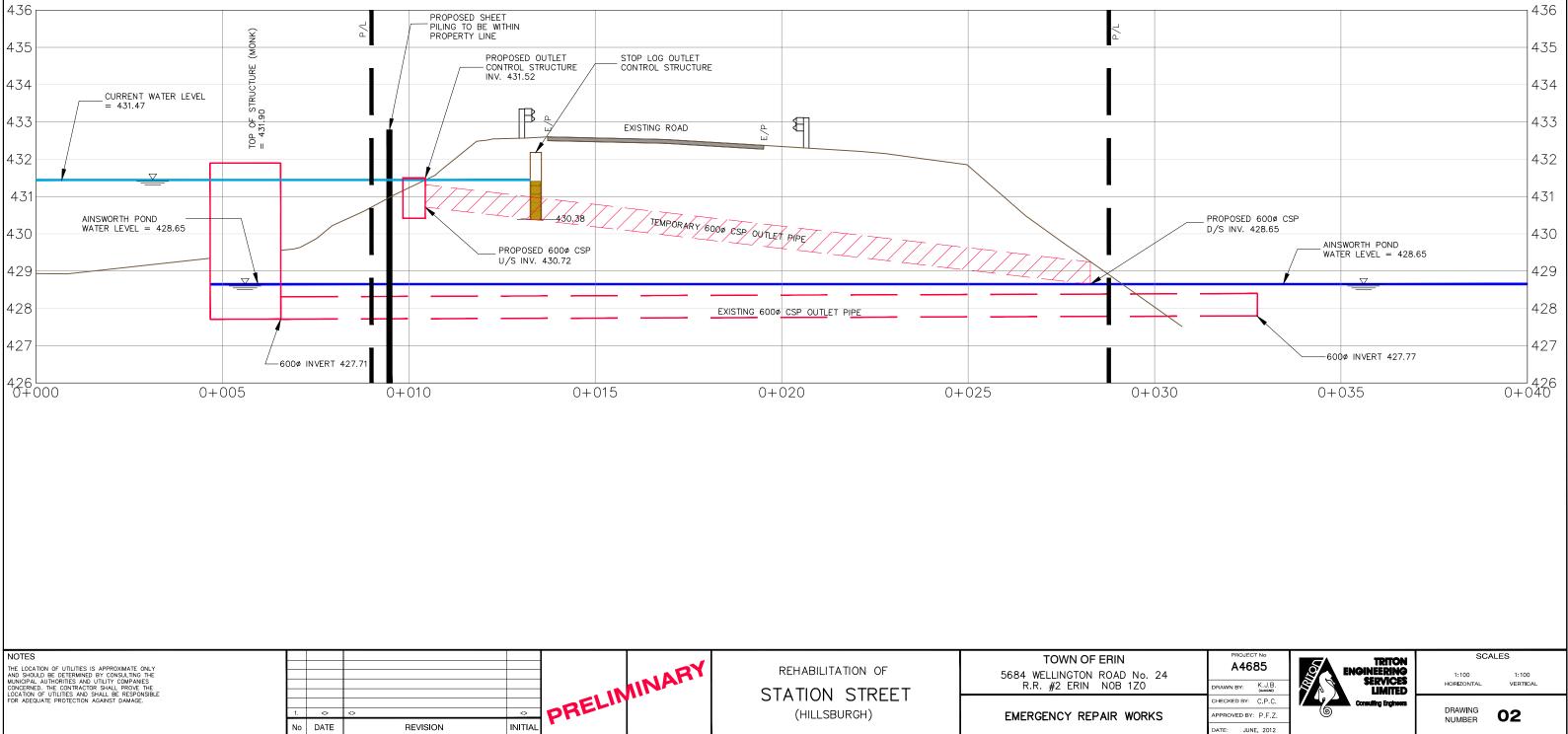
The Town of Erin recognized the importance of public access through Station Street. As such, their primary goal was to expedite a project that would see the road (Station Street) repaired and re-opened as quickly as possible. Prior to the Class EA, a temporary repair to the culvert/dam was completed under the LRIA's Non-Application Emergency Repair process with the understanding that a permanent solution for the dam and bridge eventually be implemented.

In March 2012, the Hillsburgh Pond was surveyed by TESL staff to estimate the overall pond shape and depth (bathymetry). Based on the TESL survey the average pond depth was estimated at 1.0 metre with a surface area of 90,000 m^2 which equates to a total estimated volume of 90,000 m^3 .

As defined in the LRIA legislation, under "Normal Sunny Day" conditions the Hillsburgh Dam can be considered a small sized dam as it is retaining less than 100,000 m³ water. Therefore, under the ODSG the appropriate Inflow Design Flood (IDF) for this dam is either the 25 or 100 year flood. Based on this volume, the Hillsburgh Dam would be considered to exhibit a "Low" HPC. Under a consequence (i.e. flooding event) the pond is assumed to be retaining more than 100,000 m³ behind the Dam, as such considered a medium sized dam. Therefore, during a consequence event the appropriate IDF applied to the dam would then be either the 100 year or the Regional return period, whichever is greater.

It should be noted, a previous report and application under the LRIA was completed for the Ainsworth Pond, located immediately downstream of the Hillsburgh Dam, was submitted July 2007 and approved by the MNRF. The assessed HPC of the Ainsworth earthen berm dam was approved and considered "Significant" based on downstream impacts. Under today's current standards this classification is considered as a "High" HPC.

Due to the proximity of the Ainsworth Dam relative to the Hillsburgh Dam, under theLRIA and ODSG the following is applicable;


"Where several dams are situated along the same watercourse, consideration must be given to the cascade effect of failures when classifying the structures. Such that if failure of an upstream dam could contribute to the failure of a downstream dam, the HPC of the upstream dam must be the same or greater than that of the downstream structure."

This implies the Hillsburgh Dam demonstrates a "High" HPC and therefore must be evaluated using the Regional Storm event return. Drawing 02 shows a section view of the current dam and bridge.

The existing conditions of the dam, bridge and surrounding area are as follows:

- Upstream/downstream watershed is mainly wooded/wetland area and farmland.
- Existing bridge is a narrow double-lane open bottom concrete rigid frame structure with a span of 4.30 metres, height of 2.85 metres and 7.40 metre inside deck width.
- Existing major spill occurs at an elevation of 432.55 m, over the earthen berm dam west of the bridge on Station Street roadway.

SECTION VIEW

NOTES THE LOCATION OF UTILITIES IS APPROXIMATE ONLY AND SHOULD BE DETERMINED BY CONSULTING THE MUNICIPAL AUTHORITIES AND UTILITY COMPANIES CONCERNED. THE CONTRACTOR SHALL PROVE THE LOCATION OF UTILITIES AND SHALL BE RESPONSIBLE					MINARY	REHABILITATION OF	TOWN OF ERIN 5684 WELLINGTON ROAD No. R.R. #2 ERIN NOB 1ZO
FOR ADEQUATE PROTECTION AGAINST DAMAGE.	1. No	⇒	REVISION	<> INITIAL	PRELIN	(HILLSBURGH)	EMERGENCY REPAIR WORK

DESIGN FLOWS

Design flows utilized for the hydraulic analysis at the bridge and dam were provided by CVC as part of the HEC RAS model. Flows for various storm events are summarized in Table 1.

TABLE 1: UPPER WEST CREDIT RIVER DESIGN FLOW SUMMARY					
EVENT	Q @ STRUCTURE 2064 (cms)				
2	11				
5	22.3				
10	29.5				
25	20.4				
50	48.4				
100 57.3					
Regional	117.5				

DESIGN CRITERIA

The design criteria for the bridge and dam structure crossing were developed through input from the CVC and MNRF under their associated regulatory policies. It should be noted, the current state of the bridge and dam do not meet the criteria, as follows;

- Due to the "High" HPC and the proximity of the local Fire Station (approximately 50 metres east of the bridge, the bridge must convey the Regional Storm event without overtopping the dam (i.e. roadway).
- Upstream and downstream floodlines must not be increased or decreased.

HYDRAULICS

The existing conditions CVC HEC-RAS model, utilizing original TESL survey information, was used to provide baseline floodlines for the area upstream and downstream of the subject site. These floodlines were used as a benchmark for comparison against the various configurations considered. The HEC-RAS model outputs for all scenarios are found in Appendix A.

The Regional Storm floodlines were evaluated from the upstream section at Trafalgar Road culvert crossing (Section - 19425.62) through to just downstream of the Ainsworth Dam culvert outlet (Section - 18418.73). Table 2 provides a summary and comparison of the HEC-RAS inputs and outputs, respectively.

	TABLE 2: SUMMARY & COMPARISON OF HEC-RAS FLOODLINE MODELLING							G	
			IN	PUTS				OUTPUTS	3
		Inline	Inline	Bridge	Bridge	Dam	Section	Regional	Difference
	Scenario / Section	Structure/	Structure/	Span	Height	Min.	ID	W/S Elev.	From
	Description	Stop Log	Invert	(m)	(m)	Spill		(m)	Baseline
	Decemption	Length	Elev.			Elev.			(m)
		(m)	(m)			(m)			
-	Fuiction Otmostumes	F 7F	404 00*	4.00	0.05	400.55			
1	Existing Structures	5.75	431.66*	4.33	2.85	432.55	10405.00	405 70	
							19425.62	435.79	-
	UpstreamTrafalgar Rd Crossing						19324.66	435.01	-
	Hillsburgh Pond						19299.19	434.35	-
							19215.73	433.36	-
	Inside Spillway						18717.64	433.41	-
							18717.14	433.23	-
	Station Street						18702.66	433.23	-
	Downstream Pond						18688.00	431.89	-
							18508.07	430.15	-
							18418.73	428.06	-
2	Existing Bridge / No Stop Log Control	5.75	430.38**	4.33	2.85	432.55			
				Į	<u> </u>		19425.62	435.79	0
	UpstreamTrafalgar Rd Crossing						19324.66	435.01	0
	Hillsburgh Pond						19299.19	434.35	0
							19215.73	433.36	0
	Inside Spillway						19213.73	433.41	0
	inside Opiliway						18717.04	433.23	0
	Station Street/Dam						18702.66	433.23	0
	Downstream Pond						18688.00	431.89	0
	Downstream Fond						18508.07	430.15	0
							18418.73	428.06	0
	Increase in Bridge Span /						10410.75	420.00	0
3	With Stop Log Control	9	431.66*	8.3	2.85	432.88			
			-			-	19425.62	435.79	0
	UpstreamTrafalgar Rd Crossing						19324.66	435.01	0
	Hillsburgh Pond						19299.19	434.35	0
							19215.73	432.93	-0.43
	Inside Spillway						18717.64	432.88	-0.53
							18717.14	432.68	-0.55
	Station Street						18702.66	432.68	-0.55
1	Downstream Pond						18688.00	431.64	-0.25
							18508.07	430.15	0
							18418.73	428.06	0
4	Increase in Bridge Span /	NA	429.38***	8.3	2.85	432.88			
-	No Stop Log Control		120.00	0.0	2.00	102.00			
1							19425.62	435.79	0
	UpstreamTrafalgar Rd Crossing						19324.66	435.01	0
1	Hillsburgh Pond						19299.19	434.35	0
1							19215.73	432.93	-0.43
1	Inside Spillway						18717.64	432.88	-0.53
1							18717.14	432.68	-0.55
1	Station Street						18702.66	432.68	-0.55
1	Downstream Pond						18688.00	431.64	-0.25
1							18508.07	430.15	0
	TES.						18418.73	428.06	0
NU	TES:								

Original TESL surveyed stop log elevation - Referred to as the <u>Baseline</u> for comparison use.
 ** Elevation at bottom of stop log control structure - Reflects removal of all stop logs but not entire structure.
 *** Elevation at upstream invert of existing bridge - Reflects complete removal of stop log control structure and reconstruction of bridge

As seen in Table 2, the analysis encompassed four hydraulic configurations for different scenarios which are detailed as follows:

Scenario 1

Scenario 1 was used as the baseline for comparison purposes and reflects the state of the current bridge and dam hydraulics. With respect to the Class EA alternatives, Scenario 1 would be equivalent to Alternative A - Do Nothing as well as B2 - Rehabilitate Dam and Rehabilitate Bridge since the resultant floodlines would be the same.

Scenario 2

Scenario 2 reflects the removal of stop logs to the bottom of the existing structure. Scenario 2 is equivalent to Alternative C1 - Rehabilitate Bridge and Decommission Dam and C2 - Rehabilitate Bridge and Decommission Dam Construct an Offline Pond. In both cases the bridge will be rehabilitated therefore, the capacity of the bridge will remain the same, however; the stop log removal will drain the pond, decommissioning the dam.

Scenario 3

Scenario 3 reflects an increase to the bridges' hydraulic capacity by increasing the span of the bridge structure. The stop log structure will be reconstructed to with a wider opening and the elevation of the road increased to accommodate the new bridge. The dam capacity will be increased due to increased ponding depth and spill elevation resulting from the higher road. Scenario 3 is equivalent to Alternative B1 - Rehabilitate Dam and Reconstruct Bridge. This alternative encompasses the reconfiguration of the bridge and dam/road to accommodate the Regional Storm event. The Dam will be rehabilitated to an acceptable MNRF standard.

Scenario 4

Scenario 4 reflects an increase to the bridges' hydraulic capacity by increasing the span of the structure. The stop log control structure will be completely removed thereby allowing the normal water level upstream of the bridge to fall to the invert of the current bridge. The road elevation will be increased to accommodate the new bridge. The dam capacity will be increased due to the increased ponding depth and spill elevation resulting from the higher road. Scenario 4 is equivalent to Alternative D1 - Reconstruct Bridge and Decommission Dam and D2 - Reconstruct Bridge and Decommission Dam Construct an Offline Pond. In both situations the bridge will be reconstructed to accommodate the Regional Storm event without overtopping. The stop log control structure removal will drain the pond under normal conditions thereby eliminating the dam.

ANALYSIS AND INTERPRETATION

The HEC-RAS modelling indicates that removal of stop logs does not directly impact the Regional flood elevations. However, Regional flood elevations did change when the bridge span was increased from 4.30 m to 8.30 m as reflected in Scenarios 3 and 4. The 8.30 m bridge opening conveyed the Regional Storm event without overtopping the dam.

Floodlines upstream and downstream of the Hillsburgh Dam were only impacted by Scenario 3 and 4. The increase in the bridges' hydraulic capacity results in decreased floodlines immediately upstream and downstream of the Dam. Under existing conditions (i.e. Scenario 1), the majority of Regional flow is conveyed over the dam. Conversely, with Scenario 3 and 4, the road height and bridge opening was increased resulting in flows being conveyed through the bridge structure.

It is important to note, the upstream Regional floodlines at the Trafalgar Road crossing are not changed under any Scenario due to restrictions at the existing Trafalgar Road culvert crossing. Similarly, floodlines immediately upstream and downstream of the Ainsworth Dam also remained unchanged; indicating that alterations made to the Hillsburgh Dam will not have a floodline impact beyond these sections.

Therefore, unless the Trafalgar road crossing or Ainsworth Dam's hydraulic capacity was to be modified, floodlines upstream or downstream of both structures will not change regardless to scenario implemented at Hillsburgh Dam.

CONCLUSIONS

In order to evaluate the hydraulic characteristics of the Hillsburgh Dam and Bridge for the purposes of the Class EA's comparison of alternatives, the HEC-RAS hydraulic modeling software was utilized. Four scenarios were assessed which represent each Class EA Alternative. Based on this analysis, changes to the configuration of the dam and bridge only impact floodlines immediately upstream and downstream of the bridge and dam. When the bridge span and road/dam height were increased (i.e. Scenario 3 and 4), the Regional flows were conveyed through the bridge structure. Therefore, if measures were taken which would affect changes to the existing conditions (i.e. increase the hydraulic capacity of the bridge and/or rehabilitate the dam) there is potential to meet the regulatory requirements under the MNRF (LRIA) and CVC (Conservation Act).

Respectfully Submitted,

Triton Engineering Services Limited

Chris Clark, MA.Sc, P.Eng

APPENDIX A

HEC-RAS OUTPUTS

SCENARIO 1

EXISITING STRUCTURES

E.G. Elev (m)	435.82	Element	Left OB	Channel	Right OB
Vel Head (m)	0.03	Wt. n-Val.	0.080	0.035	0.054
W.S. Elev (m)	435.79	Reach Len. (m)	45.43	43.82	47.61
Crit W.S. (m)	433.54	Flow Area (m2)	26.62	62.65	64.05
E.G. Slope (m/m)	0.000196	Area (m2)	26.62	62.65	64.05
Q Total (m3/s)	80.70	Flow (m3/s)	4.66	52.42	23.62
Top Width (m)	80.00	Top Width (m)	25.74	17.88	36.38
Vel Total (m/s)	0.53	Avg. Vel. (m/s)	0.18	0.84	0.37
Max Chl Dpth (m)	3.60	Hydr. Depth (m)	1.03	3.50	1.76
Conv. Total (m3/s)	5769.1	Conv. (m3/s)	333.0	3747.7	1688.3
Length Wtd. (m)	44.43	Wetted Per. (m)	26.58	20.68	37.94
Min Ch El (m)	432.19	Shear (N/m2)	1.92	5.81	3.24
Alpha	1.79	Stream Power (N/m s)	0.34	4.86	1.19
Frctn Loss (m)	0.02	Cum Volume (1000 m3)	0.80	4.26	1.63
C & E Loss (m)	0.14	Cum SA (1000 m2)	1815.92	366.63	1400.78

Plan: WestCredit Credit R. W. Credit R. RS: 19425.62 Profile: Regional

Plan: WestCredit Credit R. W. Credit R. RS: 19324.66 Profile: Regional

E.G. Elev (m)	435.27	Element	Left OB	Channel	Right OB
Vel Head (m)	0.27	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	435.01	Reach Len. (m)	25.82	25.47	25.60
Crit W.S. (m)	434.16	Flow Area (m2)	9.76	32.65	0.12
E.G. Slope (m/m)	0.002392	Area (m2)	9.76	32.65	0.12
Q Total (m3/s)	80.70	Flow (m3/s)	4.20	76.48	0.02
Top Width (m)	30.00	Top Width (m)	15.94	13.93	0.13
Vel Total (m/s)	1.90	Avg. Vel. (m/s)	0.43	2.34	0.14
Max Chl Dpth (m)	3.01	Hydr. Depth (m)	0.61	2.34	0.89
Conv. Total (m3/s)	1650.1	Conv. (m3/s)	85.9	1563.8	0.3
Length Wtd. (m)	25.47	Wetted Per. (m)	16.51	15.05	1.02
Min Ch El (m)	432.00	Shear (N/m2)	13.86	50.91	2.69
Alpha	1.45	Stream Power (N/m s)	5.97	119.24	0.39
Frctn Loss (m)		Cum Volume (1000 m3)		0.77	
C & E Loss (m)		Cum SA (1000 m2)	1814.69	365.14	1399.80

Plan: WestCredit Credit R. W. Credit R. RS: 19299.19 Profile: Regional

E.G. Elev (m)	435.14	Element	Left OB	Channel	Right OB
Vel Head (m)	0.79	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	434.35	Reach Len. (m)	80.00	83.46	88.70
Crit W.S. (m)	434.35	Flow Area (m2)	7.48	27.37	0.12
E.G. Slope (m/m)	0.008781	Area (m2)	7.48	27.37	0.12
Q Total (m3/s)	117.50	Flow (m3/s)	6.51	110.94	0.04
Top Width (m)	25.00	Top Width (m)	11.08	13.58	0.34
Vel Total (m/s)	3.36	Avg. Vel. (m/s)	0.87	4.05	0.36
Max Chl Dpth (m)	2.65	Hydr. Depth (m)	0.67	2.02	0.35
Conv. Total (m3/s)	1253.9	Conv. (m3/s)	69.5	1184.0	0.5
Length Wtd. (m)	84.85	Wetted Per. (m)	11.66	14.69	0.70
Min Ch El (m)	431.70	Shear (N/m2)	55.21	160.44	14.97
Alpha	1.38	Stream Power (N/m s)	48.08	650.39	5.46
Frctn Loss (m)	0.55	Cum Volume (1000 m3)	8.75	198.51	29.75
C & E Loss (m)	0.32	Cum SA (1000 m2)	1814.34	364.79	1399.80

E.G. Elev (m)	433.50	Element	Left OB	Channel	Right OB
Vel Head (m)	0.14	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	433.36	Reach Len. (m)	115.14	165.08	240.79
Crit W.S. (m)	433.20	Flow Area (m2)	11.16	14.93	94.34
E.G. Slope (m/m)	0.004979	Area (m2)	11.16	14.93	94.34
Q Total (m3/s)	117.50	Flow (m3/s)	6.51	40.09	70.90
Top Width (m)	149.43	Top Width (m)	20.24	9.26	119.93
Vel Total (m/s)	0.98	Avg. Vel. (m/s)	0.58	2.69	0.75
Max Chl Dpth (m)	2.23	Hydr. Depth (m)	0.55	1.61	0.79
Conv. Total (m3/s)	1665.1	Conv. (m3/s)	92.3	568.2	1004.7
Length Wtd. (m)	186.44	Wetted Per. (m)	20.74	9.70	119.97
Min Ch El (m)	431.13	Shear (N/m2)	26.27	75.10	38.40
Alpha	2.96	Stream Power (N/m s)	15.33	201.74	28.86
Frctn Loss (m)	0.02	Cum Volume (1000 m3)	8.00	196.75	25.56
C & E Loss (m)	0.04	Cum SA (1000 m2)	1813.09	363.84	1394.46

Plan: WestCredit Credit R. W. Credit R. RS: 19215.73 Profile: Regional

Plan: WestCredit Credit R. W. Credit R. RS: 18717.64 Profile: Regional

E.G. Elev (m)	433.42	Element	Left OB	Channel	Right OB
Vel Head (m)	0.01	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	433.41	Reach Len. (m)	0.50	0.50	0.50
Crit W.S. (m)	430.02	Flow Area (m2)	13.85	289.65	5.04
E.G. Slope (m/m)	0.000034	Area (m2)	13.85	289.65	5.04
Q Total (m3/s)	117.50	Flow (m3/s)	0.51	116.78	0.21
Top Width (m)	125.72	Top Width (m)	38.57	75.12	12.02
Vel Total (m/s)	0.38	Avg. Vel. (m/s)	0.04	0.40	0.04
Max Chl Dpth (m)	4.68	Hydr. Depth (m)	0.36	3.86	0.42
Conv. Total (m3/s)	20104.1	Conv. (m3/s)	87.3	19981.5	35.3
Length Wtd. (m)	0.50	Wetted Per. (m)	38.64	77.20	12.06
Min Ch El (m)	428.73	Shear (N/m2)	0.12	1.26	0.14
Alpha	1.11	Stream Power (N/m s)	0.00	0.51	0.01
Frctn Loss (m)	0.00	Cum Volume (1000 m3)	0.01	1.49	0.01
C & E Loss (m)	0.02	Cum SA (1000 m2)	1798.56	283.57	1348.24

Plan: WestCredit Credit R. W. Credit R. RS: 18717.14 Profile: Regional

			0		
E.G. Elev (m)	433.40	Element	Left OB	Channel	Right OB
Vel Head (m)	0.17	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	433.23	Reach Len. (m)	59.18	29.13	59.08
Crit W.S. (m)	432.51	Flow Area (m2)	14.63	52.46	30.67
E.G. Slope (m/m)	0.001363	Area (m2)	14.63	52.46	30.67
Q Total (m3/s)	117.50	Flow (m3/s)	4.69	101.53	11.29
Top Width (m)	88.19	Top Width (m)	25.24	19.91	43.04
Vel Total (m/s)	1.20	Avg. Vel. (m/s)	0.32	1.94	0.37
Max Chl Dpth (m)	3.85	Hydr. Depth (m)	0.58	2.63	0.71
Conv. Total (m3/s)	3182.3	Conv. (m3/s)	126.9	2749.7	305.6
Length Wtd. (m)	29.13	Wetted Per. (m)	25.32	21.11	43.08
Min Ch El (m)	429.38	Shear (N/m2)	7.73	33.22	9.52
Alpha	2.25	Stream Power (N/m s)	2.47	64.29	3.50
Frctn Loss (m)		Cum Volume (1000 m3)		1.40	
C & E Loss (m)		Cum SA (1000 m2)	1798.55	283.54	1348.23

E.G. Elev (m)	431.94	Element	Left OB	Channel	Right OB
Vel Head (m)	0.05	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	431.89	Reach Len. (m)	66.89	42.15	44.64
Crit W.S. (m)	431.89	Flow Area (m2)	64.20	11.78	80.75
E.G. Slope (m/m)	0.001348	Area (m2)	64.20	11.78	80.75
Q Total (m3/s)	117.50	Flow (m3/s)	46.46	21.48	49.56
Top Width (m)	88.47	Top Width (m)	32.11	4.25	52.10
Vel Total (m/s)	0.75	Avg. Vel. (m/s)	0.72	1.82	0.61
Max Chl Dpth (m)	2.77	Hydr. Depth (m)	2.00	2.77	1.55
Conv. Total (m3/s)	3199.9	Conv. (m3/s)	1265.3	584.9	1349.7
Length Wtd. (m)	47.57	Wetted Per. (m)	32.42	5.15	52.23
Min Ch El (m)	429.12	Shear (N/m2)	26.18	30.27	20.44
Alpha	1.73	Stream Power (N/m s)	18.95	55.18	12.55
Frctn Loss (m)	0.07	Cum Volume (1000 m3)	9.28	35.94	3.79
C & E Loss (m)	0.01	Cum SA (1000 m2)	1796.85	283.19	1345.42

Plan: WestCredit Credit R. W. Credit R. RS: 18688.00 Profile: Regional

Plan: WestCredit Credit R. W. Credit R. RS: 18508.07 Profile: Regional

E.G. Elev (m)	430.16	Element	Left OB	Channel	Right OB
Vel Head (m)	0.01	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	430.15	Reach Len. (m)	50.53	46.34	47.52
Crit W.S. (m)	428.31	Flow Area (m2)	229.37	37.59	84.22
E.G. Slope (m/m)	0.000169	Area (m2)	229.37	37.59	84.22
Q Total (m3/s)	117.50	Flow (m3/s)	66.52	30.66	20.33
Top Width (m)	153.31	Top Width (m)	95.95	11.05	46.32
Vel Total (m/s)	0.33	Avg. Vel. (m/s)	0.29	0.82	0.24
Max Chl Dpth (m)	4.13	Hydr. Depth (m)	2.39	3.40	1.82
Conv. Total (m3/s)	9025.5	Conv. (m3/s)	5109.5	2354.7	1561.3
Length Wtd. (m)	46.34	Wetted Per. (m)	96.41	11.58	46.64
Min Ch El (m)	426.02	Shear (N/m2)	3.95	5.40	3.00
Alpha	2.07	Stream Power (N/m s)	1.15	4.40	0.72
Frctn Loss (m)		Cum Volume (1000 m3)		10.28	
C & E Loss (m)		Cum SA (1000 m2)	1789.86	271.43	1342.24

Plan: WestCredit Credit R. W. Credit R. RS: 18418.73 Profile: Regional

E.G. Elev (m)	428.08	Element	Left OB	Channel	Right OB
Vel Head (m)	0.02	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	428.06	Reach Len. (m)	42.23	39.62	38.70
Crit W.S. (m)	427.05	Flow Area (m2)	237.52	35.80	24.23
E.G. Slope (m/m)	0.000384	Area (m2)	237.52	35.80	24.23
Q Total (m3/s)	117.50	Flow (m3/s)	74.12	37.38	6.00
Top Width (m)	202.24	Top Width (m)	165.06	13.39	23.78
Vel Total (m/s)	0.39	Avg. Vel. (m/s)	0.31	1.04	0.25
Max Chl Dpth (m)	3.59	Hydr. Depth (m)	1.44	2.67	1.02
Conv. Total (m3/s)	5997.7	Conv. (m3/s)	3783.5	1908.1	306.1
Length Wtd. (m)	41.00	Wetted Per. (m)	165.11	14.05	23.86
Min Ch El (m)	424.47	Shear (N/m2)	5.41	9.59	3.82
Alpha	2.64	Stream Power (N/m s)	1.69	10.01	0.95
Frctn Loss (m)	0.01	Cum Volume (1000 m3)	33.89	41.64	13.01
C & E Loss (m)	0.00	Cum SA (1000 m2)	1774.54	270.37	1338.38

Q Culv Group (m3/s)	46.44	Culv Full Len (m)	
# Barrels	1	Culv Vel US (m/s)	4.72
Q Barrel (m3/s)	46.44	Culv Vel DS (m/s)	5.90
E.G. US. (m)	433.40	Culv Inv El Up (m)	429.38
W.S. US. (m)	433.23	Culv Inv El Dn (m)	429.16
E.G. DS (m)	431.94	Culv Frctn Ls (m)	0.04
W.S. DS (m)	431.89	Culv Exit Loss (m)	0.81
Delta EG (m)	1.46	Culv Entr Loss (m)	0.61
Delta WS (m)	1.34	Q Weir (m3/s)	70.05
E.G. IC (m)	433.40	Weir Sta Lft (m)	130.25
E.G. OC (m)	433.36	Weir Sta Rgt (m)	238.38
Culvert Control	Inlet	Weir Submerg	0.00
Culv WS Inlet (m)	431.65	Weir Max Depth (m)	0.85
Culv WS Outlet (m)	430.98	Weir Avg Depth (m)	0.54
Culv Nml Depth (m)	1.04	Weir Flow Area (m2)	58.41
Culv Crt Depth (m)	2.27	Min El Weir Flow (m)	432.55

Plan: WestCredit Credit R. W. Credit R. RS: 18702.66 Culv Group: Culvert #2 Profile: Regional

SCENARIO 2

EXISITING BRIDGE / NO STOP-LOG CONTROL

E.G. Elev (m)	435.82	Element	Left OB	Channel	Right OB	
Vel Head (m)	0.03	Wt. n-Val.	0.080	0.035	0.054	
W.S. Elev (m)	435.79	Reach Len. (m)	45.43	43.82	47.61	
Crit W.S. (m)	433.54	Flow Area (m2)	26.62	62.65	64.05	
E.G. Slope (m/m)	0.000196	Area (m2)	26.62	62.65	64.05	
Q Total (m3/s)	80.70	Flow (m3/s)	4.66	52.42	23.62	
Top Width (m)	80.00	Top Width (m)	25.74	17.88	36.38	
Vel Total (m/s)	0.53	Avg. Vel. (m/s)	0.18	0.84	0.37	
Max Chl Dpth (m)	3.60	Hydr. Depth (m)	1.03	3.50	1.76	
Conv. Total (m3/s)	5769.1	Conv. (m3/s)	333.0	3747.7	1688.3	
Length Wtd. (m)	44.43	Wetted Per. (m)	26.58	20.68	37.94	
Min Ch El (m)	432.19	Shear (N/m2)	1.92	5.81	3.24	
Alpha	1.79	Stream Power (N/m s)	0.34	4.86	1.19	
Frctn Loss (m)	0.02	Cum Volume (1000 m3)	0.80	4.26	1.63	
C & E Loss (m)	0.14	Cum SA (1000 m2)	1815.92	366.63	1400.78	

Plan: WestCredit Credit R. W. Credit R. RS: 19425.62 Profile: Regional

Plan: WestCredit Credit R. W. Credit R. RS: 19324.66 Profile: Regional

E.G. Elev (m)	435.27	Element	Left OB	Channel	Right OB
Vel Head (m)	0.27	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	435.01	Reach Len. (m)	25.82	25.47	25.60
Crit W.S. (m)	434.16	Flow Area (m2)	9.76	32.65	0.12
E.G. Slope (m/m)	0.002392	Area (m2)	9.76	32.65	0.12
Q Total (m3/s)	80.70	Flow (m3/s)	4.20	76.48	0.02
Top Width (m)	30.00	Top Width (m)	15.94	13.93	0.13
Vel Total (m/s)	1.90	Avg. Vel. (m/s)	0.43	2.34	0.14
Max Chl Dpth (m)	3.01	Hydr. Depth (m)	0.61	2.34	0.89
Conv. Total (m3/s)	1650.1	Conv. (m3/s)	85.9	1563.8	0.3
Length Wtd. (m)	25.47	Wetted Per. (m)	16.51	15.05	1.02
Min Ch El (m)	432.00	Shear (N/m2)	13.86	50.91	2.69
Alpha	1.45	Stream Power (N/m s)	5.97	119.24	0.39
Frctn Loss (m)		Cum Volume (1000 m3)		0.77	
C & E Loss (m)		Cum SA (1000 m2)	1814.69	365.14	1399.80

Plan: WestCredit Credit R. W. Credit R. RS: 19299.19 Profile: Regional

E.G. Elev (m)	435.14	Element	Left OB	Channel	Right OB
Vel Head (m)	0.79	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	434.35	Reach Len. (m)	80.00	83.46	88.70
Crit W.S. (m)	434.35	Flow Area (m2)	7.48	27.37	0.12
E.G. Slope (m/m)	0.008781	Area (m2)	7.48	27.37	0.12
Q Total (m3/s)	117.50	Flow (m3/s)	6.51	110.94	0.04
Top Width (m)	25.00	Top Width (m)	11.08	13.58	0.34
Vel Total (m/s)	3.36	Avg. Vel. (m/s)	0.87	4.05	0.36
Max Chl Dpth (m)	2.65	Hydr. Depth (m)	0.67	2.02	0.35
Conv. Total (m3/s)	1253.9	Conv. (m3/s)	69.5	1184.0	0.5
Length Wtd. (m)	84.85	Wetted Per. (m)	11.66	14.69	0.70
Min Ch El (m)	431.70	Shear (N/m2)	55.21	160.44	14.97
Alpha	1.38	Stream Power (N/m s)	48.08	650.39	5.46
Frctn Loss (m)	0.55	Cum Volume (1000 m3)	8.75	198.52	29.75
C & E Loss (m)	0.32	Cum SA (1000 m2)	1814.34	364.79	1399.80

E.G. Elev (m)	433.50	Element	Left OB	Channel	Right OB		
Vel Head (m)	0.14	Wt. n-Val.	0.080	0.035	0.080		
W.S. Elev (m)	433.36	Reach Len. (m)	115.14	165.08	240.79		
Crit W.S. (m)	433.20	Flow Area (m2)	11.16	14.93	94.34		
E.G. Slope (m/m)	0.004979	Area (m2)	11.16	14.93	94.34		
Q Total (m3/s)	117.50	Flow (m3/s)	6.51	40.09	70.90		
Top Width (m)	149.43	Top Width (m)	20.24	9.26	119.93		
Vel Total (m/s)	0.98	Avg. Vel. (m/s)	0.58	2.69	0.75		
Max Chl Dpth (m)	2.23	Hydr. Depth (m)	0.55	1.61	0.79		
Conv. Total (m3/s)	1665.1	Conv. (m3/s)	92.3	568.2	1004.7		
Length Wtd. (m)	186.44	Wetted Per. (m)	20.74	9.70	119.97		
Min Ch El (m)	431.13	Shear (N/m2)	26.27	75.10	38.40		
Alpha	2.96	Stream Power (N/m s)	15.33	201.74	28.86		
Frctn Loss (m)	0.02	Cum Volume (1000 m3)	8.00	196.76	25.56		
C & E Loss (m)	0.04	Cum SA (1000 m2)	1813.09	363.84	1394.46		

Plan: WestCredit Credit R. W. Credit R. RS: 19215.73 Profile: Regional

Plan: WestCredit Credit R. W. Credit R. RS: 18717.64 Profile: Regional

E.G. Elev (m)	433.42	Element	Left OB	Channel	Right OB
Vel Head (m)	0.01	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	433.41	Reach Len. (m)	0.50	0.50	0.50
Crit W.S. (m)	430.02	Flow Area (m2)	13.85	289.65	5.04
E.G. Slope (m/m)	0.000034	Area (m2)	13.85	289.65	5.04
Q Total (m3/s)	117.50	Flow (m3/s)	0.51	116.78	0.21
Top Width (m)	125.72	Top Width (m)	38.57	75.12	12.02
Vel Total (m/s)	0.38	Avg. Vel. (m/s)	0.04	0.40	0.04
Max Chl Dpth (m)	4.68	Hydr. Depth (m)	0.36	3.86	0.42
Conv. Total (m3/s)	20104.1	Conv. (m3/s)	87.3	19981.5	35.3
Length Wtd. (m)	0.50	Wetted Per. (m)	38.64	77.20	12.06
Min Ch El (m)	428.73	Shear (N/m2)	0.12	1.26	0.14
Alpha	1.11	Stream Power (N/m s)	0.00	0.51	0.01
Frctn Loss (m)	0.00	Cum Volume (1000 m3)	0.01	1.49	0.01
C & E Loss (m)	0.02	Cum SA (1000 m2)	1798.56	283.57	1348.24

Plan: WestCredit Credit R. W. Credit R. RS: 18717.14 Profile: Regional

			0		
E.G. Elev (m)	433.40	Element	Left OB	Channel	Right OB
Vel Head (m)	0.17	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	433.23	Reach Len. (m)	59.18	29.13	59.08
Crit W.S. (m)	432.51	Flow Area (m2)	14.63	52.46	30.67
E.G. Slope (m/m)	0.001363	Area (m2)	14.63	52.46	30.67
Q Total (m3/s)	117.50	Flow (m3/s)	4.69	101.53	11.29
Top Width (m)	88.19	Top Width (m)	25.24	19.91	43.04
Vel Total (m/s)	1.20	Avg. Vel. (m/s)	0.32	1.94	0.37
Max Chl Dpth (m)	3.85	Hydr. Depth (m)	0.58	2.63	0.71
Conv. Total (m3/s)	3182.3	Conv. (m3/s)	126.9	2749.7	305.6
Length Wtd. (m)	29.13	Wetted Per. (m)	25.32	21.11	43.08
Min Ch El (m)	429.38	Shear (N/m2)	7.73	33.22	9.52
Alpha	2.25	Stream Power (N/m s)	2.47	64.29	3.50
Frctn Loss (m)		Cum Volume (1000 m3)		1.40	
C & E Loss (m)		Cum SA (1000 m2)	1798.55	283.54	1348.23

E.G. Elev (m)	431.94	Element	Left OB	Channel	Right OB
Vel Head (m)	0.05	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	431.89	Reach Len. (m)	66.89	42.15	44.64
Crit W.S. (m)	431.89	Flow Area (m2)	64.20	11.78	80.75
E.G. Slope (m/m)	0.001348	Area (m2)	64.20	11.78	80.75
Q Total (m3/s)	117.50	Flow (m3/s)	46.46	21.48	49.56
Top Width (m)	88.47	Top Width (m)	32.11	4.25	52.10
Vel Total (m/s)	0.75	Avg. Vel. (m/s)	0.72	1.82	0.61
Max Chl Dpth (m)	2.77	Hydr. Depth (m)	2.00	2.77	1.55
Conv. Total (m3/s)	3199.9	Conv. (m3/s)	1265.3	584.9	1349.7
Length Wtd. (m)	47.57	Wetted Per. (m)	32.42	5.15	52.23
Min Ch El (m)	429.12	Shear (N/m2)	26.18	30.27	20.44
Alpha	1.73	Stream Power (N/m s)	18.95	55.18	12.55
Frctn Loss (m)	0.07	Cum Volume (1000 m3)	9.28	35.94	3.79
C & E Loss (m)	0.01	Cum SA (1000 m2)	1796.85	283.19	1345.42

Plan: WestCredit Credit R. W. Credit R. RS: 18688.00 Profile: Regional

Plan: WestCredit Credit R. W. Credit R. RS: 18508.07 Profile: Regional

E.G. Elev (m)	430.16	Element	Left OB	Channel	Right OB
Vel Head (m)	0.01	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	430.15	Reach Len. (m)	50.53	46.34	47.52
Crit W.S. (m)	428.31	Flow Area (m2)	229.37	37.59	84.22
E.G. Slope (m/m)	0.000169	Area (m2)	229.37	37.59	84.22
Q Total (m3/s)	117.50	Flow (m3/s)	66.52	30.66	20.33
Top Width (m)	153.31	Top Width (m)	95.95	11.05	46.32
Vel Total (m/s)	0.33	Avg. Vel. (m/s)	0.29	0.82	0.24
Max Chl Dpth (m)	4.13	Hydr. Depth (m)	2.39	3.40	1.82
Conv. Total (m3/s)	9025.5	Conv. (m3/s)	5109.5	2354.7	1561.3
Length Wtd. (m)	46.34	Wetted Per. (m)	96.41	11.58	46.64
Min Ch El (m)	426.02	Shear (N/m2)	3.95	5.40	3.00
Alpha	2.07	Stream Power (N/m s)	1.15	4.40	0.72
Frctn Loss (m)		Cum Volume (1000 m3)		10.28	
C & E Loss (m)		Cum SA (1000 m2)	1789.86	271.43	1342.24

Plan: WestCredit Credit R. W. Credit R. RS: 18418.73 Profile: Regional

E.G. Elev (m)	428.08	Element	Left OB	Channel	Right OB
Vel Head (m)	0.02	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	428.06	Reach Len. (m)	42.23	39.62	38.70
Crit W.S. (m)	427.05	Flow Area (m2)	237.52	35.80	24.23
E.G. Slope (m/m)	0.000384	Area (m2)	237.52	35.80	24.23
Q Total (m3/s)	117.50	Flow (m3/s)	74.12	37.38	6.00
Top Width (m)	202.24	Top Width (m)	165.06	13.39	23.78
Vel Total (m/s)	0.39	Avg. Vel. (m/s)	0.31	1.04	0.25
Max Chl Dpth (m)	3.59	Hydr. Depth (m)	1.44	2.67	1.02
Conv. Total (m3/s)	5997.7	Conv. (m3/s)	3783.5	1908.1	306.1
Length Wtd. (m)	41.00	Wetted Per. (m)	165.11	14.05	23.86
Min Ch El (m)	424.47	Shear (N/m2)	5.41	9.59	3.82
Alpha	2.64	Stream Power (N/m s)	1.69	10.01	0.95
Frctn Loss (m)	0.01	Cum Volume (1000 m3)	33.89	41.64	13.01
C & E Loss (m)	0.00	Cum SA (1000 m2)	1774.54	270.37	1338.38

Q Culv Group (m3/s)	46.44	Culv Full Len (m)	
# Barrels	1	Culv Vel US (m/s)	4.72
Q Barrel (m3/s)	46.44	Culv Vel DS (m/s)	5.90
E.G. US. (m)	433.40	Culv Inv El Up (m)	429.38
W.S. US. (m)	433.23	Culv Inv El Dn (m)	429.16
E.G. DS (m)	431.94	Culv Frctn Ls (m)	0.04
W.S. DS (m)	431.89	Culv Exit Loss (m)	0.81
Delta EG (m)	1.46	Culv Entr Loss (m)	0.61
Delta WS (m)	1.34	Q Weir (m3/s)	70.05
E.G. IC (m)	433.40	Weir Sta Lft (m)	130.25
E.G. OC (m)	433.36	Weir Sta Rgt (m)	238.38
Culvert Control	Inlet	Weir Submerg	0.00
Culv WS Inlet (m)	431.65	Weir Max Depth (m)	0.85
Culv WS Outlet (m)	430.98	Weir Avg Depth (m)	0.54
Culv Nml Depth (m)	1.04	Weir Flow Area (m2)	58.41
Culv Crt Depth (m)	2.27	Min El Weir Flow (m)	432.55

Plan: WestCredit Credit R. W. Credit R. RS: 18702.66 Culv Group: Culvert #2 Profile: Regional

SCENARIO 3

INCREASE BRIDGE SPAN / WITH STOP-LOG CONTROL

			0		
E.G. Elev (m)	435.82	Element	Left OB	Channel	Right OB
Vel Head (m)	0.03	Wt. n-Val.	0.080	0.035	0.054
W.S. Elev (m)	435.79	Reach Len. (m)	45.43	43.82	47.61
Crit W.S. (m)	433.55	Flow Area (m2)	26.62	62.65	64.05
E.G. Slope (m/m)	0.000196	Area (m2)	26.62	62.65	64.05
Q Total (m3/s)	80.70	Flow (m3/s)	4.66	52.42	23.62
Top Width (m)	80.00	Top Width (m)	25.74	17.88	36.38
Vel Total (m/s)	0.53	Avg. Vel. (m/s)	0.18	0.84	0.37
Max Chl Dpth (m)	3.60	Hydr. Depth (m)	1.03	3.50	1.76
Conv. Total (m3/s)	5769.2	Conv. (m3/s)	333.0	3747.8	1688.4
Length Wtd. (m)	44.43	Wetted Per. (m)	26.58	20.68	37.94
Min Ch El (m)	432.19	Shear (N/m2)	1.92	5.81	3.24
Alpha	1.79	Stream Power (N/m s)	0.34	4.86	1.19
Frctn Loss (m)	0.02	Cum Volume (1000 m3)	0.80	4.26	1.63
C & E Loss (m)	0.14	Cum SA (1000 m2)	1782.94	366.64	1395.44

Plan: Plan 06 Credit R. W. Credit R. RS: 19425.62 Profile: Regional

Plan: Plan 06 Credit R. W. Credit R. RS: 19324.66 Profile: Regional

E.G. Elev (m)	435.27	Element	Left OB	Channel	Right OB
Vel Head (m)	0.27	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	435.01	Reach Len. (m)	25.82	25.47	25.60
Crit W.S. (m)	434.16	Flow Area (m2)	9.76	32.65	0.12
E.G. Slope (m/m)	0.002392	Area (m2)	9.76	32.65	0.12
Q Total (m3/s)	80.70	Flow (m3/s)	4.20	76.48	0.02
Top Width (m)	30.00	Top Width (m)	15.94	13.93	0.13
Vel Total (m/s)	1.90	Avg. Vel. (m/s)	0.43	2.34	0.14
Max Chl Dpth (m)	3.01	Hydr. Depth (m)	0.61	2.34	0.89
Conv. Total (m3/s)	1650.1	Conv. (m3/s)	85.9	1563.9	0.3
Length Wtd. (m)	25.47	Wetted Per. (m)	16.51	15.05	1.02
Min Ch El (m)	432.00	Shear (N/m2)	13.86	50.90	2.69
Alpha	1.45	Stream Power (N/m s)	5.97	119.23	0.39
Frctn Loss (m)		Cum Volume (1000 m3)		0.77	
C & E Loss (m)		Cum SA (1000 m2)	1781.71	365.15	1394.47

Plan: Plan 06 Credit R. W. Credit R. RS: 19299.19 Profile: Regional

435.14	Element	Left OB	Channel	Right OB
0.79	Wt. n-Val.	0.080	0.035	0.080
434.35	Reach Len. (m)	80.00	83.46	88.70
434.35	Flow Area (m2)	7.48	27.37	0.12
0.008781	Area (m2)	7.48	27.37	0.12
117.50	Flow (m3/s)	6.51	110.94	0.04
25.00	Top Width (m)	11.08	13.58	0.34
3.36	Avg. Vel. (m/s)	0.87	4.05	0.36
2.65	Hydr. Depth (m)	0.67	2.02	0.35
1253.9	Conv. (m3/s)	69.5	1184.0	0.5
84.55	Wetted Per. (m)	11.66	14.69	0.70
431.70	Shear (N/m2)	55.21	160.44	14.97
1.38	Stream Power (N/m s)	48.08	650.39	5.46
0.76	Cum Volume (1000 m3)	2.89	164.05	12.10
0.27	Cum SA (1000 m2)	1781.36	364.80	1394.46
	0.79 434.35 434.35 0.008781 117.50 25.00 3.36 2.65 1253.9 84.55 431.70 1.38 0.76	0.79 Wt. n-Val. 434.35 Reach Len. (m) 434.35 Flow Area (m2) 0.008781 Area (m2) 117.50 Flow (m3/s) 25.00 Top Width (m) 3.36 Avg. Vel. (m/s) 2.65 Hydr. Depth (m) 1253.9 Conv. (m3/s) 84.55 Wetted Per. (m) 431.70 Shear (N/m2) 1.38 Stream Power (N/m s) 0.76 Cum Volume (1000 m3)	0.79 Wt. n-Val. 0.080 434.35 Reach Len. (m) 80.00 434.35 Flow Area (m2) 7.48 0.008781 Area (m2) 7.48 117.50 Flow (m3/s) 6.51 25.00 Top Width (m) 11.08 3.36 Avg. Vel. (m/s) 0.87 2.65 Hydr. Depth (m) 0.67 1253.9 Conv. (m3/s) 69.5 84.55 Wetted Per. (m) 11.66 431.70 Shear (N/m2) 55.21 1.38 Stream Power (N/m s) 48.08 0.76 Cum Volume (1000 m3) 2.89	0.79 Wt. n-Val. 0.080 0.035 434.35 Reach Len. (m) 80.00 83.46 434.35 Flow Area (m2) 7.48 27.37 0.008781 Area (m2) 7.48 27.37 117.50 Flow (m3/s) 6.51 110.94 25.00 Top Width (m) 11.08 13.58 3.36 Avg. Vel. (m/s) 0.87 4.05 2.65 Hydr. Depth (m) 0.67 2.02 125.39 Conv. (m3/s) 69.5 1184.0 84.55 Wetted Per. (m) 11.66 14.69 431.70 Shear (N/m2) 55.21 160.44 1.38 Stream Power (N/m s) 48.08 650.39 0.76 Cum Volume (1000 m3) 2.89 164.05

	433.82	Element	Left OB	Channel	
E.G. Elev (m)	433.82	Element	Leit OB	Channel	Right OB
Vel Head (m)	0.89	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	432.93	Reach Len. (m)	115.14	165.08	240.79
Crit W.S. (m)	433.20	Flow Area (m2)	2.57	11.00	44.61
E.G. Slope (m/m)	0.032989	Area (m2)	2.57	11.00	44.61
Q Total (m3/s)	117.50	Flow (m3/s)	1.47	62.03	54.00
Top Width (m)	144.06	Top Width (m)	20.24	9.26	114.55
Vel Total (m/s)	2.02	Avg. Vel. (m/s)	0.57	5.64	1.21
Max Chl Dpth (m)	1.80	Hydr. Depth (m)	0.13	1.19	0.39
Conv. Total (m3/s)	646.9	Conv. (m3/s)	8.1	341.5	297.3
Length Wtd. (m)	185.52	Wetted Per. (m)	20.32	9.70	114.57
Min Ch El (m)	431.13	Shear (N/m2)	40.91	366.60	125.95
Alpha	4.28	Stream Power (N/m s)	23.40	2067.85	152.47
Frctn Loss (m)	1.29	Cum Volume (1000 m3)	2.48	162.45	10.12
C & E Loss (m)	0.03	Cum SA (1000 m2)	1780.11	363.85	1389.37

Plan: Plan 06 Credit R. W. Credit R. RS: 19215.73 Profile: Regional

Plan: Plan 06 Credit R. W. Credit R. RS: 18717.64 Profile: Regional

E.G. Elev (m)	432.90	Element	Left OB	Channel	Right OB
Vel Head (m)	0.01	Wt. n-Val.		0.035	0.080
W.S. Elev (m)	432.88	Reach Len. (m)	0.50	0.50	0.50
Crit W.S. (m)	430.01	Flow Area (m2)		250.37	0.86
E.G. Slope (m/m)	0.000056	Area (m2)		250.37	0.86
Q Total (m3/s)	117.50	Flow (m3/s)		117.47	0.03
Top Width (m)	79.42	Top Width (m)		74.79	4.64
Vel Total (m/s)	0.47	Avg. Vel. (m/s)		0.47	0.03
Max Chl Dpth (m)	4.15	Hydr. Depth (m)		3.35	0.19
Conv. Total (m3/s)	15736.0	Conv. (m3/s)		15732.5	3.5
Length Wtd. (m)	0.50	Wetted Per. (m)		76.77	4.65
Min Ch El (m)	428.73	Shear (N/m2)		1.78	0.10
Alpha	1.01	Stream Power (N/m s)		0.84	0.00
Frctn Loss (m)	0.00	Cum Volume (1000 m3)	0.00	0.52	0.00
C & E Loss (m)	0.02	Cum SA (1000 m2)	1770.74	283.59	1361.87

Plan: Plan 06 Credit R. W. Credit R. RS: 18717.14 Profile: Regional

			0		
E.G. Elev (m)	432.88	Element	Left OB	Channel	Right OB
Vel Head (m)	0.20	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	432.68	Reach Len. (m)	59.18	29.13	59.08
Crit W.S. (m)	431.26	Flow Area (m2)	3.37	58.06	8.59
E.G. Slope (m/m)	0.001411	Area (m2)	3.37	58.06	8.59
Q Total (m3/s)	117.50	Flow (m3/s)	0.50	115.45	1.54
Top Width (m)	75.07	Top Width (m)	18.92	19.91	36.23
Vel Total (m/s)	1.68	Avg. Vel. (m/s)	0.15	1.99	0.18
Max Chl Dpth (m)	3.29	Hydr. Depth (m)	0.18	2.92	0.24
Conv. Total (m3/s)	3127.9	Conv. (m3/s)	13.3	3073.4	41.1
Length Wtd. (m)	29.13	Wetted Per. (m)	18.94	23.03	36.25
Min Ch El (m)	429.39	Shear (N/m2)	2.46	34.90	3.28
Alpha	1.38	Stream Power (N/m s)	0.37	69.39	0.59
Frctn Loss (m)		Cum Volume (1000 m3)		0.44	
C & E Loss (m)		Cum SA (1000 m2)	1770.73	283.57	1361.86

			0		
E.G. Elev (m)	432.68	Element	Left OB	Channel	Right OB
Vel Head (m)	1.04	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	431.64	Reach Len. (m)	66.89	42.15	44.64
Crit W.S. (m)	431.64	Flow Area (m2)	11.09	10.71	11.20
E.G. Slope (m/m)	0.015251	Area (m2)	56.17	10.71	68.00
Q Total (m3/s)	117.50	Flow (m3/s)	27.73	61.57	28.19
Top Width (m)	84.57	Top Width (m)	31.26	4.25	49.06
Vel Total (m/s)	3.56	Avg. Vel. (m/s)	2.50	5.75	2.52
Max Chl Dpth (m)	2.52	Hydr. Depth (m)	2.06	2.52	2.08
Conv. Total (m3/s)	951.4	Conv. (m3/s)	224.6	498.6	228.3
Length Wtd. (m)	45.58	Wetted Per. (m)	5.38	5.15	5.38
Min Ch El (m)	429.12	Shear (N/m2)	308.50	311.16	311.55
Alpha	1.60	Stream Power (N/m s)	771.69	1789.24	784.43
Frctn Loss (m)	0.15	Cum Volume (1000 m3)	9.45	40.93	3.57
C & E Loss (m)	0.47	Cum SA (1000 m2)	1769.25	283.22	1359.34

Plan: Plan 06 Credit R. W. Credit R. RS: 18688.00 Profile: Regional

Plan: Plan 06 Credit R. W. Credit R. RS: 18508.07 Profile: Regional

E.G. Elev (m)	430.16	Element	Left OB	Channel	Right OB
Vel Head (m)	0.01	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	430.15	Reach Len. (m)	50.53	46.34	47.52
Crit W.S. (m)	428.31	Flow Area (m2)	229.37	37.59	84.22
E.G. Slope (m/m)	0.000169	Area (m2)	229.37	37.59	84.22
Q Total (m3/s)	117.50	Flow (m3/s)	66.52	30.66	20.33
Top Width (m)	153.31	Top Width (m)	95.95	11.05	46.32
Vel Total (m/s)	0.33	Avg. Vel. (m/s)	0.29	0.82	0.24
Max Chl Dpth (m)	4.13	Hydr. Depth (m)	2.39	3.40	1.82
Conv. Total (m3/s)	9025.5	Conv. (m3/s)	5109.5	2354.7	1561.3
Length Wtd. (m)	46.34	Wetted Per. (m)	96.41	11.58	46.64
Min Ch El (m)	426.02	Shear (N/m2)	3.95	5.40	3.00
Alpha	2.07	Stream Power (N/m s)	1.15	4.40	0.72
Frctn Loss (m)		Cum Volume (1000 m3)		10.28	
C & E Loss (m)		Cum SA (1000 m2)	1761.67	270.79	1356.05

Plan: Plan 06 Credit R. W. Credit R. RS: 18418.73 Profile: Regional

			0		
E.G. Elev (m)	428.08	Element	Left OB	Channel	Right OB
Vel Head (m)	0.02	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	428.06	Reach Len. (m)	42.23	39.62	38.70
Crit W.S. (m)	427.06	Flow Area (m2)	237.01	35.76	24.16
E.G. Slope (m/m)	0.000386	Area (m2)	237.01	35.76	24.16
Q Total (m3/s)	117.50	Flow (m3/s)	74.09	37.42	5.99
Top Width (m)	202.17	Top Width (m)	165.02	13.39	23.76
Vel Total (m/s)	0.40	Avg. Vel. (m/s)	0.31	1.05	0.25
Max Chl Dpth (m)	3.59	Hydr. Depth (m)	1.44	2.67	1.02
Conv. Total (m3/s)	5980.1	Conv. (m3/s)	3770.7	1904.5	304.8
Length Wtd. (m)	41.00	Wetted Per. (m)	165.07	14.05	23.83
Min Ch El (m)	424.47	Shear (N/m2)	5.44	9.64	3.84
Alpha	2.64	Stream Power (N/m s)	1.70	10.08	0.95
Frctn Loss (m)	0.01	Cum Volume (1000 m3)	33.80	41.87	13.02
C & E Loss (m)	0.00	Cum SA (1000 m2)	1746.35	269.73	1352.18

Q Culv Group (m3/s)	117.12	Culv Full Len (m)	7.58
# Barrels	1	Culv Vel US (m/s)	2.74
Q Barrel (m3/s)	117.12	Culv Vel DS (m/s)	2.74
E.G. US. (m)	432.87	Culv Inv El Up (m)	429.38
W.S. US. (m)	432.68	Culv Inv El Dn (m)	429.16
E.G. DS (m)	432.68	Culv Frctn Ls (m)	0.01
W.S. DS (m)	431.64	Culv Exit Loss (m)	0.00
Delta EG (m)	0.20	Culv Entr Loss (m)	0.19
Delta WS (m)	1.04	Q Weir (m3/s)	
E.G. IC (m)	432.31	Weir Sta Lft (m)	
E.G. OC (m)	432.87	Weir Sta Rgt (m)	
Culvert Control	Outlet	Weir Submerg	
Culv WS Inlet (m)	432.23	Weir Max Depth (m)	
Culv WS Outlet (m)	432.29	Weir Avg Depth (m)	
Culv Nml Depth (m)		Weir Flow Area (m2)	
Culv Crt Depth (m)	1.84	Min El Weir Flow (m)	432.88

Plan: Plan 06 Credit R. W. Credit R. RS: 18702.66 Culv Group: Culvert #2 Profile: Regional

SCENARIO 4

INCREASE BRIDGE SPAN / NO STOP-LOG CONTROL

			0		
E.G. Elev (m)	435.82	Element	Left OB	Channel	Right OB
Vel Head (m)	0.03	Wt. n-Val.	0.080	0.035	0.054
W.S. Elev (m)	435.79	Reach Len. (m)	45.43	43.82	47.61
Crit W.S. (m)	433.55	Flow Area (m2)	26.62	62.65	64.05
E.G. Slope (m/m)	0.000196	Area (m2)	26.62	62.65	64.05
Q Total (m3/s)	80.70	Flow (m3/s)	4.66	52.42	23.62
Top Width (m)	80.00	Top Width (m)	25.74	17.88	36.38
Vel Total (m/s)	0.53	Avg. Vel. (m/s)	0.18	0.84	0.37
Max Chl Dpth (m)	3.60	Hydr. Depth (m)	1.03	3.50	1.76
Conv. Total (m3/s)	5769.2	Conv. (m3/s)	333.0	3747.8	1688.4
Length Wtd. (m)	44.43	Wetted Per. (m)	26.58	20.68	37.94
Min Ch El (m)	432.19	Shear (N/m2)	1.92	5.81	3.24
Alpha	1.79	Stream Power (N/m s)	0.34	4.86	1.19
Frctn Loss (m)	0.02	Cum Volume (1000 m3)	0.80	4.26	1.63
C & E Loss (m)	0.14	Cum SA (1000 m2)	1781.83	366.63	1393.30

Plan: Plan 06 Credit R. W. Credit R. RS: 19425.62 Profile: Regional

Plan: Plan 06 Credit R. W. Credit R. RS: 19324.66 Profile: Regional

E.G. Elev (m)	435.27	Element	Left OB	Channel	Right OB
Vel Head (m)	0.27	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	435.01	Reach Len. (m)	25.82	25.47	25.60
Crit W.S. (m)	434.16	Flow Area (m2)	9.76	32.65	0.12
E.G. Slope (m/m)	0.002392	Area (m2)	9.76	32.65	0.12
Q Total (m3/s)	80.70	Flow (m3/s)	4.20	76.48	0.02
Top Width (m)	30.00	Top Width (m)	15.94	13.93	0.13
Vel Total (m/s)	1.90	Avg. Vel. (m/s)	0.43	2.34	0.14
Max Chl Dpth (m)	3.01	Hydr. Depth (m)	0.61	2.34	0.89
Conv. Total (m3/s)	1650.1	Conv. (m3/s)	85.9	1563.9	0.3
Length Wtd. (m)	25.47	Wetted Per. (m)	16.51	15.05	1.02
Min Ch El (m)	432.00	Shear (N/m2)	13.86	50.90	2.69
Alpha	1.45	Stream Power (N/m s)	5.97	119.23	0.39
Frctn Loss (m)		Cum Volume (1000 m3)		0.77	
C & E Loss (m)		Cum SA (1000 m2)	1780.60	365.14	1392.33

Plan: Plan 06 Credit R. W. Credit R. RS: 19299.19 Profile: Regional

435.14	Element	Left OB	Channel	Right OB
0.79	Wt. n-Val.	0.080	0.035	0.080
434.35	Reach Len. (m)	80.00	83.46	88.70
434.35	Flow Area (m2)	7.48	27.37	0.12
0.008781	Area (m2)	7.48	27.37	0.12
117.50	Flow (m3/s)	6.51	110.94	0.04
25.00	Top Width (m)	11.08	13.58	0.34
3.36	Avg. Vel. (m/s)	0.87	4.05	0.36
2.65	Hydr. Depth (m)	0.67	2.02	0.35
1253.9	Conv. (m3/s)	69.5	1184.0	0.5
84.55	Wetted Per. (m)	11.66	14.69	0.70
431.70	Shear (N/m2)	55.21	160.44	14.97
1.38	Stream Power (N/m s)	48.08	650.39	5.46
0.76	Cum Volume (1000 m3)	2.11	156.80	10.82
0.27	Cum SA (1000 m2)	1780.25	364.79	1392.32
	0.79 434.35 434.35 0.008781 117.50 25.00 3.36 2.65 1253.9 84.55 431.70 1.38 0.76	0.79 Wt. n-Val. 434.35 Reach Len. (m) 434.35 Flow Area (m2) 0.008781 Area (m2) 117.50 Flow (m3/s) 25.00 Top Width (m) 3.36 Avg. Vel. (m/s) 2.65 Hydr. Depth (m) 1253.9 Conv. (m3/s) 84.55 Wetted Per. (m) 431.70 Shear (N/m2) 1.38 Stream Power (N/m s) 0.76 Cum Volume (1000 m3)	0.79 Wt. n-Val. 0.080 434.35 Reach Len. (m) 80.00 434.35 Flow Area (m2) 7.48 0.008781 Area (m2) 7.48 117.50 Flow (m3/s) 6.51 25.00 Top Width (m) 11.08 3.36 Avg. Vel. (m/s) 0.87 2.65 Hydr. Depth (m) 0.67 1253.9 Conv. (m3/s) 69.5 84.55 Wetted Per. (m) 11.66 431.70 Shear (N/m2) 55.21 1.38 Stream Power (N/m s) 48.08 0.76 Cum Volume (1000 m3) 2.11	0.79 Wt. n-Val. 0.080 0.035 434.35 Reach Len. (m) 80.00 83.46 434.35 Flow Area (m2) 7.48 27.37 0.008781 Area (m2) 7.48 27.37 117.50 Flow (m3/s) 6.51 110.94 25.00 Top Width (m) 11.08 13.58 3.36 Avg. Vel. (m/s) 0.87 4.05 2.65 Hydr. Depth (m) 0.67 2.02 125.39 Conv. (m3/s) 69.5 1184.0 84.55 Wetted Per. (m) 11.66 14.69 431.70 Shear (N/m2) 55.21 160.44 1.38 Stream Power (N/m s) 48.08 650.39 0.76 Cum Volume (1000 m3) 2.11 156.80

E.G. Elev (m)	433.82	Element	Left OB	Channel	Right OB
Vel Head (m)	0.89	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	432.93	Reach Len. (m)	115.14	165.08	240.79
Crit W.S. (m)	433.20	Flow Area (m2)	2.57	11.00	44.61
E.G. Slope (m/m)	0.032989	Area (m2)	2.57	11.00	44.61
Q Total (m3/s)	117.50	Flow (m3/s)	1.47	62.03	54.00
Top Width (m)	144.06	Top Width (m)	20.24	9.26	114.55
Vel Total (m/s)	2.02	Avg. Vel. (m/s)	0.57	5.64	1.21
Max Chl Dpth (m)	1.80	Hydr. Depth (m)	0.13	1.19	0.39
Conv. Total (m3/s)	646.9	Conv. (m3/s)	8.1	341.5	297.3
Length Wtd. (m)	185.54	Wetted Per. (m)	20.32	9.70	114.57
Min Ch El (m)	431.13	Shear (N/m2)	40.91	366.60	125.95
Alpha	4.28	Stream Power (N/m s)	23.40	2067.85	152.47
Frctn Loss (m)	1.29	Cum Volume (1000 m3)	1.71	155.20	8.83
C & E Loss (m)	0.03	Cum SA (1000 m2)	1779.00	363.84	1387.23

Plan: Plan 06 Credit R. W. Credit R. RS: 19215.73 Profile: Regional

Plan: Plan 06 Credit R. W. Credit R. RS: 18717.64 Profile: Regional

E.G. Elev (m)	432.90	Element	Left OB	Channel	Right OB
Vel Head (m)	0.01	Wt. n-Val.		0.035	0.080
W.S. Elev (m)	432.88	Reach Len. (m)	0.50	0.50	0.50
Crit W.S. (m)	430.01	Flow Area (m2)		250.35	0.86
E.G. Slope (m/m)	0.000056	Area (m2)		250.35	0.86
Q Total (m3/s)	117.50	Flow (m3/s)		117.47	0.03
Top Width (m)	79.42	Top Width (m)		74.79	4.63
Vel Total (m/s)	0.47	Avg. Vel. (m/s)		0.47	0.03
Max Chl Dpth (m)	4.15	Hydr. Depth (m)	3.35		0.19
Conv. Total (m3/s)	15734.0	Conv. (m3/s)		15730.5	3.5
Length Wtd. (m)	0.50	Wetted Per. (m)		76.77	4.65
Min Ch El (m)	428.73	Shear (N/m2)		1.78	0.10
Alpha	1.01	Stream Power (N/m s)		0.84	0.00
Frctn Loss (m)	0.00	Cum Volume (1000 m3)	0.00	0.52	0.00
C & E Loss (m)	0.02	Cum SA (1000 m2)	1770.74	283.59	1361.87

Plan: Plan 06 Credit R. W. Credit R. RS: 18717.14 Profile: Regional

			0		
E.G. Elev (m)	432.88	Element	Left OB	Channel	Right OB
Vel Head (m)	0.20	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	432.68	Reach Len. (m)	59.18	29.13	59.08
Crit W.S. (m)	431.26	Flow Area (m2)	3.41	58.35	8.66
E.G. Slope (m/m)	0.001392	Area (m2)	3.41	58.35	8.66
Q Total (m3/s)	117.50	Flow (m3/s)	0.51	115.44	1.56
Top Width (m)	75.10	Top Width (m)	18.93	19.91	36.26
Vel Total (m/s)	1.67	Avg. Vel. (m/s)	0.15	1.98	0.18
Max Chl Dpth (m)	3.28	Hydr. Depth (m)	0.18	2.93	0.24
Conv. Total (m3/s)	3148.9	Conv. (m3/s)	13.6	3093.6	41.7
Length Wtd. (m)	29.13	Wetted Per. (m)	18.95	23.09	36.27
Min Ch El (m)	429.40	Shear (N/m2)	2.46	34.51	3.26
Alpha	1.38	Stream Power (N/m s)	0.37	68.27	0.59
Frctn Loss (m)		Cum Volume (1000 m3)		0.44	
C & E Loss (m)		Cum SA (1000 m2)	1770.73	283.57	1361.86

			0		
E.G. Elev (m)	432.68	Element	Left OB	Channel	Right OB
Vel Head (m)	1.04	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	431.64	Reach Len. (m)	66.89	42.15	44.64
Crit W.S. (m)	431.64	Flow Area (m2)	11.09	10.71	11.20
E.G. Slope (m/m)	0.015251	Area (m2)	56.17	10.71	68.00
Q Total (m3/s)	117.50	Flow (m3/s)	27.73	61.57	28.19
Top Width (m)	84.57	Top Width (m)	31.26	4.25	49.06
Vel Total (m/s)	3.56	Avg. Vel. (m/s)	2.50	5.75	2.52
Max Chl Dpth (m)	2.52	Hydr. Depth (m)	2.06	2.52	2.08
Conv. Total (m3/s)	951.4	Conv. (m3/s)	224.6	498.6	228.3
Length Wtd. (m)	45.58	Wetted Per. (m)	5.38	5.15	5.38
Min Ch El (m)	429.12	Shear (N/m2)	308.50	311.16	311.55
Alpha	1.60	Stream Power (N/m s)	771.69	1789.24	784.43
Frctn Loss (m)	0.15	Cum Volume (1000 m3)	9.45	40.93	3.57
C & E Loss (m)	0.47	Cum SA (1000 m2)	1769.25	283.22	1359.34

Plan: Plan 06 Credit R. W. Credit R. RS: 18688.00 Profile: Regional

Plan: Plan 06 Credit R. W. Credit R. RS: 18508.07 Profile: Regional

E.G. Elev (m)	430.16	Element	Left OB	Channel	Right OB
Vel Head (m)	0.01	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	430.15	Reach Len. (m)	50.53	46.34	47.52
Crit W.S. (m)	428.31	Flow Area (m2)	229.37	37.59	84.22
E.G. Slope (m/m)	0.000169	Area (m2)	229.37	37.59	84.22
Q Total (m3/s)	117.50	Flow (m3/s)	66.52	30.66	20.33
Top Width (m)	153.31	Top Width (m)	95.95	11.05	46.32
Vel Total (m/s)	0.33	Avg. Vel. (m/s)	0.29	0.82	0.24
Max Chl Dpth (m)	4.13	Hydr. Depth (m)	2.39	3.40	1.82
Conv. Total (m3/s)	9025.5	Conv. (m3/s)	5109.5	2354.7	1561.3
Length Wtd. (m)	46.34	Wetted Per. (m)	96.41	11.58	46.64
Min Ch El (m)	426.02	Shear (N/m2)	3.95	5.40	3.00
Alpha	2.07	Stream Power (N/m s)	1.15	4.40	0.72
Frctn Loss (m)		Cum Volume (1000 m3)		10.28	
C & E Loss (m)		Cum SA (1000 m2)	1761.67	270.79	1356.05

Plan: Plan 06 Credit R. W. Credit R. RS: 18418.73 Profile: Regional

			0		
E.G. Elev (m)	428.08	Element	Left OB	Channel	Right OB
Vel Head (m)	0.02	Wt. n-Val.	0.080	0.035	0.080
W.S. Elev (m)	428.06	Reach Len. (m)	42.23	39.62	38.70
Crit W.S. (m)	427.06	Flow Area (m2)	237.01	35.76	24.16
E.G. Slope (m/m)	0.000386	Area (m2)	237.01	35.76	24.16
Q Total (m3/s)	117.50	Flow (m3/s)	74.09	37.42	5.99
Top Width (m)	202.17	Top Width (m)	165.02	13.39	23.76
Vel Total (m/s)	0.40	Avg. Vel. (m/s)	0.31	1.05	0.25
Max Chl Dpth (m)	3.59	Hydr. Depth (m)	1.44	2.67	1.02
Conv. Total (m3/s)	5980.1	Conv. (m3/s)	3770.7	1904.5	304.8
Length Wtd. (m)	41.00	Wetted Per. (m)	165.07	14.05	23.83
Min Ch El (m)	424.47	Shear (N/m2)	5.44	9.64	3.84
Alpha	2.64	Stream Power (N/m s)	1.70	10.08	0.95
Frctn Loss (m)	0.01	Cum Volume (1000 m3)	33.80	41.87	13.02
C & E Loss (m)	0.00	Cum SA (1000 m2)	1746.35	269.73	1352.18

Q Culv Group (m3/s)	117.12	Culv Full Len (m)	7.58
# Barrels	1	Culv Vel US (m/s)	2.74
Q Barrel (m3/s)	117.12	Culv Vel DS (m/s)	2.74
E.G. US. (m)	432.87	Culv Inv El Up (m)	429.38
W.S. US. (m)	432.68	Culv Inv El Dn (m)	429.16
E.G. DS (m)	432.68	Culv Frctn Ls (m)	0.01
W.S. DS (m)	431.64	Culv Exit Loss (m)	0.00
Delta EG (m)	0.20	Culv Entr Loss (m)	0.19
Delta WS (m)	1.04	Q Weir (m3/s)	
E.G. IC (m)	432.31	Weir Sta Lft (m)	
E.G. OC (m)	432.87	Weir Sta Rgt (m)	
Culvert Control	Outlet	Weir Submerg	
Culv WS Inlet (m)	432.23	Weir Max Depth (m)	
Culv WS Outlet (m)	432.29	Weir Avg Depth (m)	
Culv Nml Depth (m)		Weir Flow Area (m2)	
Culv Crt Depth (m)	1.84	Min El Weir Flow (m)	432.88

Plan: Plan 06 Credit R. W. Credit R. RS: 18702.66 Culv Group: Culvert #2 Profile: Regional

APPENDIX C-2

Embankment Dam Assessment

July 30, 2012

12-015.R03

Triton Engineering Services Limited 105 Queen Street West, Unit 14 Fergus, Ontario N1M 1S6

Attention: Mr. Paul Ziegler, C.E.T.

Dear Sir:

Re: Embankment Dam Assessment Station Street Dam Hillsburgh, Ontario

Background

CMT Engineering Inc. (CMT) has been requested to assess the embankment dam in its present condition with respect to the 2011 Ontario Ministry of Natural Resources Standards. This investigation and report deals only with the earth fill embankment dam (dam) and not the existing bridge structure. A structural engineer should independently assess the bridge structure. An initial geotechnical investigation was undertaken to assess the reported sinkhole in the roadway of the dam. A report providing the apparent history of the dam, as well as results of a geotechnical investigation and recommendations for repair was prepared by CMT on March 6, 2012. As such, those details will not be repeated in this report.

In January of 2012, CMT undertook a borehole investigation program in order to assess the present condition of the dam. This involved advancing eleven (11) boreholes in four sections (three boreholes in three of the sections and two in the other section) perpendicular to the axis of the dam. The boreholes were advanced to depths of approximately 6.0 m. Drawing 1 shows the locations of the boreholes on the dam.

It should be pointed out that the dam has been operable with a history of good performance for over a hundred years. The original dam is believed to have been built in the 1850's and subsequently widened to allow vehicular traffic to pass over it in the 1920's. The dam was

further widened to allow for the installation of guardrails in the 1970's. As such, the dam has experienced and survived every element that nature could offer including storms, waves, high winds, flooding and seismic activity (even though relatively scarce and minimal in this area). Besides the issues relating to the sinkhole, there have been no serious problems reported with respect to the dam.

Subsoil Conditions

In general, the dam is largely composed of an upper pavement structure (asphaltic concrete and road base), overlying fill material and then native sand and gravel. Asphaltic concrete was found in Boreholes 1, 6, 7 and 8 and the thickness was 30 mm at each borehole location. Road base material was found in Boreholes 1, 3, 4, 5, 6, 7 and 8. The thickness of the road base ranged from 250 mm to 300 mm (average: 261 mm). The fill generally comprised sandy silt, silt or clayey silt. The thickness of the fill material ranged from 3.17 m to 5.89 m (average: 4.77 m). The moisture content in the fill ranged from 5.9% to 27.5% (average: 17.6%) and the N-values ranged from 0 to 23 blows per 0.3 m (average: 5 blows per 0.3 m). In general, some organic material was found below the fill. This may indicate the original grade level. Dense to very dense sand and gravel was found below the base of the dam. The moisture contents ranged from 7.4% to 15.3% (average: 9.4%) and the N-values ranged from 16 to 72 blows per 0.3 m). The borehole logs are provided with this report.

It was noted that the soil in the upper 1.2 m of the dam roadway was relatively compact and the moisture contents were also relatively low. Below the upper compact layer, the moisture content increases significantly, and as a result the SPT N-values are also lower than the values obtained in the upper zone. The apparent reason for this is that with time water moves through the dam from the head pond to the tailrace. The top of the water level that is established in the dam is called the phreatic surface. Saturated conditions are generally found below this level. It should also be noted that less dense fill is found on the east side of the dam where loose fill was apparently placed in the 1970's so that guardrails could be placed along the road. With reference to Drawing 1, Drawings 2 to 5 show typical cross-sections through the dam at various locations.

Grain size analyses were conducted on various soil samples taken from the boreholes. The particle size distribution reports are included with this report. The results are provided below:

Borehole Number	Depth (m)	Soil Type	Estimated Hydraulic Conductivity (cm/sec)
2	2.3 – 2.9	Clayey silt, trace sand	1.0 x 10 ⁻⁶
3	2.3 - 2.9	Silty sand, some gravel, trace clay	$1.0 \ge 10^{-4}$
6	2.3 - 2.9	Silty sand, some gravel, trace clay	8.0 x 10 ⁻⁵
6	5.3 – 5.9	Sandy gravel, some silt, trace clay	$4.0 \ge 10^{-4}$
7	2.3 - 2.9	Silty sand, trace clay and gravel	4.2 x 10 ⁻⁵
7	5.3 - 5.9	Sand and gravel, some silt	$3.0 \ge 10^{-3}$
10	2.3 - 2.0	Silty sand, some gravel, trace sand	3.6 x 10 ⁻⁵
11	2.3 - 2.9	Sand and silt, trace gravel	2.0 x 10 ⁻⁵

All of the samples obtained from between depths 2.3 m to 2.9 m were taken from the dam fill material. The estimated hydraulic conductivity for the fill material ranged from 1.0×10^{-4} cm/sec to 1.0×10^{-6} cm/sec (average: 4.6×10^{-5} cm/sec). The two samples taken from depths between 5.3 m and 5.9 m were taken from the foundation soils. The estimated hydraulic conductivity ranged from 3.0×10^{-3} cm/sec to 4.0×10^{-4} cm/sec (average: 3.4×10^{-3} cm/sec).

GPR Investigation

A GPR (Ground Penetrating Radar) investigation was undertaken by Global GPR Services on November 28, 2011. The area surveyed was approximately 43 metres along the road on the dam and 6 metres across the dam between the east and west guardrails. Three GPR lines were run along the axis of the dam (parallel to the head pond). Only one void area was identified and that was in the area where the underground pipe from the monk was located. A fourth GPR line was run perpendicular to the dam axis to confirm the presence of the void. No other adverse features were revealed during the course of the investigation.

Dam Foundation

The dam foundation comprises compact to very dense sand and gravel. As indicated previously, the average N-count values were in the order of 45 blows per 0.3 m. As such, the foundation is considered to have very high bearing strength (>300 kPa / 6000 psf) and the potential for settlement is considered to be very low. If any settlement did occur, it would most likely have taken place at the time of dam construction and impounding. In general, soils such as sand and gravel are known to settle almost instantaneously as loads are applied. The foundation soils are classified to be "GM" according to the Unified Soil Classification and have a medium permeability. The foundation is therefore capable of providing a very high bearing capacity and at the same time act as a natural drainage layer to dissipate potential excess pore pressures.

Earth Fill Embankment Dam

Based on the soil investigations conducted, it is apparent that there is an upper layer of compact relatively dry soils, underlain by lower density soils with very high moisture contents or saturated conditions. The fill materials are generally classified to be "SM" to "ML" according to the Unified Soils Classification and have a medium to low permeability. As is typical of earth fill dams, a phreatic water level has been established with time. This level connects the water level in the head pond with the water level in the tailrace. The soil below the phreatic surface is generally very moist to saturated. As such, the N-count values obtained during the investigation are considered to be somewhat deceptive since they are affected by both the high water content and the lack of lateral restraint due to the sloping sides of the dam. Test pits excavated into the core of the dam during the investigation for the underground pipe revealed soils with much higher bearing strength. This stands to reason considering the longevity of the existing dam and years of consolidation activity under its own weight, as well as from surcharge loading (vehicles) on the dam.

Overtopping Potential

The dam presently features a stop log outlet control structure as well as a monk feature, which also has stop logs that can regulate flow. As such, the dam has two overflow control structures to help control the head pond level. The monk facility is in a relatively poor condition and will be abandoned in favour of a new outlet control structure complete with a front mounted sluice gate. The freeboard of the dam is in the order of 550 mm. Based on a reservoir fetch that is in the order of 160 m, a minimum freeboard of 300 mm is required. As such, the present freeboard is adequate. From a historical point of view, there have been no reported failures or distress to the dam as a result of overtopping.

Seepage Considerations

A two-dimensional flow net was prepared to simulate the potential flow of water under the dam. The main purpose of the flow net was to determine the potential seepage exit gradient of flow at the toe of the dam. Generally, a value of 1.0 indicates a zero effective stress condition with a corresponding upward flow that could potentially result in piping or quick conditions. The head pond level used was elevation 432.54 m, which is the top of the bank on the upstream side of the dam. For reference, the top of the monk intake structure is at elevation 431.90 m. The tail pond level used was at elevation 428.65 m. As such, the difference in the head level was 3.89 m. The base width of the dam in a direction perpendicular to the axis of the dam is in the order of 24.0 m.

Based on the flow net, the seepage exit gradient was determined to be 0.23, which would most likely suggest light seepage flow but not enough to create quick conditions. Due to the large difference between the height of the dam and the width of the dam, the head pressure under the dam is largely dissipated by the time it exits at the toe. It is assumed that the head pond will have a natural upstream silt/clay blanket on the bottom as a result of years (100 to 150 years) of inflow and soil particle settlement within the head pond.

<u>Stability of Dam</u>

Obviously, the historical longevity of the dam suggests that it has functioned successfully for a very long time. Regardless, a limit equilibrium method of stability analysis was undertaken. A global stability analysis using Bishop's method was undertaken to assess the potential for any deep-seated failures. This analysis provided a factor of safety of 7.2. This can most likely be attributed to the relative width of the dam and the dense sand and gravel foundation, which provides a suitable high bearing capacity base and high internal friction for the embankment dam. Another stability analysis was undertaken to assess the embankment dam with respect to the underlying foundation. A factor of safety of 1.6 was obtained for this analysis. It is always possible that a shallow failure could occur, but this would most likely be minor in nature and easily fixed. To the best of our knowledge, this type of occurrence has not been reported to date.

Seepage Reduction Recommendation

The presence of seepage reducing techniques with respect to the dam is unknown due to its age. However, it would appear that the dam must have a natural upstream blanket of relatively impermeable soils such as silt and clay. It would also seem reasonable to assume that this upstream blanket would have increased in thickness with time as a result of having fine soils settle out in the head pond. Without such an upstream blanket, significant seepage through the foundation would be expected considering that the foundation comprises sand and gravel and has an estimated hydraulic conductivity of 3.4×10^{-3} cm/sec.

This suggests that if the upstream blanket or a portion of it becomes jeopardized due to human interference or by the forces of nature, undermining (erosion) or piping conditions could occur within the dam structure. This apparently has not occurred to date; however, the installation of a cut-off in the form of a sheet pile wall, installed on the upstream side of the dam, would reduce/eliminate the potential for erosion to occur. The cut-off wall would minimize the potential for seepage and potential erosion beneath the dam and also reduce potential seepage through the embankment. Furthermore, this would also minimize the potential for slope failure in the event of a rapid draw down condition. It should be pointed out, however, that the effects of a potential rapid draw down are expected to be minimal to nil considering that the differential head pressure within this relatively small dam is not very significant.

Leakage from Conduit

The existing dam has a conduit running from the monk in the head pond to the tailrace of the dam. This conduit has been the source of a sinkhole found above the pipe in the dam. It is expected that internal erosion has occurred due to failure of the existing pipe and seepage in a direction parallel to the conduit. It has been proposed to remove this conduit and seal the area where it existed. A new intake structure and conduit will be constructed and the monk feature will be abandoned. The recommended sheet pile cut-off wall will also be helpful in helping to minimize the potential seepage flow along the proposed new conduit once construction has been completed.

Embankment Slopes

Trees and shrubs have been removed from the upstream side of the dam. However, based on exploratory test pits near the upstream face, it appears that some of the roots have penetrated into the dam. It is recommended that the stumps and associated roots be removed from the face since they can create water pathways into the dam. The downstream side of the dam presently has some small trees and bushes, which should also be removed. It is important that the dam is kept free of trees and shrubs on both the upstream and downstream sides. The upstream face is largely covered with durable riprap. However, the upstream slope should be examined to ensure that the slope is entirely covered with riprap.

Pavement Structure

It appears that the roadway on the dam is slightly tilted towards the downstream side of the dam. This may be the result of differential settlement with respect to the three different phases of dam construction that has occurred throughout the history of the dam. As such, it is suggested that the pavement structure on the dam be reconstructed. The following recommendations are provided.

Prior to placement of the granular base, the subgrade for the paved area should be proof-rolled and any soft or unstable areas as well as unsuitable fill materials should be subexcavated and replaced with approved site soil or imported fill materials. The subgrade should be graded smooth and be free of depressions with a minimum grade of 3% towards the downstream side. Considering that drainage is directed towards a free face (downstream slope), subdrains should not be necessary. Considering that the underlying soils are prone to becoming saturated and thereby reduced with respect to bearing capacity, it is recommended that a biaxial geogrid (Tensar BX1200 or equivalent) be installed on the subgrade prior to installation of the pavement structure.

It is assumed that the paved areas will experience light to heavy traffic (cars, dump trucks, fire trucks, etc.). Based on the anticipated loading, the following pavement design is recommended:

Material	Recommended Thickness
Asphaltic Concrete	HL3 - 40 mm (1.5")
Granular 'A' Base	HL4 or HL8 - 60 mm (2.5") 150 mm (6.0")
Granular 'B' Subbase	450 mm (18.0")
BX1200 Geogrid	N/A

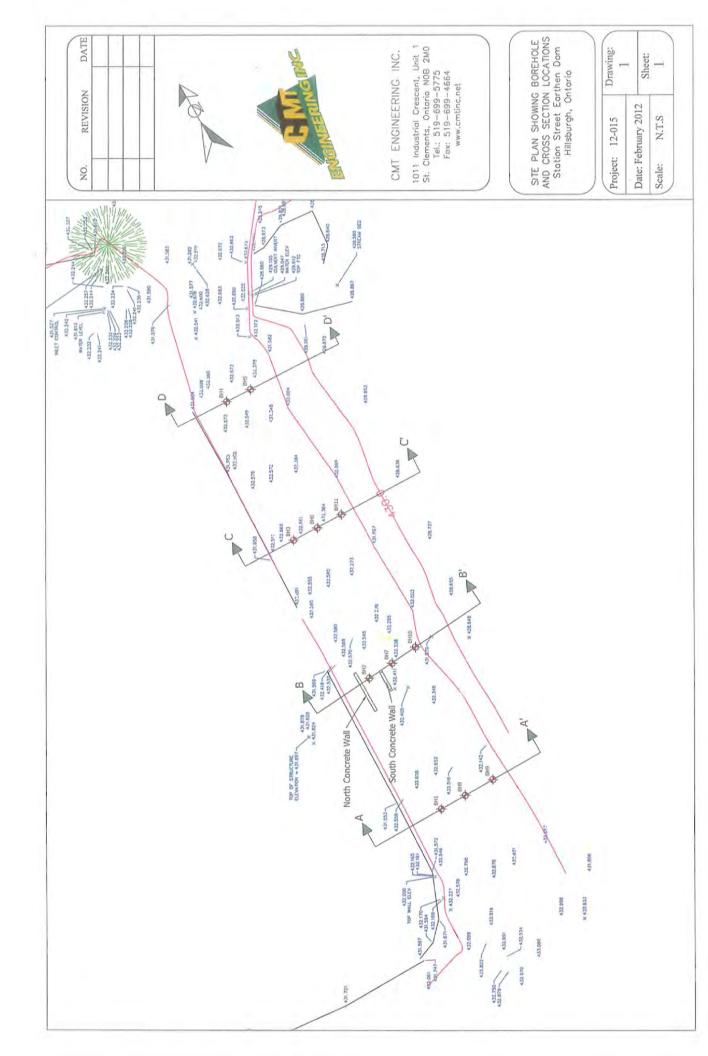
The granular base and subbase materials must be compacted to 100% SPMDD. Asphaltic concrete should be supplied, placed and compacted to a minimum 92.0% Marshall maximum relative density, in accordance with OPSS 1150 and OPSS 310.

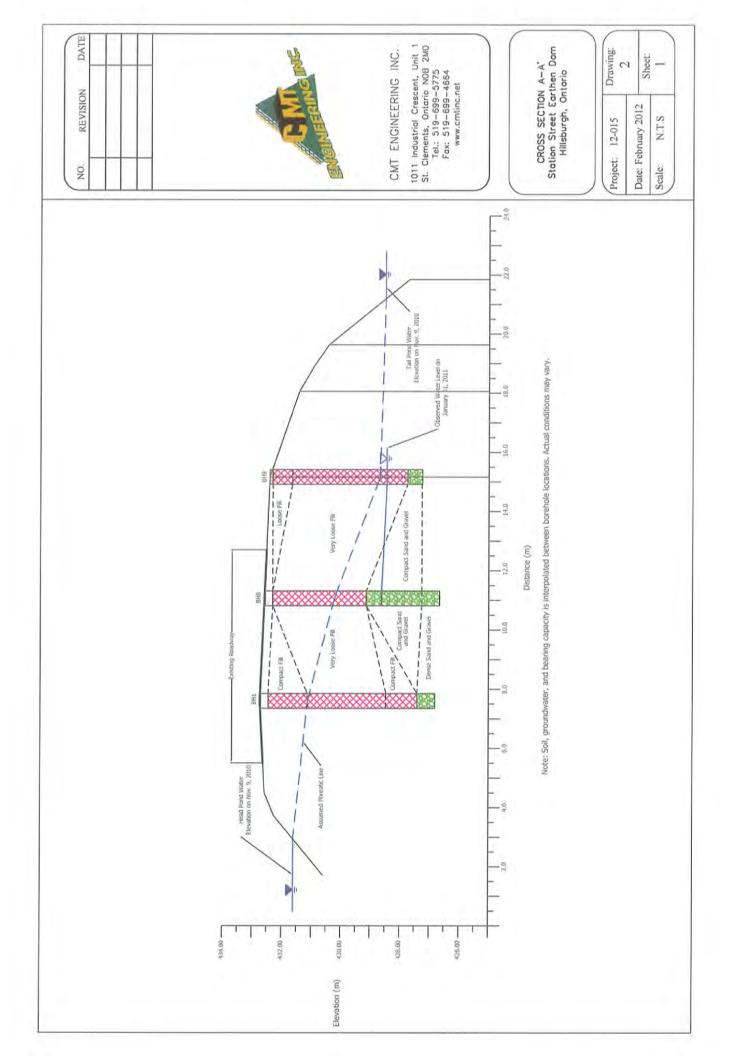
It is important that the soil in the bridge approach areas is free-draining and compacted to 100% SPMDD to avoid potential differential settlement. The pavement should be designed to ensure that water will not pond on the pavement surface.

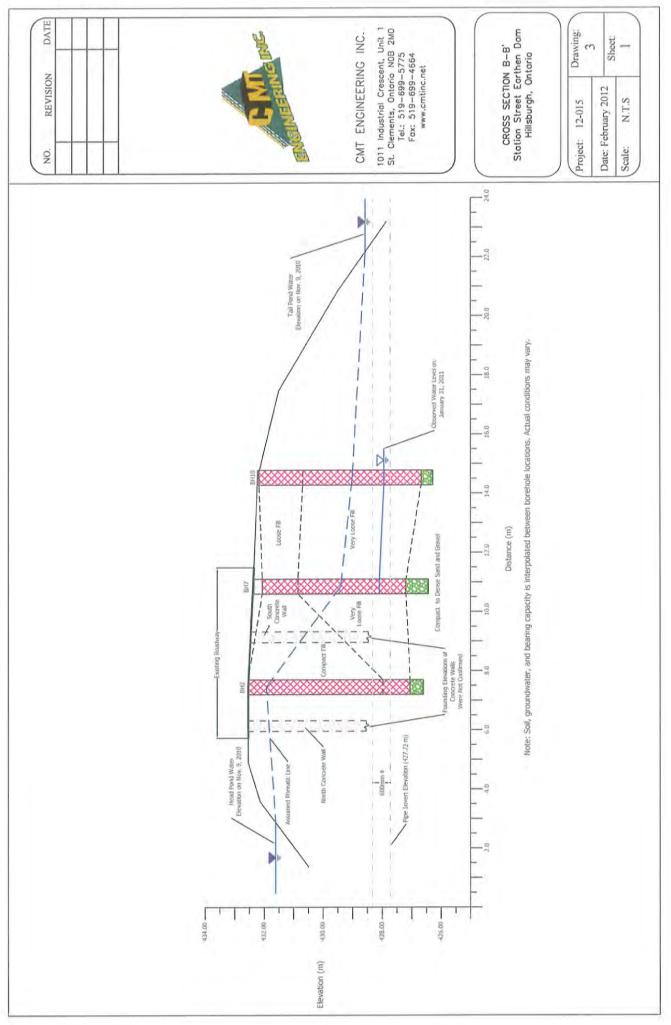
<u>Summary</u>

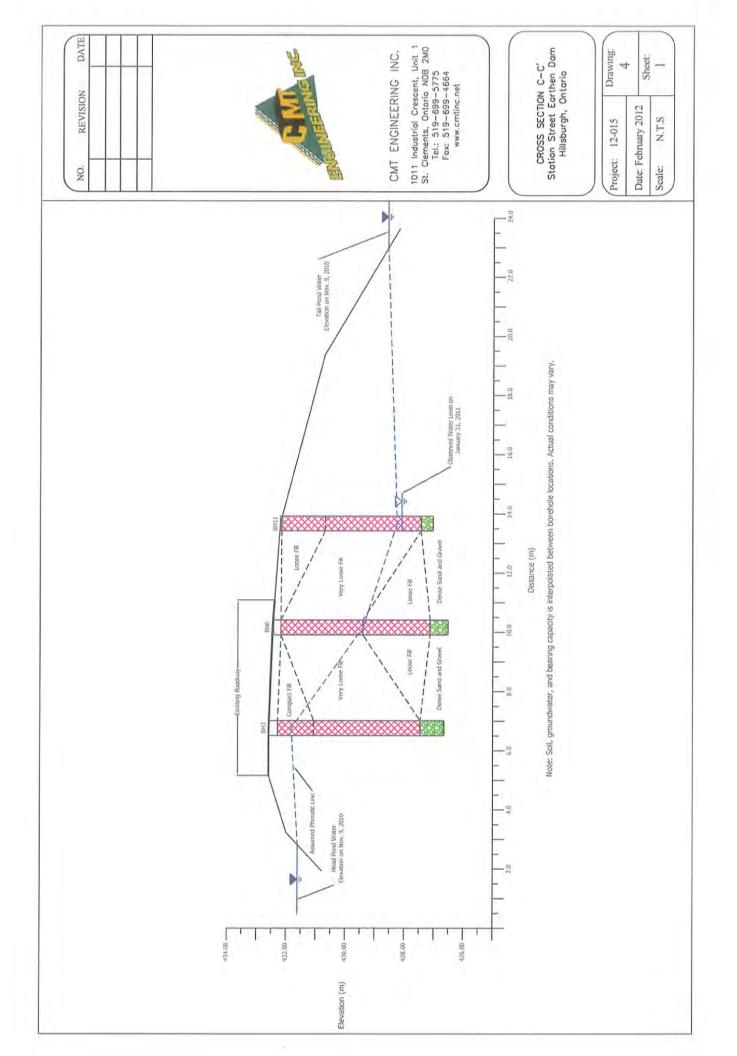
At the time of writing, there were plans underway to abandon the existing monk structure in favour of a new outlet control structure complete with a front mounted sluice gate. This undertaking should address the concerns related to the sinkhole issue. It is recommended to extend a sheet pile cut-off wall across the front of the dam since the presence of a cut-off feature appears to be lacking. The sheet piling required for the temporary repair work could be used as part of the permanent cut-off wall.

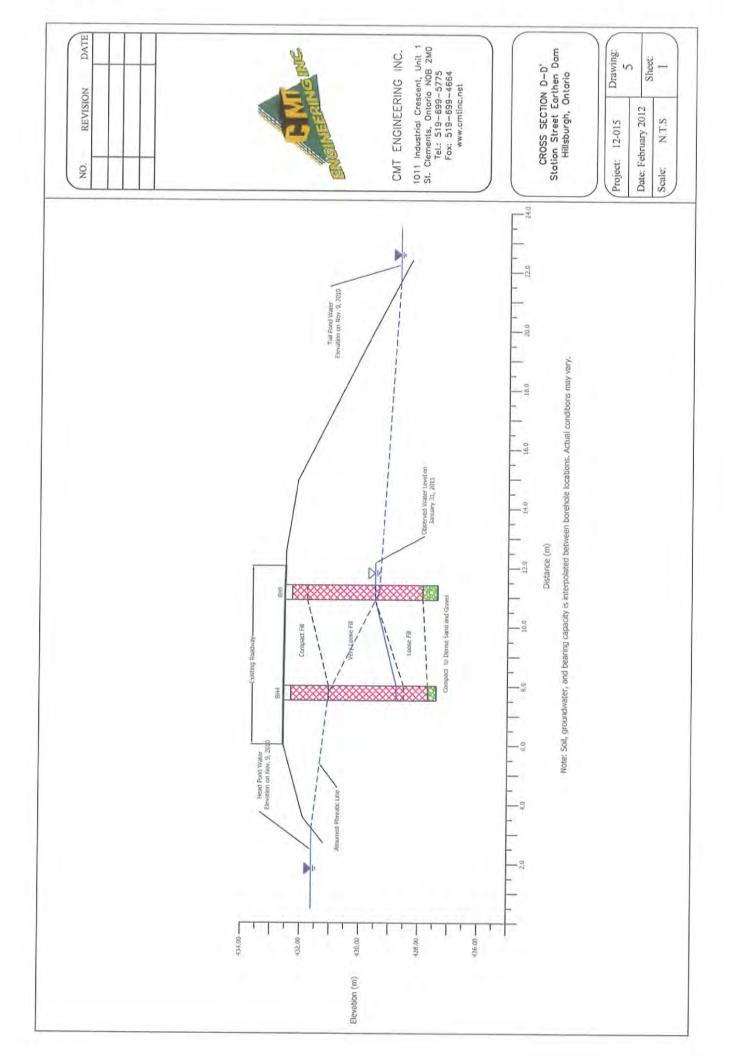
It is also recommended that all vegetation, including root systems, be removed from both the upstream and downstream sides of the dam. The upstream face of the dam should be inspected to ensure that the face has total coverage with durable riprap material. It is also recommended that a new pavement structure be installed to replace the roadway on the existing structure.


The existing embankment dam has been performing in a satisfactory manner for well over a hundred years with the exception of the existing conduit and associated sinkhole. During this time the dam has experienced and stood up to all of the natural elements including wind, storms, flooding, ice, waves and possible minor seismic activity. As such, it is very difficult to find fault with a structure that has had a history of satisfactory performance. It is our opinion, that by undertaking the recommended procedures indicated in this report and the one issued previously (CMT Report-March 6, 2012), the dam will generally meet the required 2011 standards as set out by the Ontario Ministry of Natural Resources.


If you have any concerns or questions, please contact our office at your convenience.


Yours very truly,


Robert Koopmans, P.Eng. Designated Consulting Engineer BCIN: 15464


Enclosures: Drawing 1 - Site Plan Drawings 2 to 5 - Cross-Sections Borehole Logs 1 to 11 Grain Size Analyses

Rig: (Cont	Geop	probe 6	620DT Engi	31, 2012 F neering Inc.	Elevation: 432.74 Logged by: SS		Project No.: 12-01 Project: Station St Location: Hillsburg	reet Earthen Dam
Depth (ft/m)	Sample Type	Recovery (%) Sample Number	Symbols	SOIL DESCRIF	PTION	Well Installation	Moisture Content % Wp [X] WI 10 20 30 40	Pocket Penetromete
t mo	SS	1		Ground S ASPHALTIC CONC Black, asphaltic con (30 mm) CONCRETE ROAD	crete 432.4	.6		
- 1	SS	2		Grey, concrete road (250 mm) FILL Brown, compact, mo silt fill with some gra	base bist, sandy		5.9	23
ակահակահակակ	SS	3	-	becoming very loose	431.14 ecoming very loose, very 1.60 noist and dark brown			3
քը քը խետեղեսերերերին հետերեներին հետերեներին հետերեներին հետերեներին հետերեներին հետերեներին հետերեներին հետերեն	SS	4					18.2	1
ց անունդիստերիս	SS	5			428.9		17.2	2
4	SS	6		becoming grey silt fil some sand, clay and occasional gravel an becoming compact s some sand, clay and	d roots 428.4 silt fill with 4.27	7	22.8	3
5 5	SS	7			427.4	1	13.0	18
անդեսներին 6	SS	8		SAND AND GRAVE Grey, dense, wet sau gravel	L 5.33 nd and 426.8	0	12.7	41
4 5 6 7 հունդիոնանդիոնանդիոնանդիոնանականականականական				End o Open upon o	or Borenole			

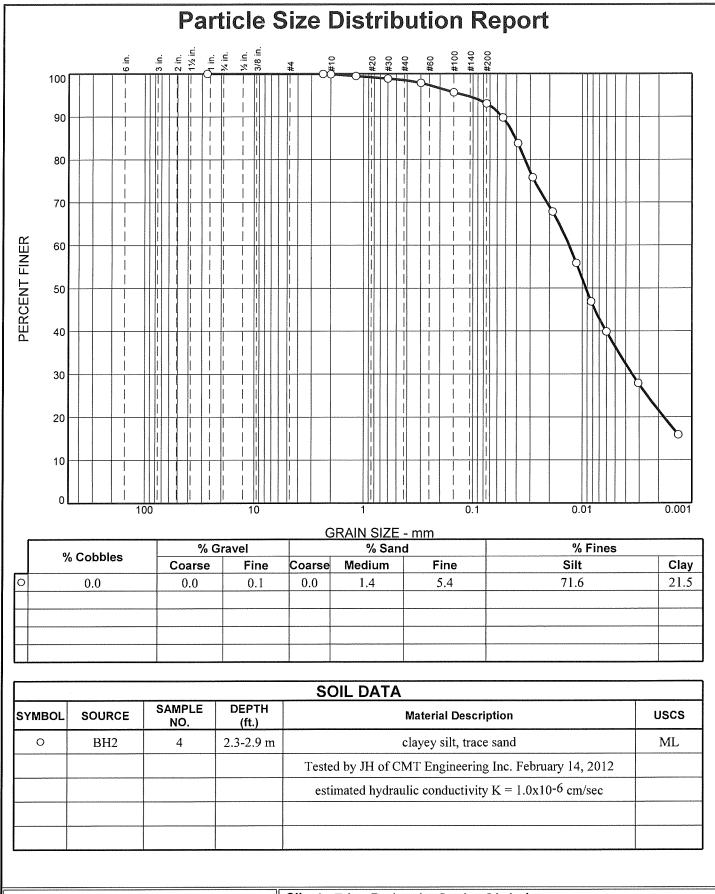
g: (Geop	orobe	66: //T	20DT Engi	81, 2012 neering Inc. / MC5	Elevation: 432 Logged by: SS			Project No.: 12-01 Project: Station St Location: Hillsburg	reet Earthen Dam
	Sample Type	Recovery (%)	Sample Number	Symbols	SOIL DESCRIF			Well Installation	Moisture Content % Wp [X] WI 10 20 30 40	Pocket Penetromet
m						Surface (m) 43	2.54			
- 1	MC5		1		and gravel fill with tra (top 250 mm previou (excavated)	0.00 a, compact, moist sand ravel fill with trace silt 50 mm previously 431.93 ated) 0.61 hing very moist, clayey			9.5	
- 1 - 2 - 3	MC5		2		becoming greyish br tree roots				25.6 • 24.3	
- 3	3			A R R R R R R R R R R R R R R R R R R R	9.49			1.1		
	SS		3		becoming loose, wet fill with some gravel	sandy silt 3	.05		17.9	7
4	SS		4						12.5	4
							7.97			
- 5	SS		5		becoming very loose	42	7.41 .13		26.0	0
	SS	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		L 52 bact, wet 42	7.05 .49 6.60		8.4	16		
- 4					End o Open upon o	of Borehole	.94			
							1011 Ind St. Clerr	NGINEERING INC. dustrial Crescent, Unit tents, Ontario NOB 2 19-699-5775 fax 519-6	1 2M0 599-4664	C M DA

Rig:	Geop	orobe	e 66 MT	20DT Engin	1, 2012 neering Inc.	Elevation: Logged by			Project No.: 12-01 Project: Station St Location: Hillsbur	reet Earthen Dam	
Depth (ft/m)	Sample Type	Recovery (%)	Sample Number	Symbols	SOIL DESCRIF	PTION	TON Well Installation		Moisture Content % Wp [X] WI 10 20 30 40	Pocket Penetromet	
23300000000000000000000000000000000000	SS		Ground Surface (CONCRETE ROAD BASE Grey, concrete road base (300 mm) FILL Brown, compact, moist, sand silt fill				432.59 0.00 432.29 0.30		7.3	23	
անանդիսնություն	SS		2		Brown, compact, mo silt fill becoming loose, very	own, compact, moist, sandy t fill 0.76 coming loose, very moist, ty sand fill with trace clay coming very loose, with me gravel, trace clay and			11.7 •	9	
hilphiliphiliphiliphiliphiliphiliphilip	SS		3		becoming very loose some gravel, trace cl organics	, with ay and	1.52		18.6	1	
արդարդոր	SS		4		becoming greyish bro	own	430.30 2.29		19.9	2	
Յ	SS		5		becoming wet with no	o organics	429.54 3.05		17.0	0	
4 հոհեկնոնդնոն	SS		6						17.6	1	
5	SS		7				427.46		18.6	4	
	SS		8		SAND AND GRAVEL Brown to greyish brown dense, saturated san gravel	wn, very	5.13 426.65		7.4	72	
անդիսնակոնակուն հեղուն հեղ Ծ						f Borehole at 5.18 m	5.94				

Rig: (Contr	Geop	robe 66	Engi	31, 2012 F neering Inc.	Elevation: 432.59 Logged by: SS	m	Project No.: 12-01 Project: Station St Location: Hillsburg	reet Earthen Dam
Depth (ft/m)	Sample Type	Recovery (%) Sample Number	Symbols	SOIL DESCRIP	TION	Well Installation	Moisture Content % Wp [X] WI 10 20 30 40	Pocket Penetromet
ավորարկորդորդորդորդորդորդորդորդորդորդորդորդորդո	SS	1				9	10.4	20
1 -	SS	2		Brown, compact, moi silt fill with trace grav	el		8.8 •	12
2	SS	3		becoming very moist loose with trace clay	431.00 very 1.52	7	16.0	2
աններություն	SS	4		becoming greyish bro wet	430.20 own and 2.39)	13.6	2
3	SS	5					20.9	1
4 huhuhuhuhuh	SS	6		becoming loose and organic topsoil with s silt becoming loose, wet,	and and	3	21.1	6
Infathaladadada	SS	7		with some silt SAND AND GRAVEL Greyish brown, comp sand and gravel with	427.7 ⁴ 4.88 act, wet 427.4 ¹		20.4	22
4 4 5 6 7					f Borehole			
արդարդարորութ. 2								

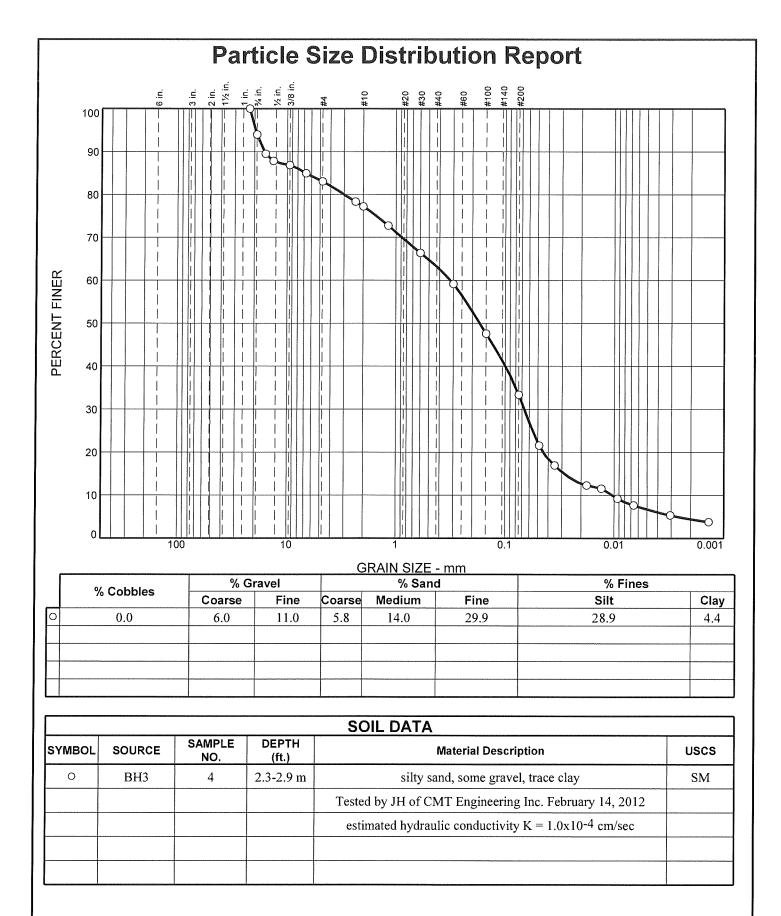
Rig: (Geop	probe 6	620DT Engi	31, 2012 T neering Inc.	Elevation: 432. Logged by: SS	42 m		Project No.: 12-01 Project: Station St Location: Hillsburg	reet Earthen Dam	
Depth (tr/m)	Sample Type	Recovery (%) Sample Number	Soill DESCRIPTION		ντιον	Well Installation		Moisture Content % Wp [X] WI 10 20 30 40	Pocket Penetromet	
m 0 1 2 3	SS	1		CONCRETE ROAD Grey, concrete road (250 mm) FILL	base	00		21.8		
11111	SS	2		Brown, compact, ver sandy silt fill with trac becoming very loose clay	ce gravel 0.	76		21.4 •	2	
2	SS	3						12.3 •	3	
	SS	4			429	.37		17.8 •	2	
	SS	5		becoming wet and lo	428	.61		20.9	5	
4	SS	6		spoon hit root or timt						
5	SS	7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SAND AND GRAVE Greyish brown, dens sand and gravel End c		.24		8.0	35	
4 5 6 7				Cave	at 3.96 m at 3.05 m					
- 7						CMT ENGINEERII	NG INC.		C M	

g: (Geop	probe 6	620D T Engi	31, 2012 T neering Inc.	Elevation: 432.46 Logged by: SS	m	Project No.: 12-0 Project: Station S Location: Hillsbu	Street Earthen Dam
	Sample Type	Recovery (%) Samula Mumhar	Symbols	SOIL DESCRIF	DIL DESCRIPTION Well Installation		Moisture Content 9 Wp [X] WI 10 20 30 40	Pocket Penetrome
- 1 - 2	SS	1		ASPHALTIC CONC Black, asphaltic conc (30 mm) CONCRETE ROAD	BASE	3		
1	SS	2		Grey, concrete road (250 mm) FILL Brown, very loose, m sand fill with some g trace clay	noist, silty		11.6	4
2	SS	3		trace day	430.17	7	15.5 •	1
3	SS	4		with trace organics	2.29 429.4		13.8	3
	SS	5		becoming wet	3.05 428.65		18.7 •	5
4	SS	6		spoon hit root or timb				
- 5	SS	7		becoming greyish bro compact, saturated v orgnaics (wood and t	vith some		34.1 •	11
- 6	SS	8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SANDY GRAVEL Greyish brown, very moist sandy gravel w silt and trace clay	5.33 dense, ith some 426.52		7.7	55
- 5					of Borehole 0.84 at 3.96 m			

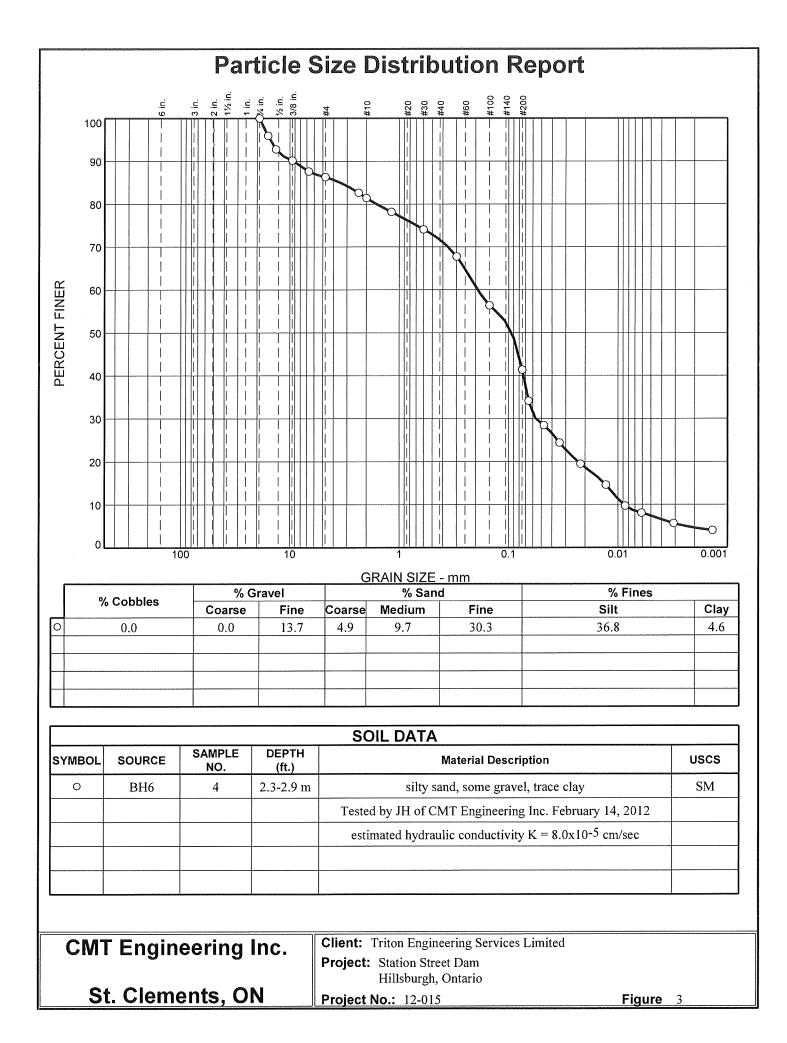

ig: (Geop	probe 6	620D ⁻ F Engi	31, 2012 F neering Inc.	Elevation: 432.37 Logged by: SS	m	Project No.: 12-01 Project: Station St Location: Hillsburg	reet Earthen Dam
	Sample Type	Recovery (%) Sample Number	Symbols	SOIL DESCRIF	PTION	Well Installation	Moisture Content % Wp [X] WI 10 20 30 40	Pocket Penetromed
- 1 - 3	SS	1		Ground S ASPHALTIC CONC Black, asphaltic cond (30 mm)		01		
				CONCRETE ROAD Grey, concrete road				
- 1	SS	2		(280 mm) FILL Brown, loose, very m and silt fill with trace	noist, sand		18.1	6
	SS	3		clay becoming very loose	430.94		20.2	2
-2	00							
	SS	4		some organics (woo	429.87 d, topsoil) 2.59	,	23.1	2
- 3				becoming grey and v	429.41 Net 3.05		1.1 1	
	SS	5		becoming grey and v	vet	•	12.4	5
					428.57		>5	0.0
4	SS	6		increased organics (50%) 3.89		-0	7
					427.74		16.6	7
- 5	SS	7		becoming grey, loos saturated sand fill wi becoming dark brow	th trace silt 427.28	-	•	
	SS	8	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	moist, topsoil fill SAND AND GRAVE Grey, compact, wet s	L sand and		8.0	28 ■
- 5			<u>e</u> <u>e</u>	gravel, some silt End o Open upon o	426.52 5.94 of Borehole			
. 7				Water	C. 10	MT ENGINEERING INC. 11 Industrial Crescent, Unit Clements, Ontario NOB 2		C M

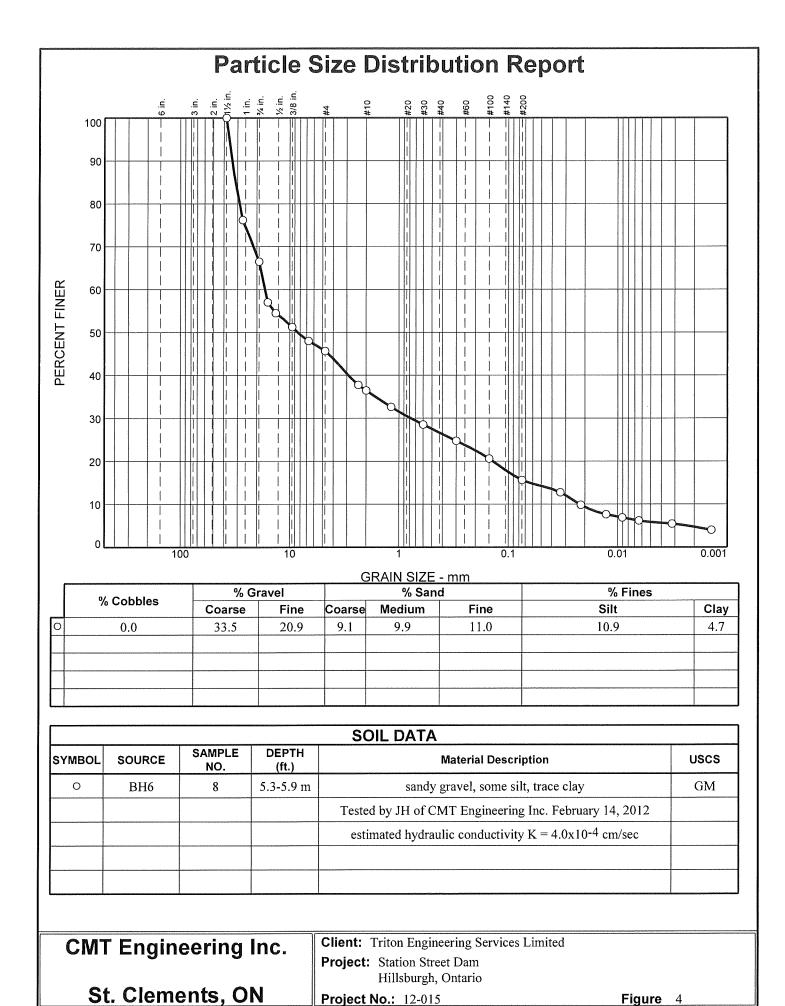
Rig: (Conti	Geop	probe 60	520D1 Engi	31, 2012 T neering Inc.	Elevation: 432. Logged by: SS	67 m	Project No.: 12-01 Project: Station St Location: Hillsburg	reet Earthen Dam
Depth (ft/m)	edu adular adular Source of (%) Source of (%)		PTION	Well Installation	Moisture Content % Wp [X] WI 10 20 30 40	Pocket Penetromete		
ft mo	SS	1		ASPHALTIC CONC Black, asphaltic con (30 mm)	RETE 0. crete 432 0. 0.	2.67 00 2.39 28		
2333333333333333333333333333333333333	SS	2		CONCRETE ROAD Grey, concrete road (250 mm) FILL Brown, very loose, m sandy silt fill with tra	base 433 0.	1. <u>91</u> 76	15.7	3
ոկսիսիսիսիսիսիսիսիսիսիսիսիսիսիսիսիսիսիսի	SS	3		trace oganics (topso			14.6 ●	2
արդերրերի «	SS	4		becoming very mois organics).23 44	20.9	2
իրդորդիսը	SS	5	* 0 * 0 * ·	SAND AND GRAVE		0.22 45	21.8	1
Վանդիսիսիսի	SS	6		Greyish brown, loose saturated sand and	9,		8.6	9
nhihihihihihihi	SS	7		becoming sand and trace silt	gravel with 4.	9.10 57	11.7	6
ակակակակակութ ծ	SS	8		becoming dense	5. 426	33 33 94	9.6	43 ■
իսեսիրեսիրեսիրեսիրեսիրեսիրեսիրեսիրեսիրես				Open upon o	of Borenole			

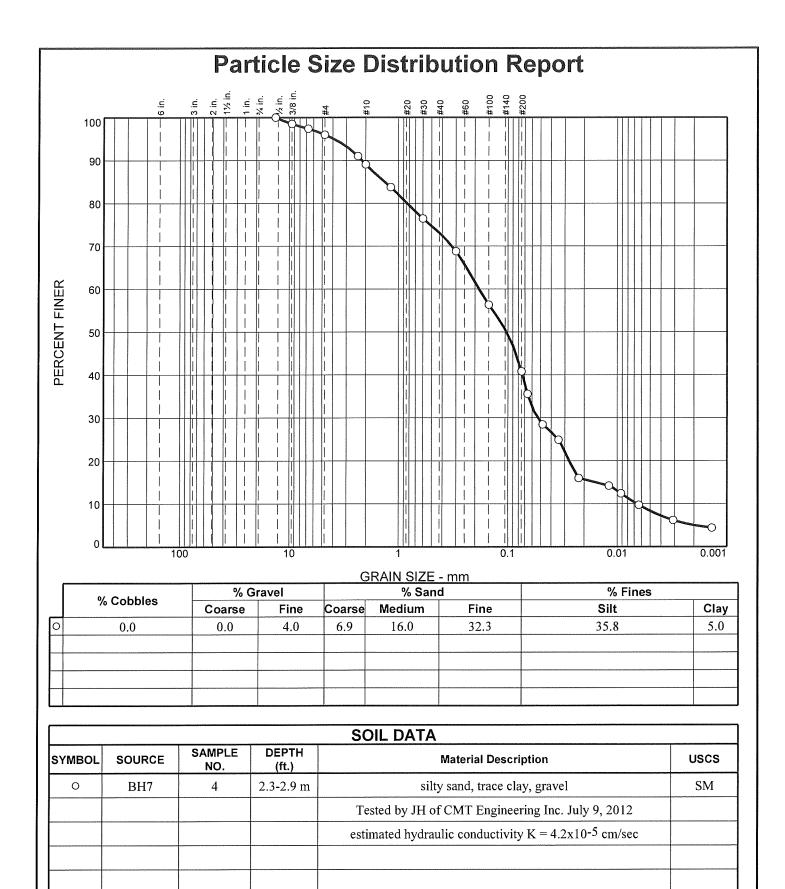
Rig: (Geop	probe	6620 IT En	gineering Inc.	Elevation: 432.4 Logged by: SS	9 m	Project No.: 12-01 Project: Station St Location: Hillsburg	reet Earthen Dam
Depth (ft/m)	Sample Type Recovery (%) Symbols Symbols		RIPTION	FION Well Installation		Pocket Penetromete		
2 3 Տերանակորդորդորդորդորդորդորդորդորդորդորդորդորդո	_		11	Ground	d Surface (m) 432.	49 0	115	6
	SS			Dark brown, loose topsoil (100 mm)	, moist		11.5	•
	_			FILL Brown, loose, mois		73		
1	SS	- 2	2	fill with trace grave becoming very loo	1		13.6	3
			-8	oganics	430.	97		
	SS		3	becoming very mo fill with trace clay	ist, silty sand 1.5	2	16.7	3
- 2	00							
			-8				19.8	1
	SS	-	1				•	Ĩ
- 3		-		with trace gravel	<u>429.</u> 3.0		17.4	1
	SS	ŧ	5				•	
				becoming wet	<u>428.</u> 3.8		19.3	
4	SS	e	3	becoming wet			•	4
					427.	92		
	SS	_ ;	2 0 N	SAND AND GRAN	/EL 4.6	7	7.9	20
- 5			6 . C. C.	saturated sand an	d gravel 427.	<u>31</u> 8		
				En	d of Borehole 5.1			
4 5 6 7					n completion er at 3.96 m			
ոիսիսիս							-	
hihihi								

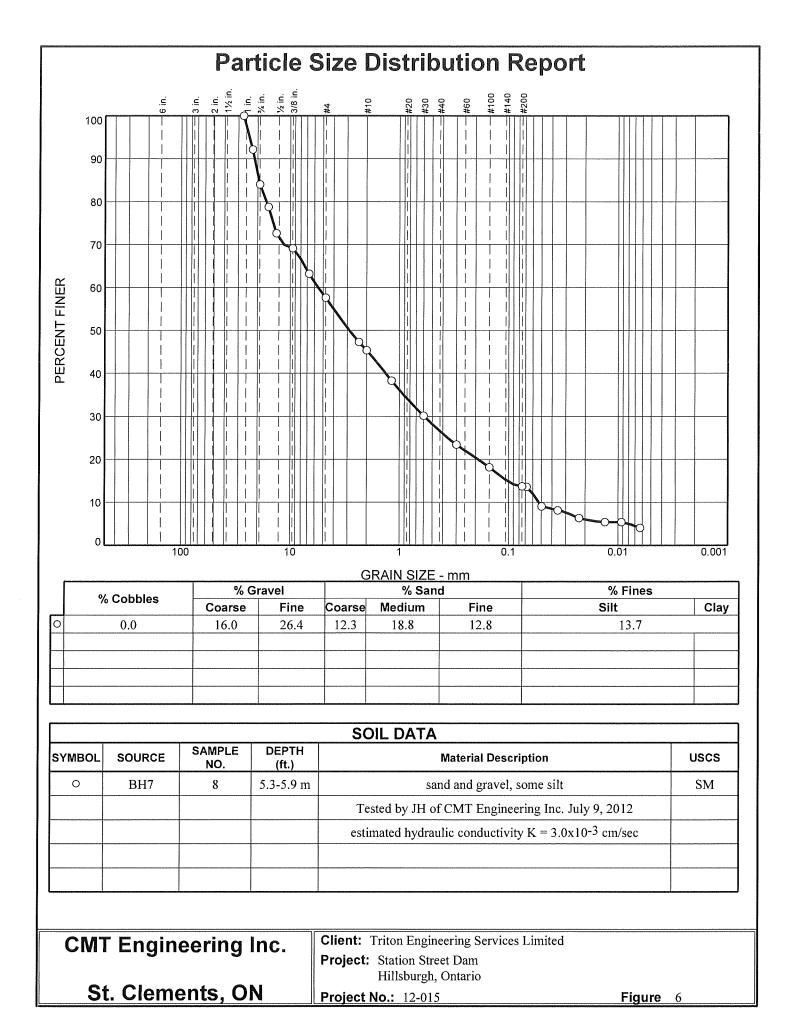

Rig: (Conti	Geop	probe 6	620D [*] Engi	31, 2012 T neering Inc.	Elevation: 432.22 r Logged by: SS	n	Project No.: 12-01 Project: Station St Location: Hillsburg	reet Earthen Dam
Depth (ft/m)	Sample Type	Recovery (%) Sample Number	Symbols	SOIL DESCRIP	TION Well Installation		Moisture Content % Wp [X] WI 10 20 30 40	Pocket Penetromete
ft uturing the	SS	1		Ground S TOPSOIL Dark brown, loose, n topsoil (50 mm) FILL	Surface (m) 432.22 noist 0.00		11.5	5
-	SS	2		Brown, loose, moist, fill with trace gravel becoming silty sand trace gravel and clay	fill with		13.4	5
2	2 SS 3 becoming very loose		430.70 1.52		14.2	3		
արհրդուրդիրորդիրորդիրորդիրորդիրորդիրորդիրոր	SS	4					22.8	3
րիրորդիրորդի	SS	5	-	becoming greyish br wet	429.02 own and 3.20		22.2	0
	SS	6			407.05		24.6	4 ■
նվակակակակ	SS	7		spoon hit wood or tin				15
4 5 0 9	SS	8	0 0 0 0 0 0 7 0 8 0	becoming saturated SAND AND GRAVE Greyish brown, dens saturated sand and g	e, 426.28		15.3	37
ախանորոնունություն				Cave	of Borehole at 4.88 m at 4.27m			

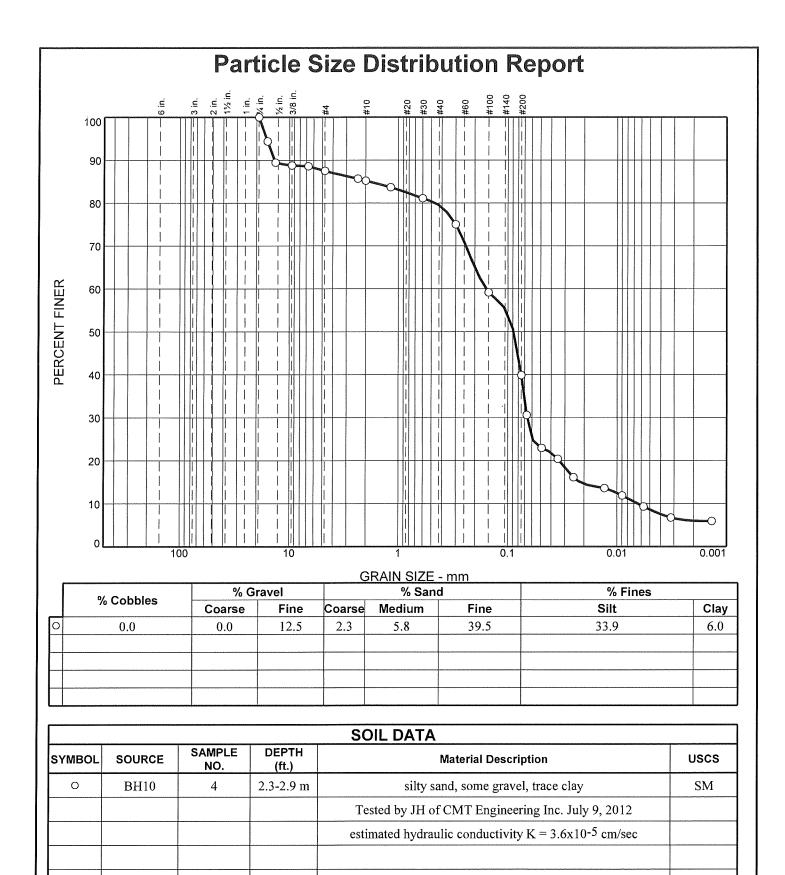
Rig: Cont	Geo	probe 6	620D F Engi	31, 2012 T Ineering Inc.	Elevation: 43 Logged by: 5			Project No.: 12-01 Project: Station St Location: Hillsburg	reet Earthen Dam
Depth (ft/m)	Sample Type	Recovery (%) Sample Number	Symbols	SOIL DESCRIF			Well Installation	Moisture Content % Wp [X] WI 10 20 30 40	Pocket Penetromet
t m	m SS 1 SS 1 SS 2 SS 3 SS 4 SS 5		-	Ground S TOPSOIL Dark brown, loose, n topsoil (50 mm) FILL	noist	32.22 0.00		22.6	6
- 1	SS	2		Brown, loose, moist, silt fill with trace gra and organics no organics	vel, clay,	<u>31.46</u> 0.76		10.3	4
2	SS	3		becoming very loose moist		30.70 1.52		14.9 •	1
	SS	4						18.8	0
3	SS	5		becoming greyish bro	own 4	28.87 3.35 28.56 3.66		18.7	0
4	SS	6		some organics (topso wood) becoming very loose sand fill with some si	, very wet	28.26 3.96		24.4	2
5	SS	7	4 0 0 0 0 9 0 0 0 0	becoming dark brown topsoil SAND AND GRAVE Greyish brown, densi sand and gravel	n to black	27.65 4.57 27.04 5.18		9.5	30 ■
4 5 6 7				End o Open upon c	f Borehole ompletion at 4.11m				
- 7						1011 Indus St. Clemen	GINEERING INC. trial Crescent, Unit 1 ts, Ontario NOB 21 699-5775 fax 519-61 c.net	VIO 99-4664	C MAR UNC

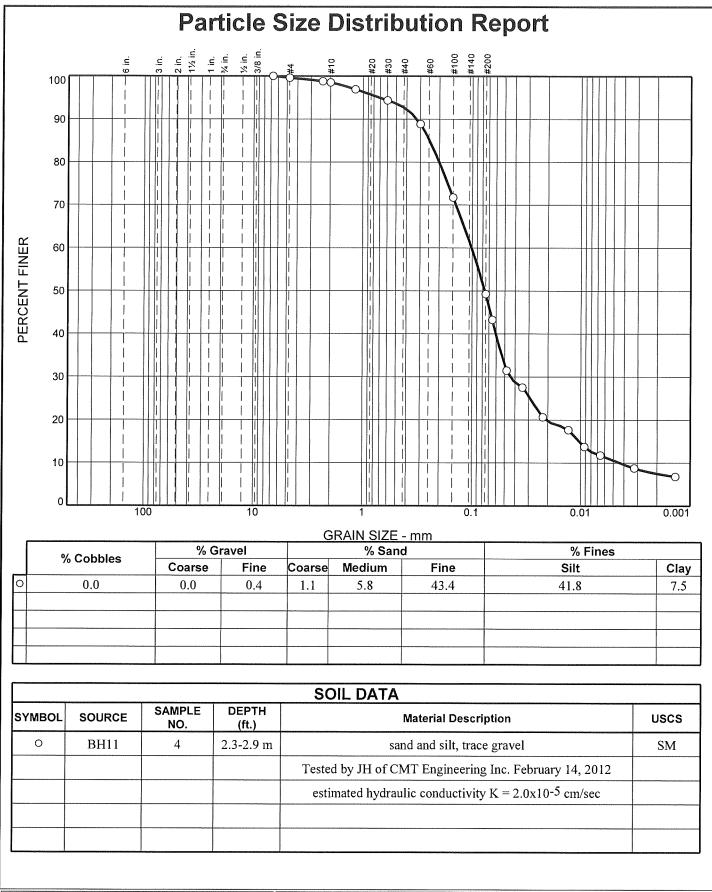



CMT Engineering Inc.	Client: Triton Engineering Services Limited	
	Project: Station Street Dam	
	Hillsburgh, Ontario	
St. Clements, ON	Project No.: 12-015	Figure 1


.


CMT Engineering Inc.	Client: Triton Engineering Services Limited	
	Project: Station Street Dam Hillsburgh, Ontario	
St. Clements, ON	Project No.: 12-015	Figure 2





CMT Engineering Inc.	Client: Triton Engineering Services Limited	
	Project: Station Street Dam	
	Hillsburgh, Ontario	
St. Clements, ON	Project No.: 12-015	Figure 5

CMT Engineering Inc.	Client: Triton Engineering Services Limited	
	Project: Station Street Dam	
	Hillsburgh, Ontario	
St. Clements, ON	Project No.: 12-015	Figure 7

CMT Engineering Inc.	Client: Triton Engineering Services Limited	
···· _···	Project: Station Street Dam	
	Hillsburgh, Ontario	
St. Clements, ON	Project No.: 12-015	Figure 8

APPENDIX C-3

Hydrogeological Assessment

56 Alexandra Ave., Waterloo, Ontario N2L 1L5 Phone: 519-884-5549 blackport_hydrogeology@rogers.com

September 28, 2016

Mr. Chris Clark, M.A.Sc., P.Eng., 105 Queen Street West, Unit 14, Fergus, ON, N1M 1S6

Dear Mr. Clark:

Re: Hillsburgh Dam and Bridge Environmental Assessment Hydrogeology Assessment

As per your request, an assessment of the local hydrogeology conditions in the vicinity of the Hillsburgh Pond and dam was conducted. The following is a summary of the hydrogeology assessment and the potential for groundwater impacts with respect to possible future modifications to the Hillsburgh Pond. The modifications will depend on the findings of the Hillsburgh dam and bridge Environmental Assessment.

Scope of Assessment

A Municipal Class EA is currently being conducted for the Hillsburgh Dam and Pond to assess potential future options for both the dam and pond, and the potential environmental impact any changes to the dam and pond. The primary concern, from a hydrogeological perspective, is the potential for a hydraulic connection between the pond and private water wells in the vicinity of the pond, in particular shallow dug wells, and any impacts that could occur if the pond was modified as a result of the findings of the Environmental Assessment. A desktop review of existing hydrogeological information was conducted to determine the hydrogeologic setting and assess the potential for impacts to the local groundwater and existing private wells. The following is a summary of the hydrogeological review and findings.

Hydraulic Conditions at the Hillsburgh Pond

The water level in the Hillsburgh Pond is regulated by the Hillsburgh Dam, which has a stop log control structure. The water level of the Hillsburgh Pond was measured as 431.21 metres Above Mean Sea Level (mAMSL), determined as part of the EA (personal communication, Triton Engineering Services Limited). Depth soundings taken in the Hillsburgh Pond show the bottom of the pond varies in elevation from a high of 430.85 mAMSL in the north end of the pond to a low of 428.51 mAMSL near the old Monk riser structure, adjacent to the dam.

Hydrogeological Setting

The general hydrogeological setting can be summarized as follows:

- Much of the shallow overburden in the vicinity of the Hillsburgh Pond consists of sand or a mixture of sand and gravel. Figure 1 shows the surficial geology, as mapped by Cowan (1976), shows that much of the area surrounding the Hillsburgh pond is glaciofluvial outwash sand or sand and gravel.
- The shallow sand and gravel is underlain by stony silt till and clayey silt till, often described by well drillers as clay and stones. Figure 2 shows a geologic cross-section through the area near the Hillsburgh Dam (modified from Nestles Waters Canada 2014 Annual Monitoring Report, 2014, Figure 2.3). The cross-section shows typically about 10 m of sand and gravel, overlying 5-10 m of sandy silt to clay till. Below the till is the bedrock of the Guelph Formation, the major water supply aquifer throughout the area.
- Most water wells obtain water from the underlying bedrock aquifer; however, there are some shallow dug wells in Hillsburgh, primarily along Trafalgar Road (Main Street).
 Water well records from the Ministry of the Environment and Climate Change (MOECC) database show the overburden to be on the order of 15 m thick along George Street, north of the Hillsburgh Pond, and to the east along Trafalgar Road, and on the order of 20 m thick along Station Street to the south of the Hillsburgh Pond.

Potential Impact on Private Wells

Most residences in the area of the Hillsburgh Pond are on private wells. The three main areas closest to the Hillsburgh Pond are: along George Street to the north of the pond; along Station Street to the south of the pond; and, to the east of the pond along Trafalgar Road (Figure 3). Figure 4 shows the location of water wells found in the MOECC water well record database. It is noted that the locations of the wells may not be exact, especially for older well records, where the locations may have been based only on driller's sketches. The well records in the database show that it is likely that all of the residences along George Street and Station Street have drilled wells. Given the lack of water well records in the database for residences along Trafalgar Road, it is likely that there are a number of shallow dug wells in this area. A water well survey was not conducted for this desk top study; however, a water supply well for Hillsburgh. There were only a few responses returned, with three (3) residents along Trafalgar Road indicating their well was a dug well.

George Street area (North of the Hillsburgh Pond)

Based on the water well record (WWR) database, the George Street area residences appear to have only drilled water wells. The WWR data base shows that all wells in the data base obtain

water from the underlying bedrock aquifer and most wells are typically about 30 m deep or greater. Water levels in the bedrock wells appear to be at an elevation about 434 mAMSL, which is higher than the Hillsburgh Pond water level. Given the depth of the wells in the bedrock and the overlying silt/clay till overburden, it is unlikely there is a strong hydraulic connection between the Hillsburgh Pond and the bedrock aquifer. It is not expected that any changes to the Hillsburgh Pond will impact the private water wells in the George Street area.

Station Street Area (southwest of the Hillsburgh dam)

There are only a few residences along Station Street, and based on the WWRs all of the residences have drilled wells. There is apparently one dug well, further west along Station Street, but there is also a drilled well on the same property. Based on existing water level data, the water levels in the bedrock wells along the area of Station Street, near the Hillsburgh Dam, are typically about 9 m below ground surface or about 426 mMASL to 428 mAMSL, which is lower than the bottom of the Hillsburgh Pond. It is unlikely that the Hillsburgh Pond influences the water levels in the bedrock aquifer in this area and no impact on water levels is expected with any modifications to the Hillsburgh Pond.

It is noted that Nestles Waters Canada (NWC) has a shallow monitoring well nest (P13-07) along Station Road (Figure 3). Water level monitoring in two overburden monitoring wells at this location shows the water levels are slightly higher than the Hillsburgh Pond level, indicating potential shallow groundwater flow towards the pond. The water levels are only about 0.2 m to 0.5 m above the Hillsburgh Pond level, and show a downward gradient. A bedrock monitoring well close to P13-07 shows a water level typically less than 427 mAMSL, which is below the bottom of the Hillsburgh Pond. It is likely that there is some shallow groundwater discharge locally to the Hillsburgh pond in this area, as well as some downward movement of the shallow groundwater to the underlying bedrock aquifer.

Trafalgar Road (East of the Hillsburgh Pond)

There are only a few water well records in the WWR database, for properties along Trafalgar Road, and as previously indicated it is interpreted that there are likely a number of dug wells which are not in the WWR database. Water well records in the data base show that these wells are completed in the bedrock aquifer, and original water levels varied from about 430 mAMSL to 426 mAMSL, with generally decreasing water levels moving southward along Trafalgar Road. Based on the geologic separation of the bedrock aquifer from the shallow groundwater and the Hillsburgh Pond, there will be limited hydraulic connection between the aquifer and the Hillsburgh Pond in this area.

Dug wells along Trafalgar Road are likely completed in the shallow sand and gravel overburden. The potential does exist for the pond level to influence the shallow water table in the vicinity of the Hillsburgh Pond; however, it is expected that the long-term sedimentation in the bottom of the Hillsburgh Pond has decreased the hydraulic connection of the pond to the surrounding shallow water table aquifer. There will be limited leakage into or out of the bottom of the pond. There will be some movement of water into or out of the side of the pond, depending on the local water table elevation. This is not expected to be significant. It is possible that lowering of the pond level, and dredging of the bottom of the pond, may result in a local lowering of the water table but the extent is not known. The impact is more likely to occur to the west, where there is a greater hydraulic connection to the wetland area.

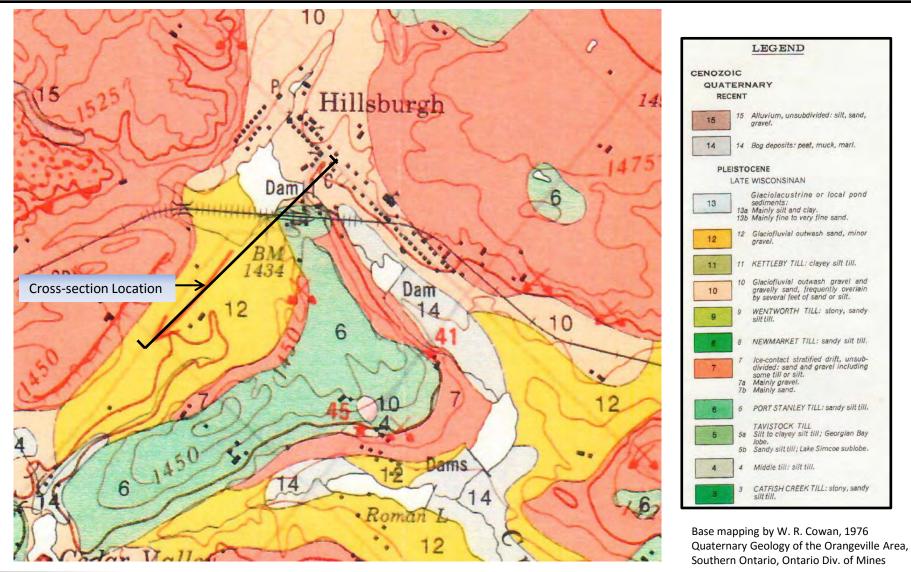
Summary of the Potential Impact of Modifications to the Hillsburgh Pond

Most of the water wells obtain water from the underlying bedrock aquifer. The bedrock aquifer is separated from the shallow groundwater system and Hillsburgh Pond, typically by at least 10 m of overburden, some of which is silt/clay till, so the two groundwater systems should be relatively isolated hydraulically. Based on the existing information no issues are anticipated with the bedrock wells, if the Hillsburgh Pond is altered.

There are some shallow dug wells along Trafalgar Road, which are more susceptible to fluctuations in the water table, depending on the depth of the well. A lowering of the Hillsburgh Pond, and/or dredging of the underlying sediment could locally impact the water table immediately adjacent to the pond. Given that the Hillsburgh Pond has been slowly infilling with sediment, this has likely created a hydraulic seal in the bottom of the pond limiting the hydraulic connection between the pond and the shallow aquifer, including the water levels in the dug wells.

Recommendations

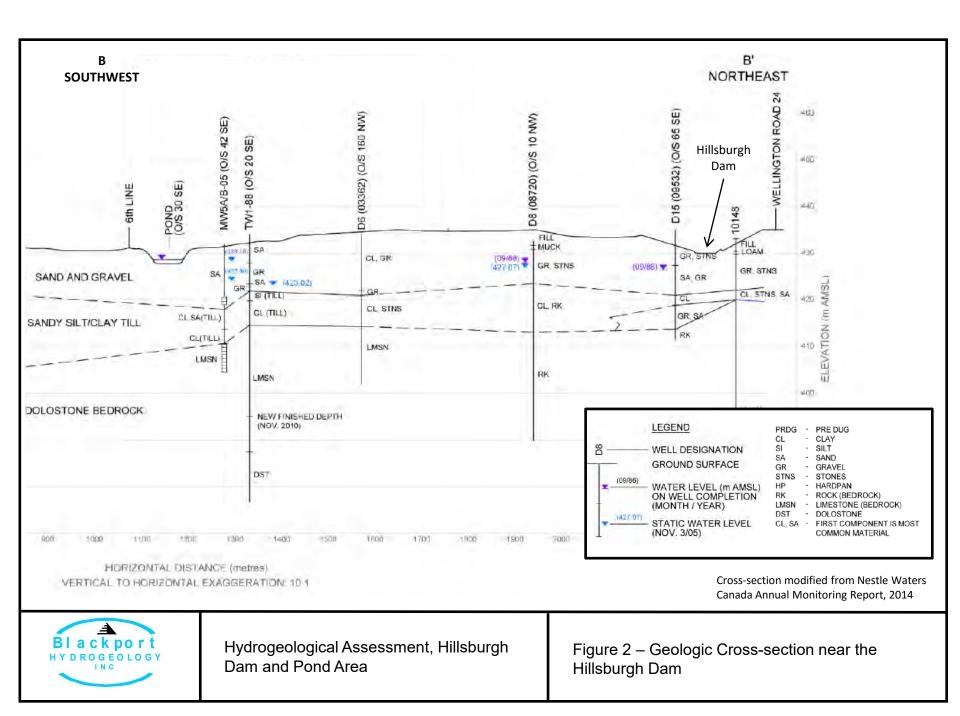
If the Hillsburgh Pond was to be removed and the underlying sediment dredged it is recommended that shallow monitoring wells be installed around the perimeter of the pond prior to any changes in the pond. Water levels should be monitored in these wells prior to and during any modifications to the Hillsburgh Pond to assess determine if there are any impacts to the local water table as a result of changes to the pond.


I trust these comments are sufficient for your assessment. If you have any questions please do not hesitate to contact the undersigned.

Sincerely Blackport Hydrogeology Inc.,

Ray Blackput

Ray Blackport, M.Sc., P. Geo


Attachments: Figures 1-4

Hydrogeological Assessment, Hillsburgh Dam and Pond Area

Figure 1 – Surficial Geology of the Hillsburgh Area

APPENDIX C-4

Natural Environment Report

Hillsburgh Dam

Town of Erin Environmental Assessment - Natural Environment Report

Prepared for: Town of Erin

Project Number:

AA12-137A

Date: October 13, 2016

591 Woolwich Street . Guelph . Ontario . N1H 3Y5 . T:519.822.6839 . F:519.822.4052 . info@aboudtng.com . www.aboudtng.com

EXECUTIVE SUMMARY

ENVIRONMENTAL ASSESSMENT - NATURAL ENVIRONMENT REPORT

Aboud & Associates Incorporated (AA) was retained by Triton Engineering Services Limited (Triton) on behalf of the Town of Erin to complete the natural heritage component of a Schedule B Municipal Class Environmental Assessment (EA). The EA is being completed in order to determine the best option to ensure the long term safety of the Hillsburgh Dam, Bridge and Pond.

The Hillsburgh Dam is an earthen berm located within the community of Hillsburgh, part of the Town of Erin, within Wellington County. The water held back by the Dam creates the Hillsburgh Pond, an approximately 9.0 ha open body of water with associated wetland areas. The river system of the Hillsburgh Pond is the West Credit River, a cold water river system.

The study area for the Natural Environment report is 77.05 ha, centered on the Hillsburgh Dam and includes lands upstream and downstream of the dam. Natural features within the study area include Provincially Significant Wetlands, meadows, open water communities and forests.

The natural heritage studies of the EA characterized and mapped the significant natural features within the study area, identified potential constraints and analyzed proposed alternatives. Species at Risk (SAR), Fish Habitat, Significant Wildlife Habitat, Rare Species, Landscape-level Features, and a Provincially Significant Wetland were identified in the study area. These findings were considered as part of the Analysis of Alternatives.

The four alternatives assessed to determine the preferred alternative are:

- Alternative A Do Nothing
- Alternative B Rehabilitate Hillsburgh Dam and Reconstruct Station Street Bridge
- Alternative C (Option 1): Rehabilitate Station Street Bridge and Decommission Dam
- Alternative C (Option 2): Rehabilitate Station Street Bridge, Decommission Dam and Construct Offline Pond
- Alternative D (Option 1): Reconstruct Station Street Bridge and Decommission Dam
- Alternative D (Option 2): Reconstruct Station Street Bridge, Decommission Dam and Construct Offline Pond

The Analysis of Alternatives identified the potential and actual impacts of each proposed EA Alternative with respect to the existing natural heritage features in the study area and surrounding landscape. The analysis concluded that there are two preferred alternatives: Alternative C - Option 2 and Alternative D - Option 2. These alternatives have the least negative impacts to the existing natural heritage features. Both of these also provide benefits to cold water Fish and Fish Habitat.

The next preferred alternative is Alternative B. If Alternative B is selected, mitigation measures should be considered to minimize impacts to aquatic habitat through the creation of a fish-bypass to allow fish passage and bottom draw dam design to minimize thermal impacts to the downstream watercourse. The least preferred alternatives are Alternative C -Option 1 and Alternative D - Option 1.

Under Alternative A (Do nothing), no new impacts are anticipated under the current conditions. However, if the failure of the dam and/or bridge occurs, significant negative impacts are anticipated to all natural environment criteria, the extent of which is unknown. For the selected Alternative, measures should be implemented to protect the natural environment during construction and mitigate short and long-term impacts of the overall ecological integrity of the area.

Opportunities to enhance the natural environment as part of protection and mitigation measures should be considered following selection of the overall preferred Alternative.

Table of Contents

1.0 IN	ITRODUCTION	1
1.1	Study Area	1
1.2	Existing Land Use	
1.3	EXISTING REGULATIONS	
1.3.1	Provincial Policy Statement	2
1.3.2	-	
1.3.3		
1.3.4		
1.3.5	5 Wellington County Official Plan	4
1.3.6	5 Town of Erin Official Plan	5
1.4	CREDIT RIVER FISHERIES MANAGEMENT PLAN	5
1.5	West Credit Subwatershed Study	7
1.6	CONSULTATION AND COMMENTS	8
1.7	TERMS OF REFERENCE	9
2.0 N	IETHODS	10
2.1	BACKGROUND REVIEW	-
2.2	VEGETATION	-
2.2.1		
2.2.2		
2.3	PROVINCIALLY SIGNIFICANT WETLANDS	
2.4	WILDLIFE	
2.4.1		
2.4.2		
2.4.3		
2.4.4		
2.4.5		
2.4.6	······	
2.4.7 2.4.8		
2.4.8	SIGNIFICANT WILDLIFE HABITAT	
2.5	SIGNIFICANT WILDLIFE HABITAT	
2.0	AQUATIC HABITAT ASSESSMENT	
3.0 EX	KISTING CONDITIONS	17
3.1	BACKGROUND REVIEW	
3.1.1	Natural Heritage Information Centre - Species at Risk	17
3.1.2	- ··· 5 · ···	
3.1.3		
3.1.4	Atlas of the Mammals of Ontario	18
3.1.5		
3.1.6	5 Ministry of Natural Resources and Forestry	20
3.2	VEGETATION	
3.2.1		
3.2.2	2 Botanical Inventory	21
3.3	PROVINCIALLY SIGNIFICANT WETLANDS	
3.3.1		
3.3.2		
3.4	WILDLIFE	.23

7.0	REFE	RENCES	67
6.0	CON	CLUSION	65
		-	
-		Alternative C - Reconstruct Station Street Bridge, Decommission Dam	
		Alternative B - Rehabilitate Station Street Bridge and Decommission the Hillsburgh Dam	
-		Alternative A - Do Nothing Alternative B - Rehabilitate Hillsburgh Dam	
5.3			
5.2		ALUATION OF IMPACTS PACTS TO THE NATURAL ENVIRONMENT	
5.1		TERNATIVES CONSIDERED FOR THE HILLSBURGH DAM AND POND	
5.0		SSMENT OF ALTERNATIVES, AND IMPACTS TO THE NATURAL ENVIRONMENT	
4.2		MMARY OF SIGNIFICANT FEATURES	
		Landscape Features	
-		Aquatic Habitat Assessment	
-		Species with Conservation Designation Habitat Assessment	
-		Significant Wildlife Habitat (SWH)	
-	1.1.3	Wildlife	
-	1.1.2	Wetlands	
	1.1.1	Vegetation	
4.1			
-		MMARY OF EXISTING CONDITIONS	
4.0	SUM	MARY OF NATURAL HERITAGE CONSTRAINTS	42
3		Rare Features	
3		Aquatic Habitat	
3		Connectivity and Existing Natural Features	
3		Surficial Geology and Groundwater	
3		Ecoregion	
3.8		, NDSCAPE EVALUATION	
3	3.7.4	Invasive Fish Species	39
3	3.7.3	CVC Fish Species of Interest (Tier 2)	39
3	3.7.2	Fish Barriers	
3	3.7.1	Thermal Regime	
3.7	Ac	UATIC HABITAT ASSESSMENT	36
3	3.6.3	Fish	35
3	3.6.2	Wildlife	
3	3.6.1	Vegetation	34
3.6	SA	R Habitat Assessment	33
3.5	Sic	NIFICANT WILDLIFE HABITAT	33
3	3.4.9	Species Listed under the Endangered Species Act	31
3	3.4.8	Incidental Wildlife Observations	31
3	3.4.7	Migratory Birds	30
3	3.4.6	Winter Wildlife	30
3	3.4.5	Turtles	28
3	3.4.4	Salamanders	28
3	3.4.3	Snakes	27
3		Breeding Birds	
3	3.4.1	Amphibians (Anurans)	23

List of Tables

Table 1. NHIC Species at Risk Records	
Table 2. Ecological Land Classification	20
Table 3. Summary of Amphibian Observations (2015)	23
Table 4. Regionally or Locally Significant Breeding Bird Species	
Table 5. Turtle Habitat Results	
Table 6. Incidental Species with Conservation Designation Observations	
Table 7. Confirmed Significant Wildlife Habitat	
Table 8. Summary of Significant Features	

List of Figures

Figure 1	Site Location
----------	---------------

- Figure 2 Property Access and CVC Botanical Study Area
- Figure 3 Ecological Land Classifications
- Figure 4 Wildlife Habitat Targets & Survey Locations
- Figure 5 Aquatic Habitat Assessments
- Figure 6 Landscape Evaluation
- Figure 7 Significant Wildlife Observations and Significant Wildlife Habitat

List of Appendices

Appendix 1	Communications
Appendix 2	Terms of Reference and Approval
Appendix 3	Site Investigation Details
Appendix 4	Ecological Land Classification – Community Descriptions
Appendix 5	Ecological Land Classification Data Sheets
Appendix 6	Botanical Inventory
Appendix 7	Anuran Survey Results and Call Codes
Appendix 8	Breeding Bird Results and Evidence Codes
Appendix 9	Marsh Breeding Bird Results
Appendix 10	Snake Transect Survey Results
Appendix 11	Turtle Basking Survey Results
Appendix 12	Winter Wildlife Results
Appendix 13	Migratory Bird Survey
Appendix 14	Shorebird Habitat Assessment
Appendix 15	Incidental Wildlife Observations
Appendix 16	Significant Wildlife Habitat Assessment
Appendix 17	Species with Conservation Status Assessment
Appendix 18	Aquatic Habitat Description
Appendix 19	Background Wildlife List
Appendix 20	Fish Records
Appendix 21	Curriculum Vitae

Glossary of Terms

BBS: Breeding Bird Survey	NHIC: Natural Heritage Information Center		
CC: Coefficient of Conservatism	NRVIS: Natural Resources and Values Information System		
COSSARO : Committee on the Status of Species at Risk Ontario	OBBA: Ontario Breeding Bird Atlas		
COSEWIC : Committee on the Status of Endangered Wildlife in Canada	OMA: Ontario Mammal Atlas		
CRFMP : The Credit River Fisheries Management	ORAA: Ontario Reptile and Amphibian Atlas		
Plan	OP : Official Plan		
CVC: Credit Valley Conservation	OWES: Ontario Wetland Evaluation System		
CVC Species of Conservation Concern: CVC	PPS : Provincial Policy Statement		
ranking of Species based on Conservation Concern Status, from Tier 1 to Tier 5.	PIF: Partners in Flight		
DFO: Department of Fisheries and Oceans Canada	PSW : Provincially Significant Wetland		
EA: Environmental Assessment	SAR: Species at Risk		
ELC: Ecological Land Classification	SARA: Species at Risk Act		
END: Endangered Species	SC: Special Concern Species		
ESA: Endangered Species Act	Species with Conservation Designation: All species listed under SARA, COSEWIC, ESA and/or		
ESSMP : Erin Servicing and Settlement Master Plan	an S1-S3 provincial designation.		
G-Rank : Conservation Status of Species at the Global Level	S-Rank : Conservation Status of Species at the Provincial Level		
LIO: Land Information Ontario	SWH: Significant Wildlife Habitat		
MMP: Marsh Monitoring Protocol	THR: Threatened Species		
MNRF: Ministry of Natural Resources and	VASCAN: Database of Vascular Plants of Canada		
Forestry	WCSS: West Credit Subwatershed Study		

1.0 Introduction

Aboud & Associates Incorporated (AA) was retained by Triton Engineering Services Limited (Triton) on behalf of the Town of Erin to complete the natural heritage component of a Schedule B Municipal Class Environmental Assessment (EA). The EA is being completed in order to determine the best option to ensure the long term safety of the Hillsburgh Dam and associated bridge with due consideration for the natural environment, transportation, socio-economic impacts, constructability, and cost. The natural heritage existing condition component of the EA focuses on characterizing the existing natural features within the study area, mapping significant natural features and identifying potential constraints.

1.1 Study Area

The study area is 77.05 ha and located in the community of Hillsburgh - Town of Erin (*Figure 1*). It is centered on the Hillsburgh Dam and includes lands upstream and downstream of the dam, extending south downstream to Wellington Road 22 and upstream along the two upstream tributaries of the West Credit River. The study area is entirely within the jurisdiction of Credit Valley Conservation (CVC), and almost entirely within CVC's Regulation Limit. Natural features within the study area include wetlands, meadows, open water communities and forests.

The Hillsburgh Dam is an earthen berm located within the community of Hillsburgh, part of the Town of Erin, within Wellington County. The water held back by the Dam creates the Hillsburgh Pond, an approximately 9.0 ha, open body of water. The Dam supports a section of Station Street Road, a two lane municipal road that crosses the West Credit River by way of the Dam and associated bridge (Structure #2064); the latter being the main outflow for the Hillsburgh Pond.

1.2 Existing Land Use

The individual properties that comprise the study area are a combination of private property, and public property (Town of Erin, Credit Valley Conservation land and County of Wellington). The majority of the study area is natural or naturalized land, containing a diversity of ecosystems, including the Provincially Significant West Credit River Wetland Complex, the West Credit River, Significant Woodlands, and open water communities. In addition to the Hillsburgh Pond, there are two other aquatic communities resulting from the impoundment of water behind the dams on the West Credit River, and a number of smaller dug offline ponds throughout the study area (*Figure 2*).

The watercourse within the study area is a natural coldwater system, but due to anthropogenic influences is now comprised of a mixture of cold and warm water areas, containing both cold and warm water species of fish. The entire watercourse is managed as a Coldwater Fishery within the limits of the study area (CRFMP 2001; ESSMP 2011; pers. comm., T. Slaght, 2014). The Elora-Cataract Trailway crosses through the study area and is the main access route into the different sections of the study area.

Within or adjacent the study area are a number of private residential properties comprised of dwellings, driveways and associated landscaping and yard maintenance. Residential areas were not included in the Ecological Land Classification (ELC) surveys and flora species within residential gardens and yards are not included in flora species lists.

Access to specific properties within the study area was requested by Triton through letter and door to door communication with landowners. Due to private property restrictions, large sections of the study area were not accessible, and could only be assessed from the edge of property, aerial photo interpretation and through background resources. The extent of lands accessed as part of the current investigation is shown in *Figure 2*.

1.3 Existing Regulations

1.3.1 Provincial Policy Statement

The *Provincial Policy Statement* ([PPS] OMMHA 2014) provides policy direction on matters of provincial interest related to land use planning and development.

The PPS states that:

"Natural features and areas shall be protected for the long term."

And that:

"The diversity and connectivity of natural features in an area, and the long-term ecological function and biodiversity of natural heritage systems, should be maintained, restored or, where possible, improved, recognizing linkages between and among natural heritage features and areas, surface water features and ground water features."

Under the PPS, development and site alteration are not permitted in:

- a) significant wetlands;
- b) significant woodlands;
- c) significant valleylands;
- d) significant wildlife habitat;
- e) significant areas of natural and scientific interest; and

f) coastal wetlands,

unless it has been demonstrated that there will be no negative impacts on the natural features or their ecological functions.

The PPS (2014) also states that:

- 1. Development and site alteration is not permitted in fish habitat, habitat of endangered species and threatened species except in accordance with provincial and federal requirements.
- 2. Development and site alteration is not permitted on adjacent lands to the natural heritage features and areas identified above, unless the ecological function of the adjacent lands has been evaluated and it has been demonstrated that there will be no negative impacts on the natural features or on their ecological functions.

3. Development and site alteration is restricted in or near sensitive surface water features and sensitive ground water features in order to protect the hydrologic functions of the feature. Mitigation and/or alternative development approaches may be required in order to protect, improve or restore sensitive surface water features, sensitive ground water features, and their hydrologic functions.

1.3.2 Endangered Species Act, 2007

The provincial Endangered Species Act, 2007 (ESA) provides protection to species designated as Threatened or Endangered on the Species at Risk in Ontario list (MNRF 2015a). The habitat of species at risk is also generally protected under the ESA. Protected habitat is habitat identified as essential for life processes including breeding, rearing, feeding, hibernation, and migration.

The ESA (Subsection 9(1)) states that:

"No person shall,

- (a) kill, harm, harass, capture or take a living member of a species that is listed on the Species at Risk in Ontario List as an extirpated, endangered or threatened species;
- (b) possess, transport, collect, buy, sell, lease, trade or offer to buy, sell, lease or trade,
 (i) a living or dead member of a species that is listed on the Species at Risk in
 - Ontario List as an extirpated, endangered or threatened species,
 (ii) any part of a living or dead member of a species referred to in subclause (i).
 - (ii) any part of a living of dead member of a species referred to in subclause (i),
 - (iii) anything derived from a living or dead member of a species referred to in subclause (i); or
- (c) sell, lease, trade or offer to sell, lease or trade anything that the person represents to be a thing described in subclause (b) (i), (ii) or (iii).

Clause 10(1)(a) of the ESA also states that:

"No person shall damage or destroy the habitat of a species that is listed on the Species at Risk in Ontario list as an endangered or threatened species."

An authorization or permit between the proponent and the Minister of Natural Resources and Forestry is required to authorize activities that would otherwise be prohibited by subsection 9(1) and 10(1) of the ESA.

1.3.3 Fisheries Act, 1985

The study area contains fish bearing waters in the form of open water, rivers, and wetlands. These areas and the fish within are protected under the Federal Fisheries Act, 1985. The Fisheries Act provides protection for the sustainability and ongoing productivity of Canada's recreational, commercial and Aboriginal fisheries.

Section 35 (1) of the Fisheries Act States that:

"No person shall carry on any work, undertake activity that results in serious harm to fish that are part of a commercial, recreational or Aboriginal fishery, or fish that support such a fishery" The Fisheries Act requires that projects and activities avoid causing serious harm to fish and fish habitat unless authorized to do so by the Department of Fisheries and Oceans Canada (DFO). This applies to work conducted in or near waterbodies that support recreational, commercial and Aboriginal fisheries. Within the context of the Hillsburgh EA, any proposed actions that could impact fish or fish habitat would need to be assessed for compliance with the Fisheries Act. If it is determined that proposed actions will cause serious harm to fish that cannot be mitigated, then a Fisheries Act Authorization would be required.

1.3.4 Credit Valley Conservation

The Study Area is located within the jurisdiction of CVC and contained within the CVC Regulation Limit from two regulated features: the West Credit River Wetland Complex (PSW), and the West Credit River.

CVC's Policies are regulated under the Administration of the Development, Interference with Wetlands and Alterations to Shorelines and Watercourses Regulation (Ontario Regulation 160/06).

Interference with a wetland or watercourse; or development within a regulated area is generally not permitted. Interference with a wetland or watercourse, or development may be permitted within a regulated area if, the control of flooding, erosion, dynamic beaches, pollution or the conservation of land will not be affected.

CVC may permit development or site alteration where impacts have been addressed through an environmental assessment, comprehensive environmental study or technical report (CVC 2010a).

1.3.5 Wellington County Official Plan

The Wellington County Official Plan (County of Wellington 2013, Section 5.5.4) states that "woodlands over 4 ha and plantations over 10ha are considered to be significant by the County, and are included in the Greenlands System". Section 5.4 of the Official Plan (Section 5 – The Greenlands System) specifies that within the Greenlands System, areas with greater sensitivity or significance are identified and protected as 'Core Greenlands', and include Provincially Significant Wetlands. The Wellington County Official Plan (2013) shows that the study area contains 'Greenlands' and 'Core Greenlands'.

Section 5.5 of the *Official Plan* states that *Significant Woodlands* "will be protected from development or site alterations which would negatively impact the woodlands or their ecological function".

Section 5.4 of the OP states that *Core Greenlands* include: Provincially Significant Wetlands, all other wetlands; habitat of endangered or threatened species and fish habitat; and hazardous lands.

Development and site alteration is not permitted in Provincially Significant Wetlands, in the habitat of threatened or endangered species, or fish habitat except in accordance with provincial and federal requirements.

1.3.6 Town of Erin Official Plan

The Town of Erin Official Plan (2012) encourages the protection and enhancement of natural heritage features, including the protection, preservation, and enhancement of significant natural features such as rivers, streams, valley lands, wetlands, floodplains, headwaters, environmentally significant features, wildlife and fish habitats and lands with ecological functions. Ponds, lakes, reservoirs and natural links are also afforded protection from development or site alteration which would have negative impacts.

Lands designated under the OP as *Core Greenlands* are protected from any development or site alteration which would have a significant negative impact on the *Core Greenland* or their ecological function.

Fish Habitat is recognized as important under the OP fisheries policies. Fisheries are afforded protection through the maintenance of groundwater and surface water inflows, maintaining or establishing tree cover over rivers and streams, providing public access to fishery resources, and minimizing or eliminating negative thermal impacts to the fishery. The naturalization of watercourse corridors is also encouraged under the OP.

1.4 Credit River Fisheries Management Plan

The Credit River Fisheries Management Plan, 2001 (CRFMP) was a joint project between the MNRF and the CVC, along with other government and non-government partners. The goal of the CRFMP is "to have a healthy aquatic ecosystem that provides long-term benefits to help satisfy society's need for a high-quality environment, wholesome food, employment and income, recreational activities, and cultural heritage." The CRFMP guides the protection and enhancement of the Credit River and provides fisheries management objectives for specific species of fish, as well as management objectives for specific management zones within the Credit River.

The Credit River watershed covers 871 km², eventually flowing into Lake Ontario. The watershed encompasses portions of nine municipalities, supports a human population of over 500,000 and has a diverse land use of urban, rural, agricultural and natural areas. Land use in the Credit River watershed has intensified with increasing urban growth. Limiting impacts to the watercourse and fish populations from growth and development is a key objective of the CRFMP.

The Credit River system provides high-quality fishing opportunities for anglers, with the cold waters of the upper watershed offering fly fishing opportunities for Brook Trout (*Salvelinus fontinalis*) and Brown Trout (*Salmo trutta*). The systems contain at least 57 fish species, with new legal and illegal introduction continuing to increase the number of species. Biodiversity of the systems has increased with the introduction of sports fishing species such as Brown Trout,

Chinook (*Oncorhynchus tshawytscha*) and Coho Salmon (*Oncorhynchus kisutch*). Native sports fish such as Largemouth Bass (*Micropterus salmoides*) and Northern Pike (*Esox Lucius*) have expanded their range within the watershed through introductions and through the alteration and creation of habitats such as ponds and lakes. Undesirable invasive species, such as the Common Carp (*Cyprinus carpio*) and Round Goby (*Neogobius melanostomus*) have been introduced into the watershed (CRFMP 2002).

The CRFMP divides the watershed into three sub-watershed zones, consisting of the upper watershed, middle watershed and lower watershed. The upper watershed is on or above the Niagara Escarpment and is primarily in rural landscapes. The watercourses of the Upper Watershed are of higher quality than the lower watersheds and have been retained in relatively natural conditions, with large riparian buffers and limited alterations to stream morphology. Base flow in these areas is provided through springs and groundwater discharge. Water is generally cold and of high quality.

Fisheries Management zones within the Credit River have been developed based on habitat, thermal conditions and fish community composition for specific stream sections within the watershed. The current EA study area is entirely within the Coldwater Fish Habitat Management Zone. The management zone extends upstream to the headwaters of the tributaries and extends downstream, approximately 20 km beyond the study area to the community of Inglewood. The fish communities in the management zone are comprised primarily of fish species intolerant of water temperatures that exceed 22°C and commonly found only in groundwater-rich areas. Sport fish species common to the cold water communities include Brook Trout and Brown Trout.

Brook Trout are the primary target management species within the Upper Watershed Coldwater Management Zone. Within the management zone, coldwater construction timing windows must be adhered to, even if specific water bodies, such as the Hillsburgh Pond contain warm water fish species.

The CRFMP identifies risks and impacts to fisheries and recognizes online ponds as an ongoing concern within the watershed. Impacts associated with dams and ponds include; thermal warming, siltation, flooding, erosion, nutrient enrichment and pollution, and fish passage barriers. The Hillsburgh Dam and Pond are specifically cited as having known negative impacts to the management of the coldwater fishery of the upper Credit River. The Management Plan recommends dam mitigation or removal in order to alleviate the impacts to fish communities. Removal of the dam would allow the watercourse to re-naturalize over time, permit fish passage, and create additional cold water habitat. In the absence of dam removal, potential dam mitigation measures addressed in the CRFMP include fishways (fish ladders), and bottom draw outlets. Fishways would allow fish passage and mitigate the impact of fish barriers. Bottom draw systems are designed to release water from near the bottom of a pond or body of water behind a dam where the open water community is colder than water drawn from the top, and therefore reducing thermal heating of the downstream watercourses.

The CRFMP guides decision-making and management of the Credit River and associated fisheries. Any actions regarding the Hillsburgh Dam and Pond should be examined with respect to the management objectives and target species of the Management Plan.

1.5 West Credit Subwatershed Study

The West Credit Subwatershed Study, 1998 (WCSS) was coordinated by CVC for the Village of Erin, the Township of Erin and Town of Caledon, and the Region of Peel. The report was initiated to address concerns about the health of the subwatershed's water and related environmental resources and was meant as a management plan to protect, enhance and rehabilitate natural features. Key issues of focus within the WCSS include groundwater, surface water, aquatic habitat and wildlife, terrestrial habitat and wildlife, protection of features, and environmental education. The study area for the WCSS is the 105 km² that is drained by the West Credit River, encompassing the headwaters to the northwest of Hillsburgh to the Forks of the Credit.

The West Credit River was identified as having some of the best quality fish habitat in the Credit River system, with the presence of a self-sustaining population of Brook Trout, relatively healthy ecosystem, and high-quality ground and surface water. The main branch of the West Credit, around Hillsburgh, is identified as an important cold water habitat for Brook Trout, as groundwater discharges directly into the streams. These areas provide thermal refuge and appropriate Brook Trout spawning habitat. The series of dams below Hillsburgh are identified as impairments to the highly productive Brook Trout community.

The WCSS identifies that the construction of dams and on-line ponds has contributed to declines in Brook Trout compared to historic populations. Identified impacts of dams include barriers to fish movement, preventing access to areas of thermal refuge and important reproductive zones; negative thermal impacts; changes in sedimentation and nutrient flow; changes to channel forms; and providing opportunities for the colonization and development of warmwater fish communities. As a result, several locations on the West Credit River now contain less desirable warmwater fish communities. Dams within the West Credit system are also identified as negatively affecting the general water quality and the health of the aquatic system through elevated coliform bacteria levels resulting from the increased temperature.

The WCSS recommends removal of on-line pond and barriers to fish movement where feasible as well as the installation of bottom draw structures. Removal of on-line ponds is listed as a *'top priority'* given their known negative influence on water quality and fish communities.

Water temperature monitoring measurement within the report averaged 9.5°C in the main branch of the West Credit, which is above the target of 18°C for a healthy coldwater community. Temperature impacts are attributed to the presence of on-line ponds, impacts to groundwater recharge and discharge areas, land use changes and loss of riparian cover. Temperature is identified as the most important factor affecting the distribution of fish communities. The importance of forest communities on the water cycle and as wildlife habitat is also highlighted in the report. The existing forest cover is identified as being patchy and often isolated from other natural areas. The need to improve connectivity of the forest habitat and increase the overall amount of forest cover is noted. The area west of Hillsburgh is specifically identified as lacking terrestrial cover. The need to maintain and enhance riparian cover is also identified as important for enhancing water quality, through filtering nutrients and contaminants, moderating flow, reducing erosion, and reducing flood magnitude and velocity. Loss of riparian canopy has also increased water temperatures and can lead to localized loss of Brook Trout.

Overall, the subwatershed is described as being healthy with localized areas of impairment. General recommended rehabilitation strategies presented within the WCSS included the following:

- increasing habitat complexity and diversity;
- improving connectivity between habitats;
- increasing forest cover;
- increasing forest patch size;
- increasing forest patch size;
- increasing forest cover in groundwater recharge areas
- increasing forest cover in riparian zones, especially in coldwater fish habitat reaches, and groundwater discharge zones; and
- increasing the amount of wildlife habitat available on agricultural lands.

Any actions regarding the Hillsburgh Dam and Pond should be examined with respect to the goal and objectives of the WCSS.

1.6 Consultation and Comments

A pre-consultation meeting was held on September 24, 2014 that included representatives from the CVC (T. Slaught, J. Wong, and J. Clayton), MNRF (R. Whalen, D. Ryan), Town of Erin (L. Van Wyck), Triton Engineering Services Limited (C. Clark) and Aboud & Associates Inc. (S. Aboud, R. Hamelin). A summary of the meeting and follow-up minutes relevant to the natural heritage investigation are provided below; detailed meeting minutes are provided in *Appendix 1*.

- 1. Triton reviewed the project history, from temporary work to the present need, for a permanent solution involving the completion of a Municipal Class Environmental Assessment (Class EA).
- Aboud & Associates presented the proposed study area with respect to the Natural Heritage investigation. Modifications to the study area were recommended by MNRF and CVC.
- 3. MNRF and CVC reviewed available data for the project including:

- a. Fish collection records;
- b. Presence of invasive Round Goby;
- c. Water temperature records;
- d. Known Brook Trout spawning upstream and downstream;
- e. Known ground water seeps throughout the system, but no specific location;
- f. CVC considers the Banded Killifish (*Fundulus diaphanous*) and Slimy Sculpin (*Cottus cognatus*) as important species due to the rarity in the watershed.
- 4. MNRF indicated that there are no known Species at Risk (SAR) in the study area.
- 5. Triton reminded the group of potential property access limitations due to private property.
- 6. General discussion on how the potential option could affect the existing PSW wetland complex.

On December 19, 2014, the CVC provided a letter regarding the Class Environmental Assessment Study to Triton Engineering Services (*Appendix 2*). The letter offered preliminary comments and recommendations for the Class EA study.

1.7 Terms of Reference

Based on the above regulations and policies (Section 1.3), the Credit River Fisheries Management Plan (Section 1.4), and communication with regulatory authorities, a proposed Terms of Reference (ToR) for the EA was developed and submitted to the CVC and MNRF on December 8, 2014. Comments regarding the proposed ToR were received from CVC on December 17, 2014, and from the MNRF on January 26, 2015. Follow up comments and request for clarifications was sent to CVC on January 6th, 2015. Response from CVC was received on January 23, 2015.

Based on comments received from the CVC, additional wildlife surveys (e.g. Snakes, Turtles, Salamander, Bat Maternity Roost and West Virginia White Surveys) were added to the EA study requirements. Correspondence with the MNRF was conducted to identify potential SAR within the study area and to determine the appropriate survey protocols. A letter was sent to CVC on April 10, 2015, to outline the SAR surveys and methods that would be completed as part of the EA. The appropriateness of the additional studies was confirmed by CVC on April 13, 2015 (pers. comm., T. Slaught, 2015).

The Terms of Reference, CVC and MNRF comments, and final changes in study requirements, including the SAR surveys and methods are provided in *Appendix 2*.

2.0 Methods

2.1 Background Review

A background information review was conducted of both biological and physical features within the vicinity of the study area. The following resources were consulted as part of this review:

- 1. Fisheries and Oceans Canada (DFO), Online mapping (accessed: 2015)
- 2. Ministry of Natural Resources and Forestry (MNRF), Guelph District
- 3. Ministry of Natural Resources and Forestry (MNRF), Peterborough District
- 4. Natural Heritage Information Centre (NHIC) database (accessed: 2015)
- 5. Ontario Reptile and Amphibian Atlas (Ontario Nature 2015a)
- 6. Ontario Reptile and Amphibian Atlas Interactive map (Ontario Nature 2015b)
- 7. Ontario Mammal Atlas (1994)
- 8. Atlas of the Breeding Birds of Ontario, 2001-2005
- 9. Credit River Fisheries Management Plan (CVC 2002)
- 10. Credit Valley Conservation Terrestrial Monitoring Program Report 2005-2009
- 11. Wellington County Official Plan, May 6, 1999 (Last Revision March 9, 2015)
- 12. Credit Valley Conservation Authority Hillsburgh Dam Terrestrial and Aquatic Monitoring Data (provided by CVC, February 2015)
- 13. Credit Valley Conservation Authority Regulation Mapping (accessed 2015)
- 14. Region of Wellington Significant species list (2008)
- 15. Peel Region Natural Areas Inventory Vol. 1 (2011)
- 16. County of Wellington Official Plan (2006, last revision 2015)
- 17. Town of Erin Official Plan (2012b)
- 18. Town of Erin Servicing and Settlement Master Plan (2015)
- 19. Town of Erin Servicing and Settlement Master Plan Phase 1 Environmental Component (2011)

2.2 Vegetation

2.2.1 Ecological Land Classification

Ecological Land Classification (ELC) field investigations were completed from May 13th to September 25th, 2015. Detailed survey dates and weather information are provided in *Appendix* 3. Surveys were completed by qualified ecologists, Ryan Hamelin, OMNRF Certified in Ecological Land Classification and Cheryl-Anne Ross, OMNRF Certified in Ecological Land Classification communities within the study area were characterized and delineated through field investigation, following the Ecological Land Classification (ELC) system for Southern Ontario 1st approximation; community codes used generally follow the 2nd approximation (Lee, et al., 1998, 2008). Boundaries of ELC communities were mapped using

aerial images and field observations (*Figure 3*). Detailed descriptions of each ELC community are provided in *Appendix 4*, and digitized ELC data sheets are provided in *Appendix 5*. Identified ELC communities were cross-referenced with the NHIC Ontario Plant Community List (NHIC 2015) to determine the presence of rare plant communities (S1-S3). The Subnational, or Provincial, Ranks (S Rank) are assigned by the Ontario Ministry of Natural Resources and Forestry (MNRF) Natural Heritage Information Centre (NHIC) in order to help assign protection priorities.

2.2.2 Botanical Inventory

2.2.2.1 Aboud & Associates

Concurrent with ELC evaluations, the subject lands were systematically searched in order to provide a comprehensive three season botanical inventory. Detailed survey dates and weather information are provided in *Appendix 3*.

Identified vascular plant species were compared to provincial and federal SAR lists (COSSARO, SARA) provincial ranks (NHIC 2015), global ranks, CVC list of Species of Conservation Concern Status (CVC 2010b) and Significant Plants of Wellington County (Dougan & Associates 2009), in order to assess federal, provincial, regional and local conservation status of each species. English colloquial names and scientific binomials of plant species generally follow VASCAN (VASCAN 2015).

Identification of environmentally sensitive plant species was completed based on the assignment of a coefficient of conservatism value (CC) for each native species (Oldham, et al., 1995). The value of CC, ranging from 0 (low) to 10 (high), is based on a species' tolerance of disturbance and fidelity to specific natural habitat parameters. Species with a CC value of 9 or 10 generally exhibit a high degree of fidelity to a narrow range of habitat parameters. These species may be more sensitive to environmental changes (Mortarello et. al., 2010).

A list of all identified plant species is provided in *Appendix 6*. The list provides botanical name, common name, provincial rarity rank (S-rank), global rarity rank (G-rank), provincial SAR status, federal SAR status, CVC Species of Conservation Status (CVC 2010b), Local Rarity/Significance within Wellington County (Dougan & Associates 2009), coefficient of conservatism (CC) and coefficient of wetness (CW). Plant species that could only be identified to genus (*Carex sp., Crataegus sp.*) were not assigned the above information.

2.2.2.2 Credit Valley Conservation Authority

In addition to surveys completed by Aboud & Associates, data from previous botanical surveys conducted by CVC were also compiled and are provided in *Appendix 6*. CVC data was collected within the study area from 2008 to 2013. Much of the data was gathered from properties within the study area that were not accessible during this EA study due to a lack of landowner permission. The current study includes properties not surveyed as part of the CVC botanical studies. As a result of these differences in property access, the combined data from the two different sources provides a more complete inventory of the study area.

2.3 Provincially Significant Wetlands

The Provincially Significant West Credit Wetland Complex is partly within the study area and comprises a large portion of the natural feature upstream and downstream of the Hillsburgh Dam. The wetland was first evaluated under the Ontario Wetland Evaluation System (OWES) in 1995 by the MNRF, with updates in 2005 (NRVIS 2010). A copy of the wetland evaluation data and scoring record was obtained from the Guelph District MNRF office and reviewed in order to determine the presence of potentially significant features.

The mapped wetland boundary was obtained from the Land Information Ontario (LIO) online database. The accuracy of the boundary was confirmed through a combination of desktop analysis and field surveys, conducted concurrent with ELC evaluations by Ryan Hamelin, OMNRF Certified in OWES. Detailed survey dates and weather information are provided in *Appendix 3*. The wetland boundary was established where vegetation was comprised of 50% wetland and 50% upland species, and where soils displayed hydric conditions (e.g. presence of mottles and/or gleys), per the *Ontario Wetland Evaluation System* (2013). Due to property access restrictions, it was not possible to confirm the accuracy of the entire wetland boundary within the study area.

2.4 Wildlife

2.4.1 Amphibians (Anurans)

Evening point count surveys to detect breeding calls of anurans (frog and toad) were conducted by Cheryl-Anne Ross, Wildlife Ecologist and Ryan Hamelin, Terrestrial and Wetland Ecologist, in accordance with the *Marsh Monitoring Program Participants Handbook for Surveying Amphibians* (Bird Studies Canada 2008). Three surveys were completed, in accordance with the recommended windows for the spring and early summer in order to maximize the chances of detecting all potential species. Surveys coincided with optimum weather conditions for anuran breeding activity and detection of calls, i.e. suitable temperature relative to each survey window, humid or damp but not raining, and low wind. Call Level Codes were applied to each species detected per area of suitable habitat, and numbers of individuals were counted or estimated, where applicable. The surveys took place on April 15, May 28 and June 24, 2015. The point count locations are illustrated on *Figure 4*; Survey results and call level dode descriptions are provided in *Appendix 7*. Detailed survey dates and weather information are provided in *Appendix 3*.

2.4.2 Breeding Birds

Breeding Bird Surveys were conducted through 10 minute point counts positioned approximately 250m apart within the study area where access was permitted by Cheryl-Anne Ross, Wildlife Ecologist. The highest observed level of breeding evidence was used to assign breeding status (i.e. confirmed, possible, probable or observed) to each species, as per the *Ontario Breeding Bird Atlas: Guide for Participants* (Bird Studies Canada 2001). Marsh Breeding Bird Surveys were completed following each Breeding Bird Survey, at point count locations where habitat was also conducive to marsh birds; methods followed the Marsh Monitoring Protocols (Bird Studies Canada 2008). Marsh Breeding Bird Surveys included five minutes of passive listening; five minutes of playing a callback tape of target species, and five further minutes of passive listening, all other bird species observed during the survey were also recorded, including incidental species and aerial foragers.

As per the OBBA and MMP recommendations, two surveys were performed during the peak breeding season for the bulk of species in Southern Ontario (May 24 to July 10), and were spaced at least 10 days apart in order to determine presumed permanent territories through territorial singing males. The two surveys took place on the mornings of June 11 and July 9, 2015. The point Count Locations, including Marsh Breeding Bird Stations are illustrated on *Figure 4*, breeding bird survey results and breeding evidence codes are provided in *Appendix 8*, marsh breeding bird survey results are provided in *Appendix 9*. Detailed survey dates and weather information are provided in *Appendix 3*.

2.4.3 Snakes

Visual encounter and active hand search surveys occurred between April and May 2015 in all candidate habitats identified during initial ELC screening and site visit by Cheryl-Anne Ross, Wildlife Ecologist and Ryan Hamelin, Terrestrial and Wetland Ecologist. Three surveys, completed two weeks apart, were undertaken and included flipping any natural or naturalized cover identified in the project location. Surveys were undertaken on sunny days when air temperatures were between 8°C and 25°C and on overcast days when air temperatures were above 15°C. Surveys followed pre-determined transects, traversing areas of suitable habitat for both Eastern Ribbonsnake (*Thamnophis sauritus*) and Milksnake (*Lampropeltis Triangulum*). Transect locations are illustrated on *Figure 4*, survey results are provided in *Appendix 10*. Surveys generally followed methods outlined in the Milksnake Survey Protocol (MNRF 2013). Detailed survey dates and weather information are provided in *Appendix 3*.

2.4.4 Salamanders

Visual surveys for candidate vernal pools were undertaken in early April by Cheryl-Anne Ross, Wildlife Ecologist, to determine the presence or absence of candidate habitat for salamander species that may occur in the study area. These surveys were conducted to determine the possible presence of Jefferson Salamander (*Ambystoma jeffersonianum*) habitat within the study area. Since no vernal pools were identified, further visual inspections were not required. Detailed survey dates and weather information are provided in *Appendix 3*.

2.4.5 Turtles

Five basking surveys in candidate habitats within the project location were conducted by Cheryl-Anne Ross, Wildlife Ecologist and Ryan Hamelin, Terrestrial and Wetland Ecologist, in 2015 following the MNRF Guelph District Blanding's survey protocol (2012). Basking surveys, including overwintering (late March-early April) and summer habitat (late April-June 15), were conducted at all waterbodies and wetlands with open water. Locations of candidate habitat are illustrated on *Figure 4*. All shorelines and potential basking sites in the project location were surveyed from the sunlit side using 8x power binoculars and a stationary 50x maximum power spotting scope. Between late March and early May, surveys were conducted between 9am and 5pm (When temperatures were between 6°c and 10°c, surveys occurred on sunny days with no wind. When temperatures were between 10°c and 25°c, surveys were conducted between 9am and noon on sunny days). Between late May and early June, turtles are less reliably found late in the day, as a result surveys occurred between 9am and 12pm. Survey Methods generally followed the MNRF - Guelph District Blanding's Turtle (*Emydoidea blandingii*) Protocol (MNRF 2012). Survey results are provided in *Appendix 11*. Detailed survey dates and weather information are provided in *Appendix 3*.

2.4.6 Winter Wildlife

A Winter Wildlife Survey was undertaken on February 25, 2015, by Ryan Hamelin, Terrestrial and Wetland Ecologist and Matt Isles, Wildlife Ecologist. Detailed survey dates and weather information are provided in *Appendix 3*. Wildlife sightings and evidence such as tracks, scat, vocalizations, and markings were used to determine species presence. Notes and GPS points were taken for each observation. Snow depth in the study area was approximately 0.45m up to 0.75m in snow drifts. There was light snow of less than 1 cm during the survey and in the proceeding 24 hours. Approximately 3-7 cm of fresh snow cover fell in the 48 hours prior to the survey.

Due to property access restrictions, the full study area was not surveyed. Where property access was granted, areas were extensively surveyed on foot and with the aid of snowshoes. A road side survey of the study area was also completed where possible. As part of the Winter Wildlife survey, particular effort was applied to locating and identifying raptors, mammal tracks, stick nests, raptor wintering areas, and deer congregation areas. The path traveled during the winter wildlife survey, including roadside driving route is shown on *Figure 4.* All wildlife observations are presented in *Appendix 12.*

2.4.7 Migratory Birds

An assessment for candidate migratory bird habitat and migratory shorebird habitat was completed within the study area, using criteria and guidance from the SWH EcoRegion Criterion Schedule 6E (2015). An assessment of the habitat in the study area that was identified as candidate shorebird migratory staging and stopover was completed on August 5, 2015, and a migratory bird survey of all accessible lands was conducted on October 8, 2015, to determine if the area had significant numbers of migratory species. Detailed survey dates and weather information are provided in *Appendix 3*. Migratory Bird Survey and Shorebird Habitat Assessment Results are provided in *Appendix 13* and *Appendix 14*, respectively.

2.4.8 Incidental Wildlife Observations

Incidental observations of insects, mammals and reptiles were recorded during all field visits, in addition to incidental observations of birds, turtle, and amphibians made outside of the formal field surveys for these groups of fauna. Detailed survey dates and weather information are provided in *Appendix 3*. A complete list of all incidental wildlife is provided in *Appendix 15*.

2.5 Significant Wildlife Habitat

With guidance from the *Significant Wildlife Habitat Technical Guide* (2000) and the SWH EcoRegion Criterion Schedule 6E (2015), the study area and adjacent lands were considered for the presence of Significant Wildlife Habitat (e.g. specialized habitats for wildlife, habitat for species of conservation concern). Detailed survey dates and weather information are provided in *Appendix 3*. An assessment of the study area for all SWH is provided in *Appendix 16*.

2.6 SAR Habitat Assessment

A thorough review of all background documents was conducted to compile a master list of all Species at Risk, and species with conservation designation that may occur in the study area. A review of the site, along with habitat requirements for each species was conducted; the site was then evaluated for potential habitat using Ecological Land Classification, guidance from MNRF documents, and on-site knowledge acquired through field surveys. Detailed survey dates and weather information are provided in *Appendix 3*. An assessment of the study area of candidate habitat for SAR is provided in *Appendix 17*.

2.7 Aquatic Habitat Assessment

On October 19th, 2015 an Aquatic Habitat Assessment was completed by Ryan Hamelin, Terrestrial and Wetland Ecologist, for all sections of watercourses in the study area, as well as sections of the watercourse directly upstream and downstream of the study area. Detailed survey dates and weather information are provided in *Appendix 3*. The Aquatic Habitat Assessment was completed in order to determine the quality of habitat to fish, barriers to fish movement, and general aquatic habitat characteristics. For the assessment, the watercourse was separated into 16 segments and each characterized with respect to the following criteria:

- mean channel width;
- mean channel depth;
- mean water depth;
- percent stream shading;
- buffer width;
- substrate;
- flow pattern;
- channel morphology;
- instream cover;
- bank characteristics;
- presence of specific site features.

In addition to the field Aquatic Habitat Assessment, data provided by the MNRF and CVC such as fish collection records, CVC water temperature data, and thermal fish community classification information was used to characterize each segment of the watercourse. Locations of specific fish collection records from the MNRF and CVC were used to identify fish species known to be present in each watercourse segment.

Summer water temperatures of the tributaries and open water communities within the study area were collected during 2013 and 2014 by CVC. These data were provided to Aboud & Associates to assist in the assessment of the temperature regimes of aquatic habitat. The data provided did not have complete coverage of the study area and could not be used to determine the temperature regime of all watercourse segments. Where data allowed, water temperature regime was calculated using the definitions provided in *A Guide to Understanding Freshwater Fish Habitat in Ontario* (DFO 2008): where cold water systems are generally below 19°C during summer maximum temperatures, cool water systems are characterized by maximum summer water temperatures above 25°C.

An alternative to the above water temperature regime classification is fish community classification based on thermal preference. A fish community classification was completed for the Erin Servicing and Settlement Master Plan- Phase 1: Environmental Component Report (ESSMP 2011) by CVC that included all watercourses in the study area. This fish community classification was used in the aquatic habitat assessment to classy stream segments as cold, cool or warm water systems.

Areas of potential trout spawning habitat, barriers to fish passage, fish community classification, and other relevant information are presented on *Figure 5.* Survey Results are provided in *Appendix 18.*

2.8 Landscape Evaluation

A landscape level evaluation was completed for the study area and surrounding lands to identify ecologically significant features that extend beyond the boundaries of the study area, and that may be impacted by changes within the study area. The following background resources were reviewed in completing the Landscape Evaluation:

- Erin Servicing and Settlement Master Plan Phase 1: Environmental Component (2011);
- The Credit River Fisheries Management Plan (2002);
- Natural Heritage Information Center (NHIC);
- West Credit River Wetland Evaluation Score Card;
- The Ecosystems of Ontario, Part 1 : Ecozones and Ecoregions (MNRF 2009);
- Aerial photo interpretation.

3.0 Existing Conditions

Information that characterizes the existing conditions of the study area came from several sources, including but not limited to, background review of existing documents, public information sources, past field studies by others, and extensive field reconnaissance.

3.1 Background Review

3.1.1 Natural Heritage Information Centre - Species at Risk

Preliminary investigation through the Natural Heritage Information Centre (NHIC) identified two provincial Species at Risk (SAR) under the ESA and two species considered rare in the province (S1-S3) recorded within approximately 1km of the study area. These species and their habitat requirements are summarized in *Table 1*.

Table 1. N	Table 1. NHIC Species at Risk Records								
Scientific Name	Common Name	(COSEWIC) Status ¹	(SARO) Status ²	Last Observed (NHIC)	S-Rank ³	Habitat Requirements			
Dolichonyx oryzivorus	Bobolink	Threatened	Threatened	June 2, 2001	S4B	Nest in grassland habitats, including hayfields and meadows with a mixture of grasses and broad-leaved forbs with a high litter cover. Area Sensitive, with increased density in grasslands greater than 10ha (Renfrew et. al. 2015)			
Sturnella magna	Eastern Meadowlark	Threatened	Threatened	June 2, 2001	S4B	Nest in grassland habitats, including hayfields, pasture, savannahs, and other open areas. Preferential habitat includes areas with good grass and thatch (litter) cover (Jaster et. al. 2012).			
Carex careyana	Carey's Sedge	Not listed	Not listed	June 14, 1977	S2	Grows in dry to moist rich deciduous upland forests (NatureServe 2015)			
Sceptridium rugulosum	Rugulose Grapefern	Not listed	Not listed	Nov.15, 1977	S2	Grows in sandy to silty soil in open fields, young successional forests or at the edge of forests (Wagner and Wagner 1982).			

¹ COSEWIC – Committee on the Status of Endangered Wildlife in Canada

² SARO – Species at Risk Act Ontario

³ S-Rank – Denotes the conservation status of a species at the provincial level

S2: Imperiled

S4: Apparently Secure—Uncommon but not rare

S#B- Breeding status rank

3.1.2 Ontario Breeding Bird Atlas

A list of birds determined to be breeding (Possible, Probable or Confirmed) in the 10km x 10km square containing the study area during the 2001-2005 Ontario Breeding Bird Atlas was compiled. This list includes 107 species; eight are considered Species at Risk under the ESA. Potential breeding habitat was identified in the study area for three of these species (Eastern Wood-pewee (*Contopus virens*), Barn Swallow (*Hirundo rustica*), and Canada Warbler (*Cardellina Canadensis*)). Nine of the species identified in the square are considered Species of Conservation Concern Status by CVC (Tier 1) and 51 are considered significant species in Wellington County (Dougan & Associates 2009). The findings of this review are presented in

Appendix 19. Species with conservation designation identified in the background review and their habitat requirements are presented in *Appendix 17*.

3.1.3 Ontario Reptile and Amphibian Atlas

Review of the Ontario Reptile and Amphibian Atlas identified seven species that are known to occur within the 10km x 10km square containing the study area. This list includes one species at risk under the ESA; Common Snapping Turtle (*Chelydra serpentine*) is listed as Special Concern provincially and federally. Confirmed nesting or overwintering habitat was identified on the subject parcel for this species.

One of the species known to occur in the square is considered a Species of Conservation Concern by CVC (Tier 1) and one is considered a significant species in Wellington County (Dougan & Associates, 2009). The findings of this review are presented in *Appendix 19*. Species with conservation designation identified in the background review and their habitat requirements are presented in *Appendix 17*.

3.1.4 Atlas of the Mammals of Ontario

Review of the Atlas of the Mammals of Ontario (1994) identified twenty-five species that are known to occur within approximately 10km of the study area. This list includes one species at risk under the ESA; Little Brown Myotis (*Myotis lucifugus*) is listed as endangered provincially and federally. Potential habitat was identified in the study area for this species.

One of the species known to occur in the square is considered a CVC Species of Conservation Concern (Tier 1) and one is considered a significant species in Wellington County (Dougan & Associates, 2009). The findings of this review are presented in *Appendix 19*. Species with conservation designation identified in the background review and their habitat requirements are discussed in *Appendix 17*.

3.1.5 Credit Valley Conservation

3.1.5.1 Botanical Surveys

CVC provided a list of plant species identified from within the study area. The majority of the observations are from the southern portion of the study area, with only a few observations from the north side of Station Street Road. The data was collected from 2008 to 2014; specific sampling methods were not provided. A total of 320 plant species or distinct sub-species were included in the list. Georeferenced location data was provided for some observations. None of the species identified by CVC are listed as provincial or federal species at risk. Eight of the species are considered rare in Wellington County (Dougan & Associates, 2009) with 70 species considered Species of Conservation Interest (Tier 2) by CVC.

All but one of the native plants identified are ranked as Secure in Ontario (S5) or Apparently Secure (S4) and globally Very Common (G5) or Common (G4) (NHIC, 2015). The one exception is *Fontinalis sullivantii*, a moss species which is classified as an S1 (Critically Imperiled); location and population detail of the species was not provided. All plant species identified by CVC are included in *Appendix 6*.

Since all observations of plant species identified by CVC are from within the Study and there is a large overlap in identified species between the CVC list and the EA field studies, a further analysis using the combined CVC data and field data collected by AA is provided in section

3.1.5.2 Fish Surveys

CVC provided a georeferenced list of fish species identified within the study area. Fish species data was compiled between 1954 and 2013; specific sampling methods were not provided. Numbers of individual fish observed are provided for some sampling data.

The list contains 16 species, none of which are considered provincial or federal SAR. Three of the species; Slimy Sculpin, Banded Killifish, and Brook Trout are listed as CVC Species of Interest (Tier 2). All species observed are included in *Appendix 20*.

3.1.5.3 Breeding Bird Surveys

A list of birds determined to be breeding (Possible, Probable or Confirmed) in the study area during the 2009 Breeding Bird Surveys, completed by CVC was compiled. This list includes 51 species; none are listed as SAR. None of the species determined to be breeding in the square are considered Species of Conservation Concern by Credit Valley Conservation (Tier 1), eight CVC Species of Interest (Tier 2) were observed, and 12 are considered significant species in Wellington County (Dougan & Associates, 2009). The findings of this review are presented in *Appendix 19*.

3.1.5.4 Incidental Wildlife Observations

A list of all fauna observations made in the area of the Hillsburgh Pond was compiled by CVC and provided as a background source for the study area. All observations occurred between 2003 and 2014 and are provided in *Appendix 19*. This list includes 19 species observed in the study area outside of formal surveys; none of these species are listed as SAR, one CVC Species of Conservation Concern Tier 1 species, Great Egret (*Ardea alba*), was observed, six Tier 2 species were observed, and five are considered significant in Wellington County (Dougan & Associates, 2009).

3.1.5.5 Spring and Fall Migration Surveys

CVC completed spring and fall migration surveys during 2012, 55 species were observed in the study area during investigations. None of the species observed are considered Species of Conservation Concern. Two CVC Tier 1 species were observed, Canvasback (*Aythya valisineria*) and Trumpeter Swan (*Cygnus buccinator*). A further 13 Tier 2 species were observed and are listed in *Appendix 19*.

3.1.5.6 Significant Wildlife Habitat Survey - Waterfowl Staging - Aquatic

CVC completed 13 waterfowl staging surveys in 2011, a total of 45 species were observed during the surveys and included 13 of the SWH listed species. During the surveys, three days met the criteria of having greater than 100 individuals observed; 7 or more days of 100 individual listed species are required to meet the criteria for SWH. All species observed are included in *Appendix 19*.

3.1.6 Ministry of Natural Resources and Forestry

3.1.6.1 Little Brown Myotis Maternity Exit Surveys

The Peterborough district MNRF have been conducting exit surveys and banding Little Brown Myotis (bats) at a property adjacent to the study area since 2012 (pers. comm., Lesley Hale, 2015). Little Brown Myotis is listed as Endangered provincially and federally, as such, they are afforded general habitat protection. Over the course of the surveys, the maternity population has increased. The MNRF identified that the Hillsburgh Pond may provide important foraging habitat for this maternity colony of Little Brown Myotis.

3.1.6.2 Fish Records

Fish data collection records from within the study area were provided by the Guelph District MNRF. The data were collected through a combination of electrofishing, drift nets, minnow traps, and incidental observations during 2013 and 2014. 10 species were identified, all of which were also identified by CVC. All species observed are included in *Appendix 20*. No provincial or federal SAR was identified.

3.1.6.3 Incidental Observations

Incidental observation records from within the study area were provided by Guelph District MNRF. Data were collected during a site visit in 2013. One provincial SAR, Common Snapping Turtle, was observed on the station street berm, and young of the year snapping turtles were observed in the Rudd Pond. An observation of Trumpeter Swans was also recorded on the Rudd Pond.

3.2 Vegetation

3.2.1 Ecological Land Classification

A three season ELC evaluation was completed in 2015 by Aboud & Associates. 31 ELC communities were identified and mapped in the study area. The community polygons identified during the ELC surveys are summarized in *Table 2*. Digitized Field forms are provided in *Appendix 5* with detailed ELC descriptions provided in *Appendix 4*. Comparison with the NHIC Rare Plant Communities did not identify any provincially rare plant communities (S1 – S3) within the study area. ELC communities are shown on *Figure 3*.

Table 2. Ecological	Land Classification				
ELC Code ¹	Vegetation Type	Map ID			
Mixed Meadow (MEM)					
MEMM3	Dry - Fresh Mixed Meadow Ecosite	12			
Coniferous Forest (FO	C)				
FOCM2-2	Dry-Fresh White Cedar Coniferous Forest	5			
FOCM6	Naturalized Coniferous Plantation	Naturalized Coniferous Plantation 27, 6			
Mixed Forest (FOM)	· · ·				
FOMM7-2	Fresh - Moist White Cedar - Hardwood Mixed Forest	23			
Deciduous Forest (FC	00)				
FODM5-8	Dry-Fresh Sugar Maple - White Ash Deciduous Forest	4			

ELC Code ¹	Vegetation Type	Map ID
FODM6	Fresh - Moist Sugar Maple Deciduous Forest Ecosite	16
FODM7-7	Fresh - Moist Manitoba Maple Lowland Deciduous Forest	30
FODM8-1	Fresh - Moist Poplar Deciduous Forest	25, 15
Coniferous Forest (F		,
SWCM1-2	White Cedar - Conifer Mineral Coniferous Swamp	2, 17, 21
Mixed Swamp (SWM)		
SWMO1-1	White Cedar - Hardwood Organic Mixed Swamp	10
SWMO3-3	White Birch - Conifer Organic Mixed Swamp	3
Deciduous Swamp (S		
SWDM2-1	Black Ash Mineral Deciduous Swamp	26
SWDM4-5	Poplar Mineral Deciduous Swamp	24, 29
Thicket Swamp (SW)		
SWTO2-3	Meadow Willow Organic Deciduous Thicket Swamp	28
SWTO2-6	Mixed Willow Organic Thicket Swamp Type	22
SWTO3-5	Red-osier Organic Deciduous Swamp	9
Treed Fen (FET)		
FETC1-2	Tamarack - White Cedar Treed Fen	14
Meadow Marsh (MAN)	
MAMM1-1	Cattail Graminoid Mineral Meadow Marsh Type	31
MAMO1-2	Cattail Graminoid Organic Mineral Meadow Marsh	1
Shallow Marsh (MAS		
MASO1-1	Cattail Organic Shallow Marsh Type	8
Submerged Shallow		
SAS_1	Submerged Shallow Aquatic Ecosite	7
Mixed Shallow Aquat	ic	
SAM_1-8	Water Lily - Bullhead lily Mixed Shallow Aquatic	11
SAM_1-8	Water Lily - Bullhead lily Mixed Shallow Aquatic	19
SAM_1-8	Water Lily - Bullhead lily Mixed Shallow Aquatic	18
Open Aquatic (OAO)		
Spon Aquallo (OAO)	Open Aquatic	20
OAW		
OAW	Cultural Savannah	13
OAW Cultural (CU)	Cultural Savannah	13
OAW Cultural (CU) CS	Cultural Savannah Residential	13 Res

¹ ELC Codes generally follows the ELC Second Approximation (Lee 2008)

3.2.2 Botanical Inventory

A detailed field inventory of accessible properties within the study area was completed and 299 species or distinct sub-species of vascular plants, from 75 families, were identified. All identified plant species are provided in *Appendix 6*. A further 7 species were identified only to the level of genus and have not been designated as native or non-native or included in the overall species count.

The provided CVC plant data was collected from within the study area, much of it from properties where access was restricted for this study, the combined data provides a more complete inventory of the entire study area. Including the CVC data, a further 95 species or distinct sub-species from 11 additional plant families were identified, for a total of 394 species or sub-species from 87 families within the Study Area; of those, 284 species (72%) are native and 110 species (28%) are exotic.

3.2.1.1 Species at Risk, Regional and Local Significance

All but one of the native vascular plants observed in the study area, or identified in CVC data are ranked as Secure in Ontario (S5) or Apparently Secure (S4) and Globally, Very Common (G5) or Common (G4) (NHIC 2015). A moss species (*Fontinalis sullivantii*), one of the species identified by CVC, is classified as an S1 (Critically Imperiled), location and population detail of the species was not provided. One distinct sub-species, Tuberous White Water-lily (*Nymphaea odorata ssp. Tuberosa*) was identified by CVC along with the more common White Water-lily (*Nymphaea odorata ssp. Odorata*). Tuberous White Water-lily is provincially unranked but considered native by CVC (2015).

Ten identified species are considered significant in Wellington County (Dougan & Associates et. al. 2009). 77 of the identified species are classified as Species of Interest (Tier 2) in the CVC Species of Conservation of Concern Project; no Tier 1 species were identified.

Six of the species observed in the study area, or identified in CVC data had a Co-efficient of conservatism of 9 or 10. These species include: Marsh Horsetail (*Equisetum Palustre*) (CC 10); Three-seed Sedge (*Carex trisperma*) (9); Hooded Ladies'-tresses (*Spiranthes romanzoffiana*) (9); Bog Goldenrod (*Solidago uliginosa*) (9); Kalm's Lobelia (*Lobelia kalmia*) (9); Green Keeled Cottongrass (*Eriophorum viridicarinatum*) (9).

3.3 Provincially Significant Wetlands

3.3.1 Boundary Review

The mapped wetland boundary of the West Credit River Wetland Complex was accessed through Land Information Ontario (LIO). The accuracy of the boundary within the study area was reviewed through field survey and ortho-photograph interpretation to determine any discrepancies and update the current boundary.

The boundaries review determined that the provided wetland boundary was generally accurate with only a few minor deviations from the actual boundary in the field. The wetland boundary as provided by LIO showed a total of 44.74ha of wetland within the study area. The boundary verification identified 0.09ha of additional wetland and 1.07ha of area was incorrectly identified as wetland. *Figure 6* shows the wetland boundary as provided by LIO. Inaccuracies in the wetland boundary have not been field verified or confirmed by the CVC or MNRF.

3.3.2 Wetland Characteristics

The LIO wetland file identifies the wetland complex within the study area as containing Swamp, Marsh, and Open Water wetland types. This is consistent with the ELC survey which identified Coniferous Swamp, Mixed Swamp, Deciduous Swamp, Thicket Swamp, Treed Fen, Meadow Marsh, Shallow Marsh, Submerged Shallow Aquatic, Mixed Shallow Aquatic, and Open Aquatic communities within the study area.

Review of the Wetland Evaluation Data and Scoring Record identified that the wetland complex scored the maximum points for flood attenuation, indicating that the wetland is an important feature in reducing the risk of flooding. Flood risk was identified by CVC as an important criterion to consider when identifying the preferred alternatives (pers. comm., T. Slaught, 2014). The wetland also scored the maximum number of points for erosion control, a criterion also identified by CVC as important when considering preferred options (pers. comm., T. Slaught, 2014).

3.4 Wildlife

3.4.1 Amphibians (Anurans)

The results of the Anuran Point Count Surveys are summarized in Table 3, and results are discussed below. The Point Count Locations are illustrated on Figure 4, and Call Level Code descriptions, along with the complete survey results, are provided in Appendix 7.

			A	/IPHIBIAN HA	BITAT		
SPECIES	1 (C1, G, F)	2 (D)	3 (C2)	4(E)	5 (B1)	6 (B2)	7 (A)
Gray Treefrog	25	4	3		2		1
Spring Peeper	8	Chorus	12	1	19	4	3
Green Frog	8	2	2				6
Northern Leopard Frog			2				
Wood Frog		3	1		10		
Significant Habitat*	Y	Y	Y	N	Y	N	Ν

٢٨ 1. :1. : ~ ' ... (0045)

*Significance: Y-Indicates Amphibian Habitat meets the criteria listed under the Ecoregion 6E SWH Criteria guide (2015). N-Indicates Amphibian Habitat did not meet the criteria listed under the Ecoregion 6E SWH Criteria guide (2015).

Amphibian Habitat 1

Three species of frog were detected calling from within Amphibian Habitat 1. This site targeted the Hillsburgh Pond from three locations (point count locations C1, G and F), at distances of at least 250m apart. One species, Gray Treefrog (Hyla versicolor), had greater than 20 individuals. All frog species were heard calling from the edges of the pond, particularly the south and north shoreline, which includes abundant aquatic vegetation. The Hillsburgh Pond meets the criteria for Significant Wildlife Habitat-Amphibian Breeding (woodland), as there were greater than 2 species observed and greater than 20 individuals detected.

Amphibian Habitat 2

Four Species of frog were detected calling from within Amphibian Habitat 2. This site targeted the swamp thicket habitat (point count location D), located in the western portion of the study area, north of the Elora-Cataract Trail. One species, Spring Peeper (*Pseudacris crucifer*), was estimated to have greater than 20 individuals. All frog species were heard calling from within a shallow thicket swamp community. The swamp thicket meets the criteria for Significant Wildlife Habitat-Amphibian Breeding (woodland), as there were greater than 2 species observed and greater than 20 individuals detected.

Amphibian Habitat 3

Five Species of frog were detected calling from within Amphibian Habitat 3. This site targeted the shallow pond (point count location C2), located in the western portion of the study area, south of the Elora-Cataract Trail. None of the species observed had greater than 20 individuals. The shallow pond meets the criteria for Significant Wildlife Habitat-Amphibian Breeding (woodland), as there were greater than 2 listed species observed and 20 individuals detected.

Amphibian Habitat 4

One species of frog was detected calling from within Amphibian Habitat 4. This site targeted the east side of the Hillsburgh Dam (point count location E). One species, Spring Peeper (one individual), was heard calling from the edges of the feature. The east side of the dam does not meet the criteria for Significant Wildlife Habitat-Amphibian Breeding (woodland).

Amphibian Habitat 5

Three species of frog were detected calling from within Amphibian Habitat 5. This site targeted the Cattail marsh, on the east side of the study area (point count location B1), north of the Elora-Cataract Trail. The cattail marsh meets the criteria for Significant Wildlife habitat-Amphibian Breeding (woodland), as there were greater than 2 species observed and greater than 20 individuals detected.

Amphibian Habitat 6

One species of frog was detected calling from within Amphibian Habitat 6. This site targeted the Eastern White Cedar swamp, east of the Hillsburgh Dam (point count location B2), and south of the Elora-Cataract Trail. One species, Spring Peeper (four individuals), was heard calling from the edges of the feature. The Spruce swamp does not meet the criteria for Significant Wildlife Habitat-Amphibian Breeding (woodland).

Amphibian Habitat 7

Three species of frogs were detected calling from within Amphibian Habitat 7.This site targeted the Rudd Pond and the wetland to the north (point count location A). All frog species were heard calling from the North West edge of the pond, where there is abundant aquatic vegetation. The pond does not meet the criteria for Significant Wildlife Habitat-Amphibian Breeding (woodland), as there were less than 20 individuals detected.

3.4.1.1 Amphibian SAR, Regional and Local Significance

No amphibian species observed are considered federal or provincial species at risk.

All species detected calling within the study area are ranked S5 (Secure) in Ontario (NHIC, 2015).

One species, Wood Frog (*Lithobates sylvaticus*), is ranked as CVC Species of Interest (Tier 2), all other species observed are ranked as Tier 3; Species of Urban Interest.

3.4.2 Breeding Birds

The results of the Breeding Bird Survey (BBS) are presented in *Appendix 8*. Locations of significant observations are provided in *Figure 7* and are approximate. They are designed to give a general indication of the area in which the species may be nesting. During BBS visits, a total of 47 species were detected, of which five were assigned 'confirmed' breeding evidence, sixteen were assigned 'probable', twenty-one were assigned 'possible' and four showed no sign of breeding evidence observed. All but one species, Eastern Meadowlark (*Sturnella magna*), were detected within the study area. During Marsh Breeding Bird surveys, no target marsh bird species were detected, a list of secondary species and aerial foragers observed is provided in *Appendix 9*.

Due to the contiguity with natural lands to the south and north, it is important to note that, despite high levels of breeding evidence, a given species may not have been breeding specifically in the area in which it was observed. This is particularly true where species were only detected during one of the two Breeding Bird Surveys. These species may have been foraging in these areas or, may have been wandering during post-breeding dispersal. Therefore, the following 21 species are those that can be presumed to have been breeding in, or within 30m of, the study area, and exhibited confirmed or probable breeding evidence: Mallard (Anas platyrhynchos), Belted Kingfisher (Megaceryle alcyon), Downy Woodpecker (Picoides pubescens), Northern Flicker (Colaptes auratus), Eastern Wood-pewee, Great Crested Flycatcher (Myiarchus crinitus), Eastern Kingbird (Tyrannus tyrannus), Blue Jay (Cyanocitta cristata), American Crow (Corvus brachyrhynchos), Black-capped Chickadee (Poecile atricapillus), House Wren (Troglodytes aedon), American Robin (Turdus migratorius), Warbling Vireo (Vireo gilvus), Red-eyed Vireo (Vireo olivaceus), Yellow Warbler (Setophaga petechial), Common Yellowthroat (Geothlypis trichas), Song Sparrow (Melospiza melodia), Swamp Sparrow (Melospiza georgiana), Red-winged Blackbird (Agelaius phoeniceus), Common Grackle (Quiscalus quiscula), and Baltimore Oriole (Icterus galbula).

Most of the species presumed to be breeding in the study area are considered common and abundant species (S-Rank 4-5, CVC Tier 3-5).

3.4.2.1 Breeding Bird Species at Risk

Two species observed are considered species at risk under the ESA. Eastern Meadowlark is listed as Threatened provincially and federally and Eastern Wood-pewee is listed as Special Concern provincially and federally, locations of observations are shown on *Figure 7*.

Eastern Meadowlark is an area sensitive, grassland species, often nesting in hay fields and pastures, as well as occasionally occurring in other types of grassed areas such as golf courses, and airfields. The grassland habitat requires a moderate thatch cover, low shrub and tree density, and moderate or limited forbs cover. Large tracts of grassland are typically preferred over smaller patches (McCracken et. al. 2013). A single male Eastern Meadowlark was observed singing from adjacent lands outside the study area during one breeding bird survey (*Figure 7*), in habitat that may be sufficient for establishing a territory. No habitat of sufficient size, or matching criteria was observed in the study area.

Eastern Wood-pewee are associated with mid-age mixed and deciduous forest stands, often dominated by Maple (*Acer*), Elm (*Ulmus*) or Oak (*Quercus*), and include areas with clear-cuts, openings or forest edges. Eastern Wood-pewee also prefers forest stands with little to no understory vegetation (COSEWIC 2012). Eastern Wood-pewee was observed singing during both breeding bird surveys in the deciduous forest communities in the south-eastern portion of the study area (*Figure 7*).

3.4.2.2 Breeding Bird Regional and Local Significance

All species detected in the study area are ranked as either S5 (Secure) or S4 (Apparently Secure) or in Ontario. The rank qualifier 'B' denotes the status of a migratory species during the breeding season.

Five species ranked Tier 1 or Tier 2 were observed in the study area, two of which showed probable breeding evidence and are described in *Table 4*.

The County of Wellington has identified a number of species considered significant (Dougan & Associates, 2009). Twenty-four regionally significant species were observed in the study area, 11 of which showed probable or confirmed breeding evidence, locations of species observed and their status are described in *Table 4*.

Table 4. Regionally or Locally Significant Breeding Bird Species						
COMMON NAME	SCIENTIFIC NAME	WELLINGTON COUNTY ¹	CVC TIER ²	LOCATION(S) IN STUDY AREA		
Eastern Wood- pewee	Contopus virens	~	1	Observed in the deciduous forest communities located in the south-eastern portion of the study area (<i>Figure</i> 7).		
American Crow	Corvus brachyrhynchos	~	2	Observed at most point counts throughout the study area and is ranked Tier 2.		
Mallard	Anas platyrhynchos	~	3	Observed in the shallow pond community, south of the Elora- Cataract Trail.		
Belted Kingfisher	Megaceryle alcyon	~	3	A pair was observed foraging over the Rudd Pond in the eastern portion of the study area south of the trail.		
Downy Woodpecker	Picoides pubescens	~	3	Observed drumming in the vicinity of the cattail marsh on the edge of the Hillsburgh Pond.		
Northern Flicker	Colaptes auratus	~	3	Observed in numerous locations in the study area drumming and calling.		

Table 4. Regionally or Locally Significant Breeding Bird Species						
COMMON NAME	SCIENTIFIC NAME	WELLINGTON COUNTY ¹	CVC TIER ²	LOCATION(S) IN STUDY AREA		
House Wren	Troglodytes aedon	~	3	Observed along the trail in the eastern portion of the study area.		
Red-eyed Vireo	Vireo olivaceus	√	3	Observed in both the deciduous forest communities and the mixed swamp community in the eastern portion of the study area.		
Common Yellowthroat	Geothlypis trichas	~	3	Observed along the trail in western portion of the study area, adjacent to the shallow marsh and swamp thicket communities.		
Song Sparrow	Melospiza melodia	~	3	Observed singing throughout the study area in most habitats.		
Red-winged Blackbird	Agelaius phoeniceus	~	3	Observed exhibiting agitated behavior in the area of the cattail marshes at the Hillsburgh Pond, and the Ainsworth pond, south of the dam.		

Table 4. Regionally or Locally Significant Breeding Bird Species

¹Wellington County Significant Plants of Wellington County (Dougan & Associates 2009)

² CVC Species of Conservation Concern Project (CVC 2010b)

3.4.2.2 Breeding Bird Regional Priority Species

The Ontario Landbird Conservation Plan (OLCP): Lower Great Lakes/St. Lawrence Plain, North American Bird Conservation Region 13 (Ontario Partners in Flight, 2008) has identified a number of species that are considered conservation priorities for the region. Six priority species were observed in the study area, including Belted Kingfisher, Northern Flicker, Eastern Wood-pewee, Rose-breasted Grosbeak, Eastern Meadowlark, and Baltimore Oriole. The OLCP does not provide legislative protection of species or their habitat, but rather identifies species that should be conservation priorities on a regional level that were not designated Species at Risk at the time of writing.

3.4.3 Snakes

During snake transect surveys; one individual Eastern Garter Snake (*Hamnophis sirtalis sirtalis*) was detected sunning along the edge of the Elora-Cataract Trail, east of the Dam. During the three rounds of surveys, no other snakes were detected. Two areas of candidate hibernacula habitat were identified in the study area (*Appendix 10*). These areas included numerous piled stones and rubble in the Naturalized Conifer Plantation in the far eastern portion of the study area (Image 1 and 2). However, no snakes were observed in the general area of the candidate hibernacula habitat during transect surveys.

Image 1. Candidate Snake Hibernacula A.

Image 2. Candidate Snake Hibernacula B.

3.4.3.1 Snake SAR, Regional and Local Significance

No snake species observed is considered federal or provincial species at risk. Eastern garter snake is ranked S5 (Secure) in Ontario (NHIC 2015).

3.4.4 Salamanders

During spring surveys a thorough search of the study area for evidence of habitat that may be suitable for salamanders was conducted. No salamander breeding habitat was observed in the study area, where access was provided. Air photo interpretation and ELC surveys revealed no candidate salamander breeding habitat in the study area. As a result, no further detailed studies were conducted.

3.4.5 Turtles

The results of the turtle basking surveys are presented in *Appendix 11* and summarized in *Table 5*. Locations of significant observations are provided in *Figure 7*. They are designed to give a general indication of the area in which the species was observed. These locations are also the areas where turtles are likely to overwinter and/or use as summer habitat. During turtle surveys, two species were observed, Common Snapping Turtle and Midland Painted Turtle (*Chrysemys picta marginata*); one unknown species was also observed, an unconfirmed Red-eared Slider (*Trachemys scripta elegans*). An Assessment of Significance is provided in *Table 5*.

One turtle nest, identified as Common Snapping Turtle, was observed in a man-made wood chip berm, along the eastern edge of the Rudd Pond, confirming breeding in this area.

Table 5. Turtle Habitat Results					
Species	Turtle Habitat 1	Turtle Habitat 2	Turtle Habitat 3	Turtle Habitat 4	Turtle Habitat 5
Common Snapping Turtle	9		6		
Midland Painted Turtle	104	1	445	7	1
Unknown Turtle Species				1	
Grand Total*	113	1	451	8	1

* Total number of turtles observed summed over all survey dates conducted for each habitat.

Turtle Habitat 1

Turtle Habitat 1, the Rudd Pond is located in the south-eastern portion of the study area and was surveyed five times between April and June 2015. Over the course of 5 surveys, a total of 113 turtles were observed, consisting of Midland Painted Turtle and Common Snapping Turtle. Within Turtle Habitat 1, two individual and three individual Common Snapping Turtles were observed during April and May surveys, respectively. The Ecoregion 6E SWH criteria (MNRF 2015b), states that: any area with at least five overwintering (observed between March and May) Midland Painted Turtles or one Common Snapping Turtle is considered SWH. Turtle Habitat 1 meets the criteria for SWH.

Turtle Habitat 2

Turtle Habitat 2, the Ainsworth Pond is located below the Hillsburgh Dam, east of Station Street. The pond was surveyed five times between April and June 2015. One turtle was observed over the course of all surveys, a Midland Painted Turtle. Therefore this pond is not considered SWH for Turtle Overwintering Habitat.

Turtle Habitat 3

Turtle Habitat 3, the Hillsburgh Pond is located above the Hillsburgh Dam and northwest of Station Street. The pond was surveyed five times between April and June 2015. Over the course of surveys, a total of 451 turtles of Midland Painted Turtle and Common Snapping Turtle were observed. Common Snapping Turtle was observed during April and May surveys. The Ecoregion 6E SWH criteria (MNRF 2015b) states that: any area with at least five overwintering (observed between March and May) Midland Painted Turtles or one Common Snapping Turtle is considered SWH. Turtle Habitat 3 meets the criteria for SWH.

Turtle Habitat 4

Turtle Habitat 4, is a small unnamed pond located south of the Hillsburgh Pond. The pond was surveyed five times between April and June 2015. A total of 7 turtles were observed in this feature over the course of surveys. As only four Midland Painted Turtle observations were made during the March-Early May window, this pond is not considered SWH.

Turtle Habitat 5

Turtle Habitat 5, the large meadow marsh is located south of the Elora-Cataract Trail in the western portion of the study area. This pond was surveyed five times between April and June, 2015. Only one turtle was observed over the course of all surveys, a Midland Painted Turtle. Therefore this pond is not considered SWH for Turtle Overwintering Habitat.

3.4.5.1 Turtle SAR, Regional and Local Significance

One turtle species observed is considered a species at risk under the ESA; Common Snapping Turtle is listed as Special Concern provincially (SARO) and federally (SARA).

Common Snapping Turtle inhabit slow-moving waters with soft, mucky bottom and dense aquatic vegetation. Ponds, sloughs and shallow bays are all often used as summering and overwintering habitat (COSEWIC 2008). Snapping Turtles were observed during turtle basking

surveys at two of the candidate locations, a further observation in ELC Polygon 9 (SWTO 3-5) identified a Snapping Turtle as an incidental observation. All three locations likely provide either overwintering, or summering habitat or both for Common Snapping Turtle and are indicated on *Figure 7*.

Midland Painted Turtle is ranked S5 (Secure), and Common Snapping Turtle is ranked S3 (Vulnerable) in Ontario (NHIC, 2015).

3.4.6 Winter Wildlife

A total of 18 species were identified during the Winter Wildlife Survey, including nine bird species and nine mammal species. Suspected Red Fox (*Vulpes vulpes*) tracks were identified in a wooded area and crossed a walking trail, these tracks entered the woods and no human footprints were seen in the same location. However, it is possible these tracks were Domestic Dog (*Canis lupus familiaris*) rather than a Red Fox.

Figure 4 illustrates the Winter Wildlife Survey route. All species identified during the survey are listed in *Appendix 12*.

3.4.6.1 SAR, Regional and Local Significance

A single immature Bald Eagle (*Haliaeetus leucocephalus*) was observed flying over the study area. Bald Eagles are listed as Special Concern under the ESA, and have an S-Rank of S2N, S4B and are a Tier 1 Specie of Conservation Concern (CVC 2010b). All other identified species during the winter wildlife survey are considered provincially Secure (S5) or Apparently Secure (S4).

3.4.7 Migratory Birds

The results of the Migratory Bird Survey are presented in *Appendix 13*. Locations of significant observations are provided on *Figure 7*. During the migratory bird survey, a total of 19 species were detected, of these, nine species are common winter residents in Ontario. The remaining 10 are likely migrants, and were observed in numbers inconsistent with significant migratory habitat under the SWH Ecoregion 6E criteria. Most of the species observed in the study area, are also considered common, and/or abundant species, and tolerant to human disturbance.

3.4.7.1 Migratory Bird SAR, Regional and Local Significance

None of the species observed are considered federal or provincial species at risk.

One species, Great Egret, observed foraging in the Hillsburgh Pond is ranked S2B (Imperiled) in Ontario (NHIC, 2015). Great Egret is considered a rare breeder in Ontario, but has no official status. All other species observed are ranked S4 (Apparently Secure) or S5 (Secure).

Six species ranked Tier 1 or Tier 2 were observed in the study area. Great Egret, described above, is ranked Tier 1. Wood Duck, American Black Duck, American Crow, Golden-crowned Kinglet (*Regulus satrapa*), and Ruby-crowned Kinglet (*Regulus calendula*) are ranked as CVC Species of Conservation Concern Status Tier 2.

3.4.8 Incidental Wildlife Observations

All Incidental wildlife observations made outside of the above formal field surveys are presented in *Appendix 15*. All observations were of single individuals unless otherwise stated. Species with conservation designation are described in *Table 6*, and identified on *Figure 7*.

Table 6. Incidental Species with Conservation Designation Observations									
Common Name	Scientific Name Taxa		Date -Observation	Significance					
Common Snapping Turtle	Chelydra serpentina	Reptile	April 15 - Adult observed sunning on log in T1 (Rudd Pond) May 14 - Observed in meadow marsh stream between T1 and T2 May 28 - Observed on bank of T2 (Ainsworth Pond)	 Species of Special Concern, provincially and federally CVC Tier 1 S-rank S3 					
Great Egret	Ardea alba	Bird	May 28 - Observed foraging in Hillsburgh Pond	S-Rank S2CVC Tier 1					
Trumpeter Swan	Cygnus buccinator	Bird	April 29 & May 28 - Pair observed foraging in Hillsburgh Pond	CVC Tier 1					

3.4.9 Species Listed under the Endangered Species Act

Observations, habitat requirements, breeding evidence and a habitat assessment of six species at risk, Bald Eagle, Bobolink, Eastern Wood-pewee, Eastern Meadowlark, Little Brown Myotis and Common Snapping Turtle, observed in the study area, are discussed below. No federal or provincially listed plant or fish species were identified within the study area through background research, provided data, or field observations.

3.4.9.1 Bald Eagle

Bald Eagle is listed as Special Concern provincially (ESA 2007) and federally (Species at Risk Public Registry 2014), general habitat protection is not afforded to Special Concern species. However, species listed as Special Concern and their habitat is protected under the PPS (2014), through the protection of Significant Wildlife Habitat. This species prefers deciduous and mixed-deciduous forest habitat close to water bodies including lakes and rivers; nests in super canopy trees including Pine (Armstrong 2014). The individual was only observed during the winter wildlife visit, and would not be breeding at that time.

3.4.9.2 Bobolink

Bobolink (Dolichonyx oryzivorus) is listed as Threatened provincially (ESA 2007) and federally (Species at Risk Public Registry 2014). Bobolink and their general habitat are afforded protection under the ESA. The species typically nests in open grasslands and hay fields. Bobolink are an area-sensitive species, preferring grassland habitat greater than 10ha in area. The individual was observed incidentally in the forb meadow, adjacent the MEMM3 community; one lone male was flushed from the ground, no singing or signs of agitation or nesting were observed. This species is unlikely to be breeding in the study area as a result of low quality, size and availability of preferred habitat.

3.4.9.3 Eastern Wood-pewee

Eastern Wood-pewee is listed as Special Concern provincially (ESA 2007) and federally (Species at Risk Public Registry 2014); general habitat protection is not afforded to Special Concern species under the ESA. However, species listed as Special Concern and their habitat is protected under the PPS (2014), through the protection of Significant Wildlife Habitat. The species typically nests in forest clearings and edges of deciduous and mixed forests with an open understory (MNRF 2014b). Nests are built on top of the horizontal limbs of mature deciduous trees (COSEWIC 2012). Eastern Wood-pewee was observed singing in the Sugar Maple Deciduous forest, during breeding bird surveys. This species is assumed to be breeding within the deciduous forest of the study area.

3.4.9.4 Eastern Meadowlark

Eastern Meadowlark is listed as threatened provincially (ESA 2007) and federally (COSEWIC 2011a). Eastern Meadowlark and their general habitat are afforded protection under the ESA. The species typically nests in open grasslands and hay fields. Eastern Meadowlark is an areasensitive species, preferring grassland habitat greater than 10ha in area. Eastern Meadowlark was observed singing from an adjacent agricultural field, south of the study area. This species is unlikely to be breeding in the study area as a result of low quality, size and availability of preferred habitat.

3.4.9.5 Little Brown Myotis

Little Brown Myotis is listed as Endangered provincially (ESA 2007) and federally (Species at Risk Public Registry 2014). Little Brown Myotis and their general habitat are afforded protection under the ESA. Maternal roosts of Little Brown Myotis are usually associated with buildings (attics, barns etc.) and occasionally found in large diameter trees (DBH at least 25-44 cm) (COSEWIC 2013). Little Brown Myotis were observed flying towards the Hillsburgh Pond during attendance at an MNRF survey of a known maternal roost adjacent to the study area (*Figure 7*). Surveys conducted by MNRF (2012-2015) have confirmed an active maternity colony in a building adjacent to the Hillsburgh EA study area. The MNRF (pers. comm., Lesley Hale, 2015) indicated that active foraging occurs over the Hillsburgh and Ainsworth ponds.

3.4.9.6 Common Snapping Turtle

Common Snapping Turtle is listed as Special Concern provincially (ESA 2007) and federally (Species at Risk Public Registry 2014), general habitat protection is not afforded to Special Concern species. However, species listed as Special Concern and their habitat is protected under the PPS (2014), through the protection of Significant Wildlife Habitat. Snapping Turtle is generally found in shallow waters with soft mud bottoms and leaf litter (COSEWIC 2008a). Nesting occurs on gravelly or sandy areas along streams, roadsides or embankments. Observations of Snapping Turtle were made throughout the study area in ponds, wetlands and creeks. This species is confirmed as overwintering, nesting and breeding in the study area.

3.5 Significant Wildlife Habitat

With guidance from the *Significant Wildlife Habitat Technical Guide* (2000) and the SWH EcoRegion Criterion Schedule 6E (2015), four types of Significant Wildlife Habitat (SWH) were confirmed as present within the study area (*Appendix 16*). Confirmed habitat and its location and assessment are presented in *Table 7*. Studies to confirm Bat Maternity Habitat have not been completed in the study area. Following the MNRF Guelph District Protocol (2014), all Candidate Bat Maternity Habitat will be assumed significant. In the event that site activities will affect significant habitat, it is recommended that detailed studies of Candidate Bat Habitat which may be affected, occur pre-construction.

Table 7. Confirmed S	ignificant Wildlife Habitat	
SIGNIFICANT WILDLIFE HABITAT TYPE	RATIONALE	LOCATION (FIGURE 7)
Waterfowl Stopover and Staging (Aquatic)	 Large shallow, open water feature, with abundant aquatic vegetation and soft muck bottom. Surveys completed by CVC did not meet the criteria outlined in the SWH guide. Aggregate of 100 or more listed bird species for 7 days observed, through a combination of field observations and background resources (e-bird 2015). 	SWH 1
Turtle Wintering Area	 Two large shallow ponds in the study area met the criteria for turtle overwintering; both have muck bottoms and had observations of greater than 5 Midland Painted Turtles or 1 Snapping Turtle during spring surveys. 	SWH 1, SWH 2
Habitat for Special Concern and Rare Wildlife Species	• Three of the pond feature and one of the stream/meadow marsh features in the study area had observations of Snapping Turtles, either through surveys or incidentally.	SWH 1, SWH 2, SWH 3, SWH4
Habitat for Special Concern and Rare Wildlife Species	The deciduous woodland feature had probable breeding evidence of Eastern Wood-pewee during breeding bird surveys.	SWH5
Bat Maternity Habitat	 All ELC communities meeting the criteria for bat habitat, as listed in the MNRF Guelph District guidelines, including FOD, FOM, FOC, SWD, SWM, SWC with trees >25cm DBH. 	SWH 4, SWH6, SWH7, SWH9, SWH10, SWH11, SWH12
Amphibian Breeding Habitat (Woodland)	 Four areas identified as candidate habitat in the study area met the criteria for significance. Each feature included at least two of the listed species and greater than 20 individuals. 	SWH1, SWH13, SWH14, SWH15

3.6 SAR Habitat Assessment

An assessment of all Species at Risk, and species with conservation designation, that have the potential to occur in the study area based on lists provided by CVC, MNRF and the NHIC was completed, and is provided in *Appendix 17*. Species assessed include all species with Provincial SARO status, Federal SARA status, or an S-rank of S1-S3. Species assessed with the potential to occur in the study area, but that were not observed during field studies are discussed in detail below.

3.6.1 Vegetation

3.6.1.1 American Chestnut

American Chestnut (*Castanea dentata*) is listed as Endangered provincially (ESA 2007) and federally (SARA 2014). They primarily occur in deciduous forest communities with sandy soil. The species was highly impacted by the Chestnut blight in the early 1900's, which killed 99% of individual trees (MNRF 2015a). The study area is outside of the current known species occurrences (MNRF 2015a).

3.6.1.2 American Ginseng

American Ginseng (*Panax quinquefolius*) is listed as Endangered provincially (ESA 2007) and federally (SARA 2014). The species occurs in rich, moist undisturbed deciduous forests (MNRF 2015a). The FODM5-8 community within the study area provides potential habitat, although historic disturbances and small size of the community may limit habitat potential. American Ginseng was not identified in the community during field surveys or through previous CVC surveys.

3.6.1.3 Butternut

Butternut (*Juglans cinerea*) is listed as Endangered provincially (ESA 2007) and federally (Species at Risk Public Registry 2014). Butternut primarily occur in rich, moist well-drained soils, often along streams (MNRF 2015a). Habitat for Butternut is present along the streams throughout the study area, specifically communities SWMO3-3, FODM7-7, SWDM2-1 and FODM8-1. Butternut was not identified in these communities during field surveys or through previous CVC surveys.

3.6.1.4 Hill's Pondweed

Hill's Pondweed (*Potamogeton hillii*) is listed as Special Concern provincially (ESA 2007). The species is found in slow-moving, clear cold stream, ponds, lakes, and wetlands. The ponds within the study area provide potential habitat for this species, although water temperatures are likely too high. Hill's Pondweed is known to occur east of the study area, within the Credit River System (MNRF 2015a). Hill's Pondweed was not identified in the Study Area during field surveys or through previous CVC surveys. Detailed aquatic plant surveys of the ponds were not completed as part of this study.

3.6.1.5 Carey's Sedge

Carey's Sedge (*Carex careyana*) is listed as S2 in Ontario (NHIC). The species grows in dry to moist rich deciduous upland forests (NatureServe 2015). Deciduous forests of FODM5-8 and FOCM6 provide potential habitat. Carey's Sedge was not identified in the study area during field surveys or through previous CVC surveys.

3.6.1.6 Rugulose Grapefen

Rugulose Grapefern (*Sceptridium rugulosum*) is listed as an S2 in Ontario (NHIC). The species grows in sandy to silty soil in open fields, young successional forests or at the edge of forests (Wagner and Wagner 1982). The edges of deciduous forest communities, FODM5-8 and

FOCM6 provide potential habitat. Rugulose Grapefern was not identified in the study area during field surveys or through previous CVC surveys.

3.6.2 Wildlife

3.6.2.1 Monarch Butterfly

Monarch Butterfly (*Danaus plexippus*) is listed as Special Concern provincially (ESA 2007) and federally (Species at Risk Public Registry 2014). They occur primarily where milkweed and wildflowers exist, including abandoned farmland, along roadsides, and other open spaces (COSEWIC 2010). Habitat for Monarch Butterfly occurs on the forb meadow, southwest of, and including the MEMM3 community. Common Milkweed is abundant in this community and would provide excellent habitat for Monarch Butterflies. Monarch Butterfly was not observed incidentally during any surveys in the study area, or previously observed during CVC surveys.

3.6.2.2 West Virginia White

West Virginia White (*Pieris virginiensis*) is listed as Special Concern provincially (ESA 2007) and federally (Species at Risk Public Registry 2014). This species generally prefers moist, deciduous woodlands. The larvae feed only on the leaves of a few host plants, including the Two-leaved Toothwort (*Cardamine diphylla*) and Cut-leaved Toothwort (*Cardamine concatenata*) (Burke 2013). Habitat (including host plants) occurs in the study area in small areas of the SWMCM1-2 and SWMO1-1 communities. West Virginia White was not observed incidentally within the potential habitat communities during spring surveys on the host plant, or during studies completed by CVC.

3.6.2.3 Barn Swallow

Barn Swallow is listed as threatened provincially (ESA 2007) and federally (Species at Risk Public Registry 2014). Barn swallow occurs in farmland, along lake/river shorelines, in wooded clearings and in urban populated areas. Nesting may occur inside or outside buildings, under bridges and in road culverts (COSEWIC 2011b). Habitat for Barn Swallow is present in the study area, including under bridges and dam structures. Barn Swallow was not observed during breeding bird surveys, incidentally in the study area, or during studies completed by CVC.

3.6.2.4 Canada Warbler

Canada Warbler is listed as Special Concern provincially (ESA 2007) and threatened federally (Species at Risk Public Registry, 2014). Canada Warbler prefers wet, coniferous, deciduous and mixed forest types, with a dense shrub layer (COSEWIC 2008b). Habitat for Canada Warbler may occur in the wet mixed forest occurring throughout the study area (SWCM3-2, SWCM1-2). Canada warbler was not observed during breeding bird surveys, or incidentally in the study area, or during studies completed by CVC.

3.6.3 Fish

3.6.3.1 Redside Dace

Redside Dace (*Clinostomus elongatus*) is listed as Endangered provincially (ESA 2007) and, is Under Consideration for listing federally (SARA 2014) and listed as Endangered under COSEWIC (2007). Redside Dace inhabit cool to cold water tributaries, with most Ontario

populations occurring in streams flowing to the west basin of Lake Ontario (MNRF 2015a). The stream segments within the study area provide adequate habitat for the species. Redside Dace are known to occur within the Credit River (NHIC), but have not been identified in the study area. This may be due to exclusion from upstream reaches by natural and created barriers to fish passage.

3.7 Aquatic Habitat Assessment

The aquatic habitat assessment used provided background material and field observations to characterize the watercourse and aquatic habitat within the study area. Areas of potential Brook Trout spawning habitat, locations of Banded Killifish and Slimy Sculpin, barriers to fish passage, thermal fish community classification, and other relevant information are presented on *Figure 5. Appendix 18* provides a summary of each watercourse segment assessed.

3.7.1 Thermal Regime

CVC temperature data identified the two stream reaches, upstream of the Hillsburgh Pond, as cold water systems, with maximum summer water temperatures generally below 19° C. The open water communities of the Hillsburgh Pond and Ainsworth Pond and directly downstream section from these communities are warm water, with maximum summer temperatures above 25°C. The CVC temperature data shows that the water outflowing from the Hillsburgh Pond can be up to 17°C warmer than the inflowing water from the smaller tributary to the south (segment 1 and 2, Figure 1) and up to 8°C warmer than the inflowing water from the main tributary to the northeast (segment 4, Figure 1). This indicates large thermal impacts from the Hillsburgh Pond.

According to CVC temperature data, tributary sections directly downstream of the Ainsworth and Rudd Ponds are warm water, with temperatures above 25°C, but transitioning to cold water further downstream from the ponds. Due to the spatial scale of the data provided by CVC and uncertainty in the exact location of the sampling points, it was not possible to determine the temperature regime for all segments of the watercourse within the study area. The data provides an overall picture, indicating that the tributaries upstream of the Hillsburgh Ponds are coldwater, increases in temperature to warm water systems within the ponds, and gradually cools back down in the tributaries downstream of the Rudd pond. This is consistent with what would be expected based on ground water fed streams, and the known thermal influence of ponds.

CVC has classified the water courses within the study area into thermal fish communities, such as coldwater, coolwater and warmwater systems based on fish collection records (ESSMP 2011 – fig 2.6.1). These classifications are established according to the fish species present and their preferred thermal conditions. This classification characterizes all the tributaries within the study area as cold water fish communities, while the three, online, open water ponds are classified as warm water fish communities. The thermal fish community classification is shown on the Aquatic Habitat Assessment map (*Figure 5*).

It should be noted that the watercourse within the study area, including the online ponds, are considered a coldwater system and managed as such in the CRFMP. The existing online ponds are considered anthropogenically created warmwater environments within a coldwater system. Anything that contributes to the warming of the watercourse is considered as a negative influence on the system.

3.7.2 Fish Barriers

Barriers to fish passage prevent migration within a stream system, creating population isolation and fragmentation of habitats. This can reduce genetic diversity within a system and prevent species from reaching spawning areas or access headwaters as thermal refuges. The CRFMP recommends mitigation or removal of barriers to fish movement that are not used for fish management. The aquatic assessment identified three full barriers to fish passage within the study area that would prevent all upstream passage of fish from downstream reaches. These full barriers occur at the outflows of the three main online ponds (Hillsburgh, Ainsworth, and Rudd). Additionally, two partial barriers were identified within the study area. One partial barrier is located at the secondary (North) outfall of the Ainsworth Pond, where sandbags and plastic lining were placed in 2013 to help contain Round Goby. This partial barrier consists of multiple small drops in elevation, with pools in-between. It may be possible for jumping fish to ascend and pass this barrier during high water conditions. The second partial barrier to fish passage is at the south tributary flowing into the Hillsburgh Pond, connecting segment 2 and segment 3. This partial barrier consists of a presumed trash gate that is likely intended to keep garbage and debris out of the pond. At the same general location, a log jam persists that could make passage difficult for larger and non-jumping fish. Images of identified fish barriers are provided on page 38.

Removal of the Hillsburgh Dam and pond and establishment of a coldwater system without barriers would support the goals of the CRFMP.

Image 3. Partial Fish Barrier, upstream reach of segment 3.

Image 5. Partial Fish Barrier, north upstream reach of segment 7.

Image 4. Full Fish Barrier, upstream reach of segment 5.

Image 6. Full Fish Barrier, south upstream reach of segment 7.

Image 8. Full Fish Barrier, upstream reach of segment 11.

Image 7. Full Fish Barrier, upstream reach of segment 11.

3.7.3 CVC Fish Species of Interest (Tier 2)

3.7.3.1 Banded Killifish

Banded Killifish are found within the study area and West Credit River. This is one of only two locations within the CVC watershed that Banded Killifish are known to occur. Banded Killifish are not rare in Ontario and are ranked as S5. The habitat preference of Banded Killifish is shallow water along the edges of lakes and ponds and slow streams in areas with sand and gravel substrates and patches of aquatic plants; spawning water temperature is 21°C to 25°C (OFFLHD 2016). The slow moving, warm water within the anthropogenic ponds and littoral zones along the shorelines provides habitat for this species.

3.7.3.2 Slimy Sculpin

Slimy Sculpin are found within the study area and are considered rare within the CVC watershed. Slimy Sculpin are not rare within Ontario and are ranked as S5 provincially. Their preferred habitat is associated with gravel and rocky riffles of medium to deep coldwater streams, preferred water temperatures range from 9°C to 14°C (OFFLHD 2016). The cold water streams within the study area provide habitat for this species.

3.7.3.3 Brook Trout

Brook Trout are a managed species within the CRFMP 2001. Their preferred habitat is cold, clear well-oxygenated streams, rivers, ponds, and lakes. Preferred water temperature is 13°C to 17°C. Spawning for Brook Trout occurs on coarse sand and gravel beds in areas of groundwater upwelling. Based on the aquatic habitat survey, potential Brook Trout spawning habitat was identified in seven stream segments (4, 5, 7, 8, 11, 13 and 14). These areas generally correspond with areas of fish spawning activity, as identified in the Erin Servicing and Settlement Master Plan – Phase 1: Environmental Component (ESSMP 2011), CVC records and MNRF Records. If used as spawning grounds, these areas would be sensitive to thermal influence and sedimentation from erosion or upstream activities.

3.7.4 Invasive Fish Species

3.7.4.1 Round Goby

Round Goby are an invasive species within Ontario, native to the Black and Caspian seas. Round Goby have been identified within the Hillsburgh Pond, Ainsworth Pond and in the stream section below the Ainsworth Pond. The Round Goby is known to impact native fish species through competition and predation. The Round Goby has spread throughout Ontario and is present in all five Great Lakes (OISAP 2016). It has a wide habitat tolerance, but generally prefers cobble, gravel or sandy substrates within rivers and lakes, with optimal water temperature between 23°C to 26°C. They are able to tolerate low dissolved oxygen condition and high turbidity (OFFLHD 2016). The slow moving, warm water within the anthropogenic ponds and littoral zones along the shorelines provides habitat for this species.

3.8 Landscape Evaluation

3.8.1 Ecoregion

The study area is located within Ecoregion 6E. This is the second most densely populated ecoregion in Ontario (MNRF 2009), containing a number of large urban centers. The climate of the ecoregion is mild and moist with mean annual precipitation between 759 to 1,087 mm. The underlying geology of the ecoregion is dolomite and limestone, with deep glacially deposited surface soils covering the bedrock in most areas.

Forest cover of the ecoregion is approximately 30.1% and composed of a diverse mixture of hardwood forests, lowlands, and floodplain forest. Common tree species within the Ecoregion include; Sugar Maple (*Acer saccharum*), American Beech (*Fagus grandifolia*), White Ash (*Fraxinus americana*), Eastern Hemlock (*Tsuga canadensis*), Green Ash (*Fraxinus pennsylvanica*), Silver Maple (*Acer saccharinum*), Red Maple (*Acer rubrum*), Eastern White Cedar (*Thuja occidentalis*), Yellow Birch (*Betula alleghaniensis*), Balsam Fir (*Abies balsamea*), and Black Ash (*Fraxinus nigra*) (MNRF 2009).

3.8.2 Surficial Geology and Groundwater

The surface geology of the study area and surrounding landscape are part of the Orangeville Moraine and contain silt to clay till, silty sand to sandy silt, ice-contact stratified drift, alluvium, glacial-fluvial outwash gravel, glacial-fluvial outwash sand, and organics (Cowan 1976 as cited in ESSMP 2011). The area generally has a high groundwater recharge rate, which supplies much of the base flow of the West Credit River through groundwater discharge (ESSMP 2011). This discharge of cold ground water into the river systems contributes to the cold water system of the area.

3.8.3 Connectivity and Existing Natural Features

Natural features of the study area, such as the Significant Woodland, the West Credit River, and the Provincially Significant West Credit River Wetland Complex serve as linkage corridors within the broader landscape. The Hillsburgh Pond and surrounding wetland are part of the Provincially Significant West Credit River Wetland Complex and are connected to the upstream Alton-Hillsburgh Provincially Significant Wetland Complex by the West Credit River. The study area also provides a direct corridor between large forest complexes to the southeast and the forests to the north and west of the study area. Many of these forests and natural communities are within or adjacent to watercourses of the West Credit River watershed (*Figure 7*).

3.8.4 Aquatic Habitat

Within the study area and downstream of the study area, there are multiple barriers to fish movement. These have been created through the impoundment of water for the creation of ponds (ESSMP 2011). These barriers limit or stop the upstream migration of fish species and prevent access to spawning areas. Upstream of the study area, the ESSMP identifies no barriers to fish passage, and air photo interpretation identified two potential barriers to fish passage.

3.8.5 Rare Features

The open water aquatic community of the Hillsburgh Pond is considered to be rare in the landscape, with only 2.8% of the subwatershed consisting of open water aquatic communities (ESSMP 2011). The Hillsburgh Pond also provides waterfowl stopover and staging habitat, which is considered rare in the larger landscape. The treed fen community within the study area (FETC1-2) is considered a rare community within the landscape, with only 0.3% coverage of fens identified in the ESSMP (2011). The fen community within the study area was not previously identified as a fen community by CVC.

4.0 Summary of Natural Heritage Constraints

The following is a summary of the existing natural heritage conditions assessed and identified within the study area of the Hillsburgh Dam Environmental Assessment. A summary of significant features is provided in *Table 8*.

4.1 Summary of Existing Conditions

4.1.1 Vegetation

Within the study area, three season ELC and three season botanical inventories were completed, where property access was permitted.

- 1. Thirty-one natural or naturalized vegetation communities were identified, characterised and mapped. None of the ELC communities are considered provincially rare. The fen community (FETC1-2) and open water communities (SAS_1, SAM_1-8, and OAW) are considered rare in the Town of Erin (ESSMP 2011).
- 2. Three hundred and ninety-four species or distinct sub-species of plants were identified within the study area through field inventory and background sources. 72% of identified species are native to Ontario, with the remaining 28% of identified species exotic to Ontario.
- 3. No provincial or federal Species at Risk were identified within the study area. One species identified through background resources, a moss species (*Fontinalis sullivantii*), is ranked as an S1 (Critically Imperiled). Ten identified species are considered significant in Wellington County, and 77 species are classified as CVC Species of Conservation Concern Status Tier 2 on the CVC's ranking system.

4.1.2 Wetlands

- 1. The Provincially Significant West Credit Wetland Complex is a core natural feature within the study area and surrounding landscape.
- 2. The wetland was evaluated under the Ontario Wetland Evaluation System (OWES) by the MNRF in 1995 and updated in 2005.
- 3. The mapped wetland boundary was field verified using the OWES 2013, and found to be largely accurate within the study area, with only a few minor deviations from the mapped boundary provided by LIO.
- 4. Within the study area the wetland consists of Coniferous Swamp, Mixed Swamp, Deciduous Swamp, Thicket Swamp, Treed Fen, Meadow Marsh, Shallow Marsh, Submerged Shallow Aquatic, Mixed Shallow Aquatic, and Open Aquatic communities within the study area.

5. The OWES Scoring Record identified the wetland as an important feature in reducing the risk of flooding and erosion; which are identified by CVC as important criteria when considering preferred EA options.

4.1.3 Wildlife

- 1. Where access was permitted, surveys for Amphibians, Breeding Birds, Snakes, Turtles, Winter Wildlife, and Bird Migration Monitoring were completed in appropriate habitats in the study area.
 - a. Three rounds of calling amphibian surveys occurred at seven candidate locations during the months of April, May and June 2015.
 - b. Breeding Bird Surveys were conducted twice, once in June and once in early July; a total of 10 point counts and 4 Marsh Bird playback surveys were completed.
 - c. Three visual and hand search surveys for snakes were completed in candidate areas between April and early June.
 - d. No breeding habitat for Salamanders was identified in the study area; as a result, further surveys were not required.
 - e. Turtle surveys were conducted between April and June, for a total of five rounds, five candidate habitats were investigated.
 - f. Two migratory bird surveys were completed, one targeted shorebirds and one targeted songbirds, occurring in August and October, respectively.
- 2. Six frogs, 70 bird, 1 snake, 2 turtles and 11 mammal species were observed in the study area over the course of all field investigations.
- 3. Five species listed under the ESA were identified during field investigations: Eastern Meadowlark (THR), Bobolink (THR), Eastern Wood-pewee (SC), Bald Eagle (SC) and Common Snapping Turtle (SC).
 - a. Eastern Meadowlark was observed outside the study area on adjacent lands to the south. One individual was heard singing during one round of breeding bird surveys.
 - Bobolink was observed incidentally and showed no signs of breeding; one lone male was flushed from the forb meadow, east of the Elora-Cataract Trail way, ELC Polygon 12 (MEMM3).
 - c. Eastern Wood-pewee had probable breeding in the study area, occurring in the deciduous forest community in the eastern portion of the study area, ELC Polygon 4 (FODM5-8).
 - d. Bald Eagle was observed during a winter wildlife survey, soaring over the West Credit River in the study area.
 - e. Common Snapping Turtle was confirmed as overwintering in the Hillsburgh and Rudd Ponds, one nest was identified along the berm of the Rudd Pond.

- 4. One species identified, Trumpeter Swan, is ranked as a CVC Species of Conservation Concern Status Tier 1. Trumpeter Swans were identified on the Hillsburgh Pond during surveys conducted during the spring migration season.
- 5. One species identified is considered rare in Ontario; Great Egret and is ranked S2B. No evidence of breeding occurred in the study area. Individuals were seen during spring and fall migration.
- 6. Thirty-nine species of wildlife identified in the study area are considered significant in Wellington County.

4.1.4 Significant Wildlife Habitat (SWH)

- 1. A review of the study area using a combination of methods presented in the Ecoregion criteria guide, air photo interpretation, and field investigations assessed the study area for Significant Wildlife Habitat that may occur in ecoregion 6E.
- 2. A total of six types of SWH were identified in the study area and confirmed or assumed significant using the results of all surveys completed in the study area and background resources.
- 3. Waterfowl Stopover and Staging (Aquatic), Turtle Wintering Area, Habitat for Special Concern and Rare Wildlife Species, and Amphibian Breeding Habitat (Woodland) were identified as candidate, confirmed and delineated in the study area.
- 4. Candidate Bat Maternity Habitat was identified in the study area and assumed significant. Further surveys are proposed pre-construction where impacts to candidate habitat may occur.

4.1.5 Species with Conservation Designation Habitat Assessment

- A review of the study area was completed, using habitat requirements from reference documents, air photo interpretation, and field investigations, to assess for habitat that may be suitable for species with conservation designation (listed under the ESA or an Srank of S1-S3). This list included all species identified through background review as occurring in Wellington County (MNRF 2015c), identified by CVC (2008-2014), or identified through NHIC (2015) that may occur in the study area.
- 2. Potential habitat for 16 species was identified in the study area. Surveys conducted targeted habitat that may be suitable for these species through the completion of breeding bird surveys, vegetation surveys, snake surveys, and turtle surveys.
- 3. During all surveys completed in the study area, seven of the wildlife species with candidate habitat were identified as occurring in the study area. Of those, four (Eastern Meadowlark, Eastern Wood-pewee, Common Snapping Turtle and Little Brown Myotis) were completing important life stages in the vicinity of the study area, and three were

observed incidentally, outside the breeding season, or showing no signs of breeding evidence (Bobolink, Great Egret, and Bald Eagle).

4.1.6 Aquatic Habitat Assessment

- An Aquatic Habitat Assessment was completed for all open water communities and stream reaches within the study area. The Aquatic Habitat Assessment was based on a field survey completed on October 19th, 2015 and background resources of CVC temperature data, fish community classification, fish species records and the Credit River Fishery Management Plan.
- 2. Surveys identified areas of potential Trout spawning habitat throughout the cold water watercourses of study area, as well as immediately upstream and downstream of the study area.
- 3. Three full and two partial barriers to fish passage were identified within the study area. These barriers reduce or prevent passage of fish to adjacent habitats and isolate populations.
- 4. The watercourse within the study area is managed as a coldwater system.
- 5. The West Credit River is a natural, cold water system fed primarily by groundwater; the three online ponds within the study area have a negative thermal influence on the temperature of the watercourse.
- 6. Cold water fish communities are generally found within the tributary sections, while the online ponds contain primarily warm water fish communities.
- 7. The invasive Round Goby has been identified within the Upper West Credit River system, including upstream and downstream of the study area. This is an invasive species that is known to impact fish communities.
- 8. Brook Trout, Banded Killifish, and Slimy Sculpin are identified within the study area and are considered CVC Tier 2 Species of Interest.

4.1.7 Landscape Features

- 1. The open water community of the Hillsburgh Pond is considered to be rare in the landscape and provides habitat to wildlife.
- 2. The Treed Fen community is considered rare in the landscape and contains a number of plant species considered Tier 2 Species of Interest by CVC.

4.2 Summary of Significant Features

A summary of existing conditions of natural heritage is provided in Section 4.1. Several existing condition features are significant, including but not limited to, Species at Risk under Ontario's Endangered Species Act and Significant Wildlife Habitat under the Provincial Policy Statement. In addition to the natural heritage present across the study area, significant features are given elevated levels of protection and management. A summary of significant features is provided in *Table 8*.

Significance /Type	mmary of Significant Features Site Assessment and Observations	Legislation, Policy and Management Considerations		
Species at Risk	•Bald Eagle (SC), observed in the study area, no habitat or breeding evidence.	Endangered Species Act, 2007 •Species listed as Special Concern (SC) are not afforded general habitat protection under	7	
	•Bobolink (THR), observed in the study area, no habitat or breeding evidence.	the ESA.		
	•Eastern Meadowlark (THR), Breeding Evidence outside study area.	•Threatened (THR) and Endangered (END) species are afforded General Habitat Protection under the ESA.		
	•Eastern Wood-pewee (SC), Breeding evidence in the study area.	Provincial Policy Statement, 2014 •The habitat of species listed as Special Concern is protected under the PPS as		
	•Little Brown Myotis (END), observed outside study area, Hillsburgh Pond may provide important foraging habitat.*	Significant Wildlife Habitat.		
	•Common Snapping Turtle (SC), overwintering, nesting and breeding Habitat in the study area.*			
Fish Habitat	All watercourse and open water communities provide fish habitat, with known fish communities.*	<i>Fisheries Act, 2013</i> •Protects the productivity of recreational, commercial and Aboriginal fisheries. Fish communities and habitat within the study	5	
	•Within the study area, 3 full and 2 partial barriers to fish passage exist that may prevent/restrict fish	area are afforded protection.		
	species from reaching appropriate spawning grounds.	Credit River Fisheries Management Plan. •Barriers to fish passage are recommended for removal or mitigation within the Credit		
	•All watercourses and bodies of water within the study area are managed as Coldwater fisheries,	River Fisheries Management Plan.		
	with a specific focus of Brook Trout.*	• Construction must respect the coldwater fisheries timing window of no in-water work from October 1 – June 30.		

Significance	nmary of Significant Features Site Assessment and Observations	Logislation Policy and Management	Figure	
Significance /Type		Legislation, Policy and Management Considerations		
Significant Wildlife	•Waterfowl Stopover and Staging (Aquatic).*	Provincial Policy Statement, 2014 •Under the PPS, development and site	7	
Habitat (SWH)	•Turtle Overwintering Area.*	alteration are not permitted in Significant Wildlife Habitat unless it has been		
	•Habitat for Special Concern and Rare Wildlife Species.*	demonstrated that there will be no negative impacts on the natural features or their ecological functions.		
	•Amphibian Breeding Habitat (Woodland).*			
Rare Species Habitat	•Great Egret - S2, CVC Tier 1*	Provincial Rarity Rank (S-Rank) •An S-Rank of S2 indicates that the species	7	
	•Trumpeter Swan - CVC Tier 1*	is considered imperiled in the province, with few known populations.		
		CVC's Species of Conservation Concern project (2010b)		
		•Tier 1 species are those with low abundance, low population density,		
		specialized habitat requirements, and/or a narrow tolerance to disturbance. CVC Tier 1		
		species should be identified and managed in order to avoid changes to habitat or site		
		alteration.		
Rare or Important Landscape Features	 The natural lands within the study area create continuous corridors with surrounding natural features such as Provincially Significant Wetlands, fish spawning habitat and Significant Woodlands outside the study area. The open water communities of the Hillsburgh, Ainsworth and Rudd Ponds are rare communities in the landscape (ESSMP 2011). * 	Wellington County Official Plan •Terrestrial, Wetland, Riparian and Aquatic connecting corridors considered "Protection Area 1" and are included in Wellington County's Greenlands System designation. Activities that diminish or degrade the essential function of Greenlands Systems will be prohibited.	6	
	The Treed Fen Community is a rare community within the landscape (ESSMP 2011). * .	 Town of Erin Servicing and Settlement Master Plan (2011) Rare communities should be considered a high priority for protection in the landscape (ESSMP 2011). 		
Provincially Significant	•The West Credit Wetland Complex comprises approximately 44.6 ha of the study area. *	Credit Valley Conservation • Interference or alteration to wetlands or	6	
Wetlands		 watercourses are generally not permitted CVC's policies are regulated under the Administration of the Development, Interference with Wetlands and Alterations to Shorelines and Watercourses Regulation (Ontario Regulation 160/06). CVC and MNRF may permit development or site alteration where impacts have been addressed through an environmental assessment. 		

*Carried Forward to Section 5

5.0 Assessment of Alternatives, and Impacts to the Natural Environment

The Assessment of Alternatives was completed by evaluating the potential and actual impacts of each proposed alternative on the identified Significant Natural Heritage Features in the study area and surrounding landscape. The current state of the dam and natural environment were considered to be neutral, and positive or negative impacts were assessed relative to this condition.

5.1 Alternatives Considered for the Hillsburgh Dam and Pond

Four alternatives (A, B, C and D), two of which (C and D) have two options, were considered in the evaluation of impacts to the Natural Environment. The following alternatives and summary descriptions were provided by Triton Engineering.

1). Alternative A - Do Nothing

This is the neutral "null" alternative, against which all other alternatives will be measured. If nothing is done to repair and/or replace the dam and bridge, the dam and bridge will continue to deteriorate and eventually fail.

2) Alternative B - Rehabilitate Hillsburgh Dam and Reconstruct the Bridge

Construct a new bridge at the same location or a new location along the dam. Alternative B consists of a larger bridge to contain the Regional Storm event without overtopping the road to comply with the Lakes and Rivers Improvement Act. The dam will be rehabilitated to meet the Ministry of Natural Recourses and Forestry current dam safety standards.

3) Alternative C - Rehabilitate Station Street Bridge

Option 1: Rehabilitate Station Street Bridge, Decommission Dam. This alternative consists of doing only the work necessary to bring the bridge to meet current safety and construction requirements. The dam will be decommissioned, which will alter the pond to a watercourse.

Option 2: Rehabilitate Station Street Bridge, Decommission Dam, and Construct an Offline Pond. This alternative consists of doing only the work necessary to bring the bridge to meet current safety and construction requirements. The dam will be decommissioned, which will alter the pond to a watercourse. An offline pond will be constructed inside the footprint of the existing Hillsburgh Pond.

4) Alternative D - Reconstruct Station Street Bridge

Option 1: Reconstruct Station Street Bridge, Decommission Dam. Construct a new bridge at the same location or a new location along the dam. This alternative consists of

decommissioning the dam, which will alter the pond to a watercourse. The bridge will be constructed under the MTO Highway Drainage Design Standards.

Option 2: Reconstruct Station Street Bridge, Decommission Dam, and Construct an Offline Pond. Construct a new bridge at the same location or a new location along the dam. This alternative consists of decommissioning the dam, which will alter the pond to a watercourse. The bridge will be constructed under the MTO Highway Drainage Design Standards. An offline pond will be constructed inside the footprint of the existing Hillsburgh Pond.

5.2 Evaluation of Impacts

In order to evaluate the EA Alternatives provided, each alternative was assessed with respect to potential impacts to the significant features of the natural environment identified in the study area (Table 9). These are:

- Impacts to Habitat of Species at Risk;
- Impacts to Fish Habitat, (including thermal regime and fish passage);
- Impacts to Significant Wildlife Habitat;
- Impacts to Rare Species Habitat;
- Impacts to Rare or Important Landscape Features, and;
- Impacts to Provincially Significant Wetlands.

TABLE 9: COMPARISON AND RANKING OF ALTERNATIVES

CRITERIA	RITERIA Summary of Weighted / Measured Criteria		ALTERNATIVE A "Do Nothing"	ALTERNATIVE B Rehabilitate Hillsburgh Dam and;		ALTERNATIVE C Rehabilitate Station Street Bridge and;		ALTERNATIVE D Reconstruct Station Street Bridge and;	
				OPTION 1 Reconstruct Station Street Bridge	OPTION 2 Rehabilitate Station Street Bridge	OPTION 1 Decommission Dam	OPTION 2 Decommission Dam and Construct Offline Pond	OPTION 1 Decommission Dam	OPTION 2 Decommission Dam and Construct Offline Pond
NATURAL EN	VIRONMENT								
Species at Risk (SAR) / Rare Species	The effects each alternative has on the native (SAR) within the project study area. The destruction of SWH due to change or alteration can have negative impacts on the natural habitat features and ecological functions of the identified species. This is measured through the desktop and field investigations which assess the types of species present.	HIGH	No impacts are anticipated under current state. Uncontrolled dam failure has the potential to cause significant negative impacts to Species at Risk.	No long term impacts are anticipated following rehabilitation of the dam and reconstruction of the bridge. Current SAR and rare species will continue to thrive within the Pond and study area.	No long term impacts are anticipated following rehabilitation of the dam and bridge. Current SAR and rare species will continue to thrive within the Pond and study area.	Long term impacts to the habitat through permanent removal of overwintering habitat for Common Snapping Turtle, and changes during construction to foraging habitat for Little Brown Myotis (bat). Impacts to Rare species are expected during construction, and long term impacts include permanent changes to potential foraging/stopover habitat for Great Egret and Trumpeter Swan.	If appropriate design and mitigation measures are put in place, no long term impacts are anticipated following construction and restoration.	Long term impacts to the habitat through permanent removal of overwintering habitat for Common Snapping Turtle, and changes during construction to foraging habitat for Little Brown Myotis (bat).Impacts to Rare species are expected during construction, and long term impacts include permanent changes to potential foraging/stopover habitat for Great Egret and Trumpeter Swan.	If appropriate design and mitigation measures are put in place, no long term impacts are anticipated following construction and restoration.
Ranking			-6	3	3	-6	0	-6	0
Aquatic/Fish Habitat	The effects each alternative has on the native fish species and their habitat. Fish barriers reduce ability for fish passage and diversity. The West Credit River is managed as a Cold Water Fishery. This is measured through the desktop and field investigations which assess the types of fish species present as well as, the	HIGH	No impacts are anticipated under current state. Uncontrolled dam failure could cause significant negative impacts to Fish and Fish Habitat	A desired Cold Water Fishery cannot be established and fish barriers are maintained.	A desired Cold Water Fishery cannot be established and fish barriers are maintained.	Positive impacts to the managed Cold Water Fishery are anticipated from removing the dam provided suitable ecological restoration is implemented. Fish barriers will be removed.	Positive impacts to the managed Cold Water Fishery are anticipated from removing the dam provided suitable ecological restoration is implemented. Fish barriers will be removed.	Positive impacts to the managed Cold Water Fishery are anticipated from removing the dam provided suitable ecological restoration is implemented. Fish barriers will be removed.	Positive impacts to the managed Cold Water Fishery are anticipated from removing the dam provided suitable ecological restoration is implemented. Fish barriers will be removed.
	presence of barriers.								

TABLE 9: COMPARISON AND RANKING OF ALTERNATIVES

CRITERIA	Summary of Weighted / Measured Criteria				and;				
				OPTION 1 Reconstruct Station Street Bridge	OPTION 2 Rehabilitate Station Street Bridge	OPTION 1 Decommission Dam	OPTION 2 Decommission Dam and Construct Offline Pond	OPTION 1 Decommission Dam	OPTION 2 Decommission Dam and Construct Offline Pond
NATURAL ENV	IRONMENT								
Significant Wildlife Habitat (SWH)	The effects each alternative has on SWH within the project study area. The destruction of SWH due to change or alteration can have negative impacts on the natural habitat features and ecological functions. Measured through desktop and field investigations.	MED	No impacts are anticipated under current state. Uncontrolled dam failure could cause significant negative impacts to SWH.	No long term impacts are anticipated following rehabilitation of the dam and reconstruction of the bridge. Current SWH will continue to thrive within the Pond and study area.	No long term impacts are anticipated following rehabilitation of the dam and bridge. Current SWH will continue to thrive within the Pond and study area.	Long term negative impacts on the features and functions of the following SWH: Waterfowl Stopover and Staging, Turtle overwintering, and Habitat for Special Concern Species and Rare Wildlife Species.	If appropriate mitigation measures are put in place, no long term impacts are anticipated following construction and restoration.	Long term negative impacts on the features and functions of the following SWH: Waterfowl Stopover and Staging, Turtle overwintering, and Habitat for Special Concern Species and Rare Wildlife Species.	If appropriate mitigation measures are put in place, no long term impacts are anticipated following construction and restoration.
Ranking			-4	2	2	-4	0	-4	0
Provincially Significant Wetlands (PSW) /Landscape Features	The effects each alternative has on PSW within the project study area. Changes to the limit and extent of the PSW can cause negative impacts to the local ecologies interdependencies. This is measured through desktop and field investigations which quantify and assess the current limit and extent of PSW.	MED	No impacts are anticipated under current state however, uncontrolled dam failure could cause significant negative impacts to the PSW or landscape features.	Impacts to upstream and downstream hydrology is negligible. No impacts are anticipated.	Impacts to upstream and downstream hydrology is negligible. No impacts are anticipated.	Potential changes to hydrology could impact the upstream and downstream extent and quality of wetland. Pond will naturalize into new wetland. Possible negative impact to the Treed Fen Community if hydrological changes (e.g. lower water table) are associated with the decommissioning of the dam.	Potential changes to hydrology could impact the upstream and downstream extent and quality of wetland. The construction of an offline pond will maintain some open water community within the existing PSW. Possible negative impact to the Treed Fen Community if hydrological changes (e.g. lower water table) are associated with the decommissioning of the dam.	Potential changes to hydrology could impact the upstream and downstream extent and quality of wetland. Pond will naturalize into new wetland. Possible negative impact to the Treed Fen Community if hydrological changes (e.g. lower water table) are associated with the decommissioning of the dam.	Potential changes to hydrology could impact the upstream and downstream extent and quality of wetland. The construction of an offline pond will maintain some open water community within the existing PSW. Possible negative impact to the Treed Fen Community if hydrological changes (e.g. lower water table) are associated with the decommissioning of the dam.
						•			
Ranking			-4	0	0	-2	-2	-2	-2

RANKING MATRIX										
	Multiplier	Negative	NegativeNeutralPositivePositiveNeutralNeutralPositivePositive							
WEIGHTING			SCORING							
LOW	1	-2	-1	0	1	2				
MED	2	-4	-2	0	2	4				
HIGH	3	-6	-3	0	3	6				

5.3 Impacts to the Natural Environment

5.3.1 Alternative A - Do Nothing

The Do Nothing Alternative will result in no immediate additional negative impacts to the existing natural features under the current dam configuration. However, the presence of the dam is known to be causing negative impacts to the natural environment, including altering the watercourse and reducing the quality of fish habitat.

The Do Nothing Alternative will likely cause significant and unknown impacts to the natural environment, in the case of an uncontrolled dam failure.

5.3.2 Alternative B - Rehabilitate Hillsburgh Dam, (Option1) Reconstruct Station Street Bridge and (Option 2) Rehabilitate Station Street Bridge

Rehabilitation of the Hillsburgh Dam and reconstruction/rehabilitation of the bridge is not anticipated to result in new long-term negative impacts to the natural environment, relative to the current state. This alternative will continue to negatively impact the aquatic habitat and fish.

Short-term impacts to the natural environment are expected during construction and rehabilitation of the dam and bridge. Longer term, dredging may be required to remove accumulated sediment in order to maintain an open water community within the pond:

Species at Risk/ Rare Species:

Common Snapping Turtle (Special Concern, SARO) – Common Snapping Turtle hibernate in the mud or silt layer at the bottom of large lakes, ponds and rivers. No longterm impacts are anticipated to Common Snapping Turtle by maintaining the existing pond. Draining of the Hillsburgh Pond for construction when turtles are overwintering may cause stress or death to overwintering Common Snapping Turtle, a species of Special Concern. Any eventual dredging of the pond to remove accumulated sediment is also likely to impact overwintering Common Snapping Turtles, through direct disturbance and by removing substrates required for overwintering.

Little Brown Myotis (Endangered, SARO) – A known maternity colony of Little Brown Myotis occur adjacent to the pond. The pond and adjacent wetlands are likely important foraging resources for Little Brown Myotis. Maintaining a pond environment is unlikely to affect the foraging habitat for Little Brown Myotis or the maternal population existing adjacent to the pond. No long-term impacts are anticipated to Little Brown Myotis through the maintenance of the existing pond. Draining of the pond for construction, during the maternal season for Little Brown Myotis could reduce feeding opportunities for the colony adjacent the pond during the critical maternity life stage. Any impacts to the habitat of Little Brown Myotis may require an authorization under the ESA, in consultation with the MNRF.

Rare Species Habitat - No long-term impacts are anticipated to Rare Species through the maintenance of the existing pond. Draining of the Hillsburgh Pond for construction

may reduce feeding and staging opportunities for Great Egret and Trumpeter Swan in the short-term, both species are intolerant to changes in habitat.

Significant Wildlife Habitat:

Overwintering Turtles – No long-term impacts are anticipated to overwintering turtles by maintaining the existing pond. Draining of the Hillsburgh Pond for construction when turtles are overwintering may cause stress or death. Any eventual dredging of the pond to remove accumulated sediment is also likely to impact overwintering turtles habitat, by removing substrates required for overwintering.

Amphibian Breeding Significant Wildlife Habitat – No long-term impacts are anticipated to Amphibian Breeding Habitat by maintaining the existing pond. Draining the pond for construction during the amphibian breeding season will lower water levels and may reduce the success rate for breeding, and survival of eggs and tadpoles, in wetland areas adjacent the pond.

Waterfowl Stopover and Staging Significant Wildlife Habitat – No long-term impacts are anticipated to Waterfowl Stopover and Staging by maintaining the existing pond. Draining the pond for construction during the stopover and staging season will affect species of waterfowl reliant on the pond to provide stopover feeding and roosting opportunities during migration.

Aquatic/Fish Habitat:

Aquatic Habitat – In the absence of mitigation measures, rebuilding the dam in a similar configuration to the current state will maintain the negative impacts to the watercourse, through a continued barrier to fish passage, negative thermal influences, and the establishment of invasive and warmwater fish species. The dam also alters flow patterns and disrupts sediment and nutrient transport within the watercourse. This option will continue to negatively impact the managed coldwater system.

Fish Species -

Brook Trout are a managed fish species within the West Credit River and will be negatively impacted through the maintenance of barriers, which prevent migration within the watercourse and create habitat fragmentation. The dam causes negative thermal impacts to Brook Trout and limits habitat suitability.

Banded Killifish are Species of Interest and are rare in the Credit River Watershed. Rehabilitation of the Hillsburgh Pond would benefit this species through the maintenance of an anthropogenic slow moving, warm water system within the pond environment.

Slimy Sculpin are Species of interest and are rare in the Credit River Watershed. They are a coldwater species found in the location of cold groundwater upwelling within streams. Rehabilitation of the Hillsburgh Pond would maintain the negatively impacts of

the anthropogenic warm water environment, reduced habitat availability, and barriers to fish passage.

Round Goby are an undesirable invasive species in the West Credit Watershed. Rehabilitation of the Hillsburgh Pond would benefit this species through the maintenance of an anthropogenic slow moving, warm water system within the pond environment.

Provincially Significant Wetland and Landscape Features:

Provincially Significant Wetland – Rehabilitation of the dam and reconstruction or rehabilitation of the bridge is not anticipated to result in significant changes to hydrology or the upstream and downstream extent and quality of the wetland. Any impacts would likely be minor and short term.

Landscape Features – Alternative B will retain the open water community of the Hillsburgh Pond, which is rare in the Town of Erin. No hydrological changes are expected and impacts to the rare treed fen community downstream of the pond are not anticipated.

In general, the anticipated impacts associated with Alternative B are short term, while construction is ongoing. Mitigation measures can be applied to reduce or eliminate short-term negative impacts to the habitats. Existing long-term impacts to the natural environment will be maintained unless mitigated for through detailed design.

5.3.3 Alternative C - Rehabilitate Station Street Bridge and Decommission the Hillsburgh Dam

Option 1 – Without an Offline Pond

Rehabilitation of the Station Street Bridge and decommissioning the Dam will result in both negative and positive impacts to the natural environment, relative to the current state. This alternative will positively impact the watercourse by returning the system to a naturalized stream environment.

Short-term impacts to the natural environment associated with construction are expected during rehabilitation of the bridge. Decommissioning of the dam will cause long-term changes and impacts to the natural environment.

Species at Risk/ Rare Species:

Common Snapping Turtle (Special Concern, SARO) – Common Snapping Turtle hibernate in the mud or silt layer at the bottom of large lakes, ponds and rivers. The decommissioning of the Hillsburgh Pond and establishment of naturalized watercourse will permanently remove overwintering habitat for Common Snapping Turtle and cause negative long-term impacts to the population.

Little Brown Myotis (Endangered, SARO) – A known maternity colony of Little Brown Myotis occur adjacent to the pond. Little Brown Myotis are known to forage over ponds,

rivers, woodlands and streams with abundant insect populations. The pond and adjacent wetlands likely provide important foraging resources for Little Brown Myotis. Initial draining of the Hillsburgh Pond may affect populations of aquatic insects in the short term, and result in reduced feeding opportunities for the Little Brown Myotis colony during critical life stages. No long term impacts are anticipated to populations of Little Brown Myotis from the removal of the pond, as it is anticipated that a naturalized watercourse would also provide suitable foraging habitat for the species. Any impacts to the habitat of Little Brown Myotis may require authorization under the ESA, in consultation with the MNRF.

Rare Species Habitat - Draining of the Hillsburgh Pond and loss of an open water community will reduce feeding and staging opportunities for Great Egret and Trumpeter Swan, in the long term. Both species are intolerant to changes in habitat.

Significant Wildlife Habitat:

Overwintering Turtles – Draining of the Hillsburgh Pond for construction when turtles are overwintering may cause stress or death to turtles. The decommissioning of the Hillsburgh Pond and establishment of a naturalized watercourse will permanently remove this Significant Wildlife Habitat and cause negative impacts to the resident turtle populations.

Amphibian Breeding – Draining the pond during the amphibian breeding season will lower water levels and may reduce the success rate for breeding, and survival of eggs and tadpoles, in wetland areas adjacent the pond. Permanently changing the Hillsburgh Pond to a naturalized watercourse may reduce the success rate for breeding amphibians in the short and possibly long term, with the potential to affect the hydrology of the wetlands both upstream and downstream of the pond, and reducing or eliminating a number of Significant Amphibian Breeding Areas.

Waterfowl Stopover and Staging – Draining the Hillsburgh Pond will have long term effects on species of waterfowl reliant on the pond to provide stopover feeding and roosting opportunities during migration. It is considered a rare landscape feature in the area and provides an important function for the successful migration of waterfowl species.

Aquatic/Fish Habitat:

Aquatic Habitat – Decommissioning of the Hillsburgh Pond and establishment of a naturalized watercourse will have positive impacts on the managed cold water fish species, including Brook Trout and sports fish species such as Brown Trout. Removal of the dam will decrease barriers to fish passage and reduce thermal impacts to the watercourse. General water quality will be improved through reduced coliform bacteria levels resulting from the decreased temperatures. Sediment and nutrient transport and naturalized flow patterns will be restored to the downstream section of the watercourse. Warm water fish species, which are not managed, will be negatively impacted through

the loss of habitat with the removal of the Hillsburgh Pond. However, Alternative C – Option 1 provides an overall positive benefit for the more desirable, managed cold water fish species.

Fish Species -

Brook Trout are a managed fish species within the West Credit River and will be positively impacted by the decommissioning of the Hillsburgh Pond and creation of naturalized watercourse. Decommissioning of the dam will remove barriers, which prevent migration within the watercourse, will decrease habitat fragmentation and will result in more suitable thermal conditions for Brook Trout.

Banded Killifish are Species of Interest and are rare in the Credit River Watershed. Decommissioning of the Hillsburgh Pond will negatively impact this species through the loss of the anthropogenic slow moving, warm water system within the pond environment.

Slimy Sculpin are Species of Interest and are rare in the Credit River Watershed. They are a cold water species found in areas of cold groundwater upwelling within streams. Decommissioning of the Hillsburgh Pond would benefit this species through increased habitat availability, removal of barriers and establishment of a more favorable coldwater environment.

Round Goby are an undesirable invasive species within the West Credit Watershed. Decommissioning of the Hillsburgh Pond would reduce habitat available and suitability through the removal of the anthropogenic slow moving, warm water system with the pond environment. This would likely lead to reduced population size and impacts from the Round Goby.

Provincially Significant Wetland and Landscape Features:

Provincially Significant Wetland – Changes to hydrology from the decommissioning of the dam could impact the upstream and downstream extent and quality of the wetland. Since Alternative C - Option 1 will decommission the dam and drain the pond, it is possible that this will result in a lower water table and may reduce the upstream extent and quality of the Provincially Significant Wetland; detailed hydrological changes are unknown at this time. It is anticipated that the current extent of the pond will be maintained as wetland, but will become established as a marsh or swamp community rather that the existing open water community.

Landscape Features – Draining of the Hillsburgh Pond and establishment of a watercourse will result in the loss of an open water community, which is described as rare in the Town of Erin Servicing and Settlement Master Plan.

Impacts to the rare treed fen community downstream of the pond could occur from changes in the sedimentation, flow rate, flood frequency, or groundwater level; specific hydrological changes are unknown.

Option 2 – With an Offline Pond

The rehabilitation of the Station Street Bridge, decommissioning the Dam, establishment of a watercourse and construction of a new offline pond will result in short-term impacts to the natural environment during construction. Long-term positive impacts and minor negative impacts to natural features are expected. Existing ecological function of the open water community will be maintained through the creation of the offline pond. Detailed designs of the offline pond, including depth and size, are not yet available; however, for the purpose of the analysis, it was assumed that the pond would be of sufficient size and depth to provide similar ecological functions of the existing pond. Within the ranking matrix (*Table 9*) impacts to the natural environment associated with the offline pond are ranked as more negative compared to maintaining the existing pond, reflecting an element of uncertainty and the decreased size of an offline pond relative to the existing pond.

Species at Risk/ Rare Species:

Common Snapping Turtle (Special Concern, SARO) – Common Snapping Turtle hibernate in the mud or silt layer at the bottom of large lakes, ponds, and rivers. Draining of the Hillsburgh Pond for construction when turtles are overwintering may cause stress or death to overwintering Common Snapping Turtle, a species of Special Concern. Creation of a new offline pond will provide adequate habitat for Snapping Turtles. No long-term impacts are anticipated to Common Snapping Turtle if a suitable offline pond were established.

Little Brown Myotis – A known maternity colony of Little Brown Myotis, an Endangered Species, occur adjacent to the pond. The pond and adjacent wetlands are likely important foraging resources for Little Brown Myotis. Draining of the pond for construction, during the maternal season for Little Brown Myotis, could reduce feeding opportunities for the colony adjacent to the pond during the critical maternity life stage. It is expected that the offline pond and naturalized watercourse would continue to provide foraging habitat and these changes are unlikely to affect the Little Brown Myotis or the maternal population existing adjacent to the pond. Any impacts to the habitat of Little Brown Myotis may require an authorization under the ESA, in consultation with the MNRF. No long-term impacts are anticipated to Little Brown Myotis through the decommissioning of the Hillsburgh Pond and creation of an offline pond.

Rare Species Habitat - No long-term impacts are anticipated to rare species through the decommissioning of the Hillsburgh Pond and creation of a suitable offline pond. Draining of the Hillsburgh Pond for construction may reduce feeding and staging opportunities for Great Egret and Trumpeter Swan in the short-term. Both species are intolerant to changes in habitat.

Significant Wildlife Habitat:

Overwintering Turtles – Draining of the Hillsburgh Pond for construction when turtles are overwintering may cause stress or death to turtles. The loss of the Hillsburgh Pond and

return to a naturalized watercourse will permanently affect the existing Significant Wildlife Habitat. Through the creation of an offline pond, the overwintering Turtle Significant Wildlife Habitat would be maintained, resulting in no long term impacts to turtle populations.

Amphibian Breeding Significant Wildlife Habitat – Draining of the Hillsburgh Pond during the amphibian breeding season will lower water levels and may reduce the success rate for breeding, and survival of eggs and tadpoles, in wetland areas adjacent the pond. Through the creation of an offline pond, the Amphibian Breeding Significant Wildlife Habitat would be maintained. No long-term impacts are anticipated as it is expected that the offline pond would continue to provide amphibian breeding SWH.

Waterfowl Stopover and Staging Significant Wildlife Habitat – Draining the pond during the stopover and staging season will affect species of waterfowl reliant on the pond to provide stopover feeding and roosting opportunities during migration. Through the creation of an offline pond, the Waterfowl Stopover and Staging Significant Wildlife Habitat would be maintained, resulting in no long term impacts to waterfowl populations.

Aquatic/Fish Habitat:

Aquatic Habitat – Removal of the Hillsburgh Pond and establishment of a naturalized watercourse will have positive impacts on the managed cold water fish species, including Brook Trout and sports fish species such as Brown Trout. Removal of the dam will decrease barriers to fish passage and reduce thermal impacts to the watercourse. General water quality will be improved through reduced coliform bacteria levels resulting from the decreased temperatures. Sediment and nutrient transport and naturalized flow patterns will be restored to the downstream section of the watercourse. Depending on the design, warm water fish species, which are not managed, may persist within the offline pond.

Fish Species -

Brook Trout are a managed fish species within the West Credit River and will be positively impacted by the decommissioning of the Hillsburgh Pond and creation of naturalized watercourse. Decommissioning of the dam will remove barriers, which prevent migration within the watercourse, will decrease habitat fragmentation and will result in more suitable thermal conditions.

Banded Killifish are Species of Interest and are rare in the Credit River Watershed. Decommissioning of the Hillsburgh Pond will negatively impact this species through the loss of the anthropogenic slow moving, warm water system within the pond environment. The constructed offline pond may be suitable for Banded Killifish if they are intentionally or inadvertently introduced.

Slimy Sculpin are Species of Interest and are rare in the Credit River Watershed. They are a cold water species found in areas of cold groundwater upwelling within streams.

Decommissioning of the Hillsburgh Pond would benefit this species through increased habitat availability, removal of barriers and establishment of a more favorable coldwater environment.

Round Goby are an undesirable invasive species within the West Credit Watershed. Decommissioning of the Hillsburgh Pond would reduce habitat available and suitability through the removal of the anthropogenic slow moving, warm water system with the pond environment. This would likely lead to reduced population size and impacts from the Round Goby. The constructed offline pond may provide suitable habitat for Round Goby if they are inadvertently introduced. Measures should be taken to prevent Round Goby from establishing within the constructed offline pond.

Provincially Significant Wetland and Landscape Features:

Provincially Significant Wetland – Changes to hydrology from the decommissioning of the dam could impact the upstream and downstream extent and quality of the wetland. Since Alternative C - Option 2 will decommission the dam and drain the pond, it is possible that this will result in a lower water table and may reduce the upstream extent and quality of the Provincially Significant Wetland; detailed hydrological changes are unknown at this time. It is anticipated that the current extent of the pond will be maintained as wetland. The offline pond would be part of the Provincially Significant Wetland.

Landscape Features – Draining of the Hillsburgh Pond and establishment of a watercourse will result in the loss of an open water community, which is identified as rare in the Town of Erin Servicing and Settlement Master Plan. Creation of an offline pond will compensate for the loss of the Hillsburgh Pond and maintain the rare open water community within the landscape.

Impacts to the rare treed fen community downstream of the pond could occur from changes in the sedimentation, flow rate, flood frequency, or groundwater level; specific hydrological changes are unknown.

5.3.4 Alternative D - Reconstruct Station Street Bridge, Decommission Dam *Option 1 – Without an Offline Pond*

Reconstruction of the Station Street Bridge and decommission of the dam will result in both negative and positive impacts to the natural environment relative to the current state. This alternative will positively impact the watercourse by returning the system to a naturalized coldwater stream environment.

Short-term impacts to the natural environment associated with construction are expected during the reconstruction of the bridge. Decommissioning of the dam will cause long-term changes and impacts to the natural environment.

Species at Risk/ Rare Species:

Common Snapping Turtle (Special Concern, SARO) – Common Snapping Turtle hibernate in the mud or silt layer at the bottom of large lakes, ponds, and rivers. The change of the Hillsburgh Pond to a naturalized watercourse will permanently remove overwintering habitat for Common Snapping Turtle and cause negative long-term impacts to the population.

Little Brown Myotis (Endangered, SARO) – A known maternity colony of Little Brown Myotis occur adjacent to the pond. Little Brown Myotis are known to forage over ponds, rivers, woodlands and streams with abundant insect populations. The pond and adjacent wetlands likely provide important foraging resources for Little Brown Myotis. Initial draining of the Hillsburgh Pond may affect populations of aquatic insects in the short term, and result in reduced feeding opportunities for the Little Brown Myotis colony during critical life stages. No long term impacts are anticipated to populations of Little Brown Myotis from the removal of the pond, as it is anticipated that a naturalized watercourse would also provide suitable foraging habitat for the species. Any impacts to the habitat of Little Brown Myotis may require authorization under the ESA, in consultation with the MNRF.

Rare Species Habitat - Draining of the Hillsburgh Pond and loss of an open water community will reduce feeding and staging opportunities for Great Egret and Trumpeter Swan in the long term. Both species are intolerant to changes in habitat.

Significant Wildlife Habitat:

Overwintering Turtles – Draining of the Hillsburgh Pond for construction when turtles are overwintering may cause stress or death to turtles. The decommissioning of the Hillsburgh Pond and establishment of a naturalized watercourse will permanently remove this Significant Wildlife Habitat and cause negative impacts to the resident turtle populations.

Amphibian Breeding – Draining the pond during the amphibian breeding season will lower water levels and may reduce the success rate for breeding, and survival of eggs and tadpoles in wetland areas adjacent the pond. Permanently changing the Hillsburgh Pond to a naturalized watercourse may reduce the success rate for breeding amphibians in the short and possibly long term, with the potential to affect the hydrology of the wetlands both upstream and downstream of the pond, and reducing or eliminating a number of Significant Amphibian Breeding Areas.

Waterfowl Stopover and Staging – Draining the Hillsburgh Pond will have long term effects on species of waterfowl reliant on the pond to provide stopover feeding and roosting opportunities during migration. It is considered a rare landscape feature in the area and provides an important function for the successful migration of waterfowl species.

Aquatic/Fish Habitat:

Aquatic Habitat – Removal of the Hillsburgh Pond and establishment of a naturalized watercourse will have positive impacts on the managed cold water fish species, including Brook Trout and sports fish species such as Brown Trout. Removal of the dam will decrease barriers to fish passage and reduce thermal impacts to the watercourse. General water quality will be improved through reduced coliform bacteria levels resulting from the decreased temperatures. Sediment and nutrient transport and naturalized flow patterns will be restored to the downstream section of the watercourse. Warm water fish species, which are not managed, will be negatively impacted through the loss of habitat with the removal of the Hillsburgh Pond. However, Alternative D – Option 1 provides an overall positive benefit for the more desirable, managed cold water fish species.

Fish Species -

Brook Trout are a managed fish species within the West Credit River and will be positively impacted by the decommissioning of the Hillsburgh Pond and creation of naturalized watercourse. Decommissioning of the dam will remove barriers, which prevent migration within the watercourse, will decrease habitat fragmentation and will result in more suitable thermal conditions for Brook Trout.

Banded Killifish are Species of Interest and are rare in the Credit River Watershed. Decommissioning of the Hillsburgh Pond will negatively impact this species through the loss of the anthropogenic slow moving, warm water system within the pond environment.

Slimy Sculpin are Species of Interest and are rare in the Credit River Watershed. They are a cold water species found in areas of cold groundwater upwelling within streams. Decommissioning of the Hillsburgh Pond would benefit this species through increased habitat availability, removal of barriers and establishment of a more favorable coldwater environment.

Round Goby are an undesirable invasive species within the West Credit Watershed. Decommissioning of the Hillsburgh Pond would reduce habitat available and suitability through the removal of the anthropogenic slow moving, warm water system with the pond environment. This would likely lead to reduced population size and impacts from the Round Goby.

Provincially Significant Wetland and Landscape Features:

Provincially Significant Wetland – Changes to hydrology from the decommissioning of the dam could impact the upstream and downstream extent and quality of the wetland. Since Alternative D - Option 1 will decommission the dam and drain the pond, it is possible that this will result in a lower water table and may reduce the upstream extent and quality of the Provincially Significant Wetland; detailed hydrological changes are unknown at this time. It is anticipated that the current extent of the pond will be maintained as wetland, but will be established as a marsh or swamp community rather that the existing open water community.

Landscape Features – Draining of the Hillsburgh Pond and establishment of a watercourse will result in the loss of an open water community, which is described as rare in the Town of Erin Servicing and Settlement Master Plan.

Impacts to the rare treed fen community downstream of the pond could occur from changes in the sedimentation, flow rate, flood frequency, or groundwater level; specific hydrological changes are unknown.

Option 2 – With an Offline Pond

The reconstruction of the Station Street Bridge, decommissioning the Dam, establishment of a watercourse and construction of a new offline pond will result in short-term impacts to the natural environment during construction. Long-term positive and impacts and minor negative impacts to natural features are expected. Existing ecological function of the open water community will be maintained through the creation of the offline pond. Detailed designs of the offline pond, including depth and size, are not yet available, however, for the purpose of the analysis, it was assumed that the pond would be of sufficient size and depth to provide similar ecological functions of the existing pond. Within the ranking matrix (*Table 9*) impacts to the natural environment associated with the offline pond are ranked as more negative compared to maintaining the existing pond, reflecting an element of uncertainty and the decreased size of an offline pond relative to the existing pond.

Species at Risk/ Rare Species:

Common Snapping Turtle (Special Concern, SARO) – Common Snapping Turtle hibernate in the mud or silt layer at the bottom of large lakes, ponds, and rivers. Draining of the Hillsburgh Pond for construction when turtles are overwintering may cause stress or death to overwintering Common Snapping Turtle, a species of Special Concern. Creation of a new offline pond will provide adequate habitat for Snapping Turtles. No long-term impacts are anticipated to Common Snapping Turtle if a suitable offline pond were established.

Little Brown Myotis (Endangered, SARO) – A known maternity colony of Little Brown Myotis, an Endangered Species, occur adjacent to the pond. The pond and adjacent wetlands are likely important foraging resources for Little Brown Myotis. Draining of the pond for construction, during the maternal season for Little Brown Myotis could reduce feeding opportunities for the colony adjacent to the pond during the critical maternity life stage. It is expected that the offline pond and naturalized watercourse would continue to provide foraging habitat and these changes are unlikely to affect the Little Brown Myotis or the maternal population existing adjacent to the pond. Any impacts to the habitat of Little Brown Myotis may require an authorization under the ESA, in consultation with the MNRF. No long-term impacts are anticipated to Little Brown Myotis through the decommissioning of the Hillsburgh Pond and creation of an offline pond.

Rare Species Habitat - No long-term impacts are anticipated to Rare Species through the decommissioning of the Hillsburgh Pond and creation of a suitable offline pond. Draining of the Hillsburgh Pond for construction may reduce feeding and staging opportunities for Great Egret and Trumpeter Swan in the short-term. Both species are intolerant to changes in habitat.

Significant Wildlife Habitat:

Overwintering Turtles – Draining of the Hillsburgh Pond for construction when turtles are overwintering may cause stress or death to turtles. The loss of the Hillsburgh Pond and return to a naturalized watercourse will permanently affect the existing Significant Wildlife Habitat. Through the creation of an offline pond, the overwintering Turtle Significant Wildlife Habitat would be maintained, resulting in no long term impacts to turtle populations.

Amphibian Breeding Significant Wildlife Habitat – Draining of the Hillsburgh Pond during the amphibian breeding season will lower water levels and may reduce the success rate for breeding, and survival of eggs and tadpoles, in wetland areas adjacent the pond. Through the creation of an offline pond, the Amphibian Breeding Significant Wildlife Habitat would be maintained. No long-term impacts are anticipated as it is expected that the offline pond would continue to provide amphibian breeding SWH.

Waterfowl Stopover and Staging Significant Wildlife Habitat – Draining the pond during the stopover and staging season will affect species of waterfowl reliant on the pond to provide stopover feeding and roosting opportunities during migration. Through the creation of an offline pond, the Waterfowl Stopover and Staging Significant Wildlife Habitat would be maintained, resulting in no long term impacts to waterfowl populations.

Aquatic/Fish Habitat:

Aquatic Habitat – Removal of the Hillsburgh Pond and establishment of a naturalized watercourse will have positive impacts on the managed cold water fish species, including Brook Trout and sports fish species such as Brown Trout. Removal of the dam will decrease barriers to fish passage and reduce thermal impacts to the watercourse. General water quality will be improved through reduced coliform bacteria levels resulting from the decreased temperatures. Sediment and nutrient transport and naturalized flow patterns will be restored to the downstream section of the watercourse. Depending on the design, warm water fish species, which are not managed, may persist within the offline pond.

Fish Species -

Brook Trout are a managed fish species within the West Credit River and will be positively impacted by the decommissioning of the Hillsburgh Pond and creation of naturalized watercourse. Decommissioning of the dam will remove barriers, which prevent migration within the watercourse, will decrease habitat fragmentation and will result in more suitable thermal conditions. Banded Killifish are Species of Interest and are rare in the Credit River Watershed. Decommissioning of the Hillsburgh Pond will negatively impact this species through the loss of the anthropogenic slow moving, warm water system within the pond environment. The constructed offline pond may be suitable for Banded Killifish if they are intentionally or inadvertently introduced.

Slimy Sculpin are Species of Interest and are rare in the Credit River Watershed. They are a cold water species found in areas of cold groundwater upwelling within streams. Decommissioning of the Hillsburgh Pond would benefit this species through increased habitat availability, removal of barriers and establishment of a more favorable coldwater environment.

Round Goby are an undesirable invasive species within the West Credit Watershed. Decommissioning of the Hillsburgh Pond would reduce habitat available and suitability through the removal of the anthropogenic slow moving, warm water system with the pond environment. This would likely lead to reduced population size and impacts from the Round Goby. The constructed offline pond may provide suitable habitat for Round Goby if they are inadvertently introduced. Measures should be taken to prevent Round Goby from establishing within the constructed offline pond.

Provincially Significant Wetland and Landscape Features:

Provincially Significant Wetland – Changes to hydrology from the decommissioning of the dam could impact the upstream and downstream extent and quality of the wetland. Since Alternative C - Option 2 will decommission the dam and drain the pond, it is possible that this will result in a lower water table and may reduce the upstream extent and quality of the Provincially Significant Wetland; detailed hydrological changes are unknown at this time. It is anticipated that the current extent of the pond will be maintained as wetland. The offline pond would be part of the Provincially Significant Wetland.

Landscape Features – Draining of the Hillsburgh Pond and establishment of a watercourse will result in the loss of an open water community, which is identified as rare in the Town of Erin Servicing and Settlement Master Plan. Creation of an offline pond will compensate for the loss of the Hillsburgh Pond and maintain the rare open water community within the landscape.

Impacts to the rare treed fen community downstream of the pond could occur from changes in the sedimentation, flow rate, flood frequency, or groundwater level; specific hydrological changes are unknown.

6.0 Conclusion

The Natural Environment Report was completed as part of the Schedule B Municipal Class Environmental Assessment. The EA is being completed in order to determine the best option to ensure the long term safety of the Hillsburgh Dam, while considering the natural environment, transportation, socio-economic impacts and construction costs. The Natural Environment Report has identified significant species, features, and ecological functions within the study area, which were considered while developing and ranking EA options.

The Assessment of Alternatives and Impacts to the Natural Environment identified potential and actual impacts of each proposed EA Alternative with respect to the identified existing natural heritage features in the study area and surrounding landscape. The analysis concluded that either Alternative C - Option 2 or Alternative D - Option 2, which includes the construction of an offline pond, are the preferred alternatives from a natural heritage perspective. These alternatives have the least negative impacts to the natural heritage features and provide positive benefits to the Natural Environment in the long term.

Should it be determined that the preferred alternatives listed above are not feasible, Alternative B is the next preferred alternative. If Alternative B is selected, the design should include measures to improve fish habitat long term through the installation of a fish bypass and bottom draw system.

Alternative C - Option 1 and Alternative D - Option 1 are the least preferred alternatives. These options would result in long term negative impacts to the existing natural environment through the complete loss of the open water community of the Hillsburgh Pond. This would have substantial negative impacts to SAR habitat, Significant Wildlife Habitat, Rare Species habitat, and to the overall ecological value of the study area.

Mitigation measures should be developed for any selected alternative to minimize impacts to protected natural heritage features during construction and retain and enhance the overall ecological integrity of the area.

Prepared By:

ABOUD & ASSOCIATES INC.

up Month

Ryan Hamelin, M.Sc. Terrestrial and Wetland Ecologist

My Amethon

Cheryl-Anne Ross, B.Sc. Ecology Lead & Wildlife Ecologist ISA Certified Arborist ON-2017A

Reviewed By:

Teven also

Steven Aboud, B.Sc. Principal.

ISA Certified Arborist No. ON-0323A ISA Tree Risk Assessment Qualified Butternut Health Assessor No. 497 Senior Ecologist

7.0 References

- Armstrong, Ted (E.R.). 2014. Management Plan for the Bald Eagle (Haliaeetus leucocephalus) in Ontario. Ontario Management Plan Series. Prepared for the Ontario Ministry of Natural Resources and Forestry, Peterborough, Ontario. vii + 53 pp.
- Bird Studies Canada. 2001. Ontario Breeding Bird Atlas: Guide for Participants. Bird Studies Canada in cooperation with Environmental Canada (Canadian Wildlife Service), Federation of Ontario Field Naturalists, Ontario Field Ornithologists, Ontario Ministry of Natural Resources.
- Bird Studies Canada. 2009. Marsh Monitoring Program Participant's Handbook: Getting Started. 2009 Edition. 13 pages. Published by Bird Studies Canada in cooperation with Environment Canada and the U.S. Environmental Protection Agency. February 2009.
- Burke, Peter S. 2013. Management Plan for the West Virginia White (Pieris virginiensis) in Ontario. Ontario Management Plan Series. Prepared for the Ontario Ministry of Natural Resources, Peterborough, Ontario. v + 44 pp.
- Cadman, M.D., D.A. Sutherland, G.G. Beck, D. Lepage, and A.R. Couturier. 2007. The Atlas of the Breeding Birds Ontario 2001-2005. Bird Studies Canada, Environment Canada, Ontario Field Ornithologists, Ontario Ministry of Natural Resources, and Ontario Nature, Toronto,xxii + 706pp.
- Colin Jones, Ross Layberry, and Alan Macnaughton. Ontario Butterfly Atlas Online. 2015. Toronto Entomologists' Association: April 2015. Available at: <u>http://www.ontarioinsects.org/atlas_online.htm</u>
- COSEWIC 2007. COSEWIC assessment and update status report on the redside dace *Clinostomus Elongates* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 59 pp. Available at: <u>www.sararegistry.gc.ca/status/status_e.cfm</u>
- COSEWIC. 2008a. COSEWIC assessment and status report on the Snapping Turtle *Chelydra serpentina* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 47 pp. Available at: (www.sararegistry.gc.ca/status/status_e.cfm).
- COSEWIC. 2008b. COSEWIC assessment and status report on the Canada Warbler *Wilsonia Canadensis* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 35 pp. Available at: <u>www.sararegistry.gc.ca/status/status_e.cfm</u>
- COSEWIC. 2010. COSEWIC assessment and status report on the Monarch *Danaus plexippus* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 43 pp. Available at: <u>www.sararegistry.gc.ca/status/status_e.cfm</u>
- COSEWIC. 2011a. COSEWIC assessment and status report on the Eastern Meadowlark *Sturnella magna* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 40 pp. Available at: <u>www.sararegistry.gc.ca/status/status_e.cfm</u>

- COSEWIC. 2011b. COSEWIC assessment and status report on the Barn Swallow *Hirundo rustica* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. ix + 37 pp. Available at: <u>www.sararegistry.gc.ca/status/status_e.cfm</u>
- COSEWIC. 2012. COSEWIC assessment and status report on the Eastern Wood-pewee *Contopus virens* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 39 pp. Available at: <u>www.registrelep-sararegistry.gc.ca/default_e.cfm</u>
- COSEWIC. 2013. COSEWIC assessment and status report on the Little Brown Myotis Myotis lucifugus, Northern Myotis *Myotis septentrionalis* and Tri-colored Bat *Perimyotis subflavus* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xxiv + 93 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm).
- County of Wellington. 2013. Wellington County Official Plan. May 6, 1999 (Last Revision March 24, 2015).
- CRFMP. 2002. Credit River Fisheries Management Plan. Credit Valley Conservation and Ontario Ministry of Natural Recourses. Queens's Printer for Ontario. 2002.
- CVC. 2010a. Credit Valley Conservation Authority Watershed Planning and Regulation Policies. April 2010.
- CVC. 2010b. Credit Valley Conservation Authority, Species of Conservation Concern Project. 2010.
- DFO 2008. A Guide to Understanding Freshwater Fish Habitat in Ontario. Fisheries and Ocean Canada. March 2008
- Dobbyn, John. 1994. Atlas of the Mammals of Ontario. Federation of Ontario Naturalists, viii + 120pp.
- Dougan & Associates, with Sneil & Cecile Environmental Research. 2009. List of Significant Wildlife in Wellington County; In City of Guelph Natural Heritage Strategy - Phase 2: Terrestrial Inventory & Natural Heritage System (VOL. 2 – APPENDICES). Final Report March 2009.
- Endangered Species Act, 2007, S.O. 2007, c. 6
- ESSMP. 2011. Erin Service and Settlement Masterplan. Phase 1 Environmental Component Existing Conditions Report. May 2011. Town of Erin. Credit Valley Conservation.

Fisheries Act, 1985. R.S.C., 1985, c. F-14

- GRCA. 2013. Grand River Conservation Authority. *Grand River Information Network*. Available at: <u>http://www.grandriver.ca/index/document.cfm?sec=63&sub1=0&sub2=0</u>
- Lee, H.T., W.D. Bakowsky, J.L. Riley, J. Bowles, M. Puddister, P. Uhlig and S. McMurry. 1998. Ecological Land Classification for Southern Ontario: First Approximation and its Application. Ontario Ministry of Natural Resources, Southcentral Science Section. Science Development and Transfer Branch. SCSS Field Guide FG-02

- Lee H.T. 2008. Southern Ontario Ecological Land Classification Vegetation Type List Ontario Ministry of Natural Resources.
- McCracken, J.D., R.A. Reid, R.B. Renfrew, B. Frei, J.V. Jalava, A. Cowie, and A.R. Couturier. 2013. Recovery Strategy for the Bobolink (*Dolichonyx oryzivorus*) and Eastern Meadowlark (*Sturnella magna*) in Ontario. Ontario Recovery Strategy Series. Prepared for the Ontario Ministry of Natural Resources, Peterborough, Ontario. viii + 88 pp.
- MNRF. 2000. Ontario Ministry of Natural Resources. *Significant Wildlife Habitat Technical Guide.* October 2000.
- MNRF. 2009. The Ecosystems of Ontario, Part 1: Ecozones and Ecoregions. Science and Information Branch. Inventory, Monitoring and Assessment Section. Technical Report SIB TER IMA TR-01. Ministry of Natural Resources and Forestry. 2009
- MNRF. 2010. Ontario Ministry of Natural Resources. *Natural Heritage Reference Manual for Natural Heritage Policies of the Provincial Policy Statement, 2005.* Second Edition. Toronto: Queen's Printer for Ontario.
- MNRF. 2012. Blanding's Turtle Survey Protocol MNRF Guelph District. April 2012.
- MNRF. 2013. Milksnake Survey Protocol MNRF Guelph District. June 2013.
- MNRF. 2014. Bat and Bat Habitat Surveys of Treed Habitats MNRF Guelph District, August 2014.
- MNRF. 2015a. Ontario Ministry of Natural Resources. Ontario Species at Risk website. Available at: <u>http://www.mnr.gov.on.ca/en/Business/Species/index.html</u>
- MNRF. 2015b. Significant Wildlife Habitat Ecoregion 6E Criteria Guide. Ministry of Natural Resources and Forestry. Regional Operations Division, Peterborough Ontario, January, 2015.
- MNRF. 2015c. Wellington County Upper Tier Species at Risk. Ministry of Natural Resources and Forestry. Provided by Guelph District MNRF, February, 2015.
- Mortarello, S., Mike Barry, M., Gann G., Zahina, J., Channon, S., Hilsenbeck, C., Scofield, D., Wilder, G., and Wilhelm, G. 2012. Coefficients of Conservatism Values and the Floristic Quality Index for the Vascular Plants of South Florida. Southeastern Naturalist. Volume 11(Monograph 3):1–62.
- NatureServe. 2015. Carex careyana Torr. Ex Dewey. NatureServe Explore. An Online Encyclopedia of Life. Available at: http://explorer.natureserve.org/servlet/NatureServe?searchName=CAREX+CAREYANA
- NHIC. 2015. Natural Heritage Information Centre. *NHIC online database and mapping.* Ontario Ministry of Natural Resources. Available at: <u>https://www.ontario.ca/environment-and-energy/natural-heritage-information-centre</u>

- NRVIS. 2010. Natural Resource Values Information System. Ministry of Natural Recourses. Accessed through GRCA Online Mapping. Available at: <u>http://www.grandriver.ca/index/document.cfm?Sec=17&Sub1=80</u>
- OFFLHD. 2016. Ontario Freshwater Fishes Life History Database. Available at: <u>http://ontariofishes.ca/home.htm</u>
- OISAP. 2016 Ontario Invasive Species Awareness Program. Round Goby. Available at: http://www.invadingspecies.com/invaders/fish/round-goby/
- OMMHA. 2014. Ontario Ministry of Municipal Affairs and Housing. *Ontario Provincial Policy Statement.* April 30, 2014.
- Ontario Nature. 2015a. Ontario *Reptile and Amphibian Atlas*. Available at: <u>http://www.ontarionature.org/protect/species/herpetofaunal_atlas.php</u>
- Ontario Nature. 2015b. Ontario Reptile and Amphibian Atlas: a citizen science project to map the distribution of Ontario's reptiles and amphibians. Ontario Nature, Ontario. Available: http://www.ontarionature.org/atlas; Accessed April 29, 2015].
- Ontario Partners in Flight. 2008. Ontario Landbird Conservation Plan: Lower Great Lakes/St. Lawrence Plain, North American Bird Conservation Region 13. Ontario Ministry of Natural Resources, Bird Studies Canada, Environment Canada. Draft Version 2.0
- OWES. 2013. Ontario Ministry of Natural Resources. *Ontario Wetland Evaluation System: Southern Manual.* 3rd Edition.
- Renfrew, Rosalind, Allan M. Strong, Noah G. Perlut, Stephen G. Martin and Thomas A. Gavin.
 2015. Bobolink (*Dolichonyx oryzivorus*), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Available at: http://bna.birds.cornell.edu/bna/species/176
- SARA 2014. Federal Species at Risk Registry. Government of Canada. Available at <u>http://www.registrelep-sararegistry.gc.ca/species/speciesDetails_e.cfm?sid=110</u>
- Town of Erin. 2012a. Corporation of the Town of Erin. Staff Report. Station Street Dam Hillsburgh. May, 2012.
- Town of Erin. 2012b. The Official Plan of the Town of Erin. Approved by Wellington County Council December 14, 2004. Contains Modification & Applications to May 2012.
- VASCAN. 2015. Database of Vascular Plants of Canada (VASCAN). Université de Montréal Biodiversity Centre. Version 36. Published September 24, 2015.
- Wagner, W. H. and F. S. Wagner. 1982. Botrychium rugulosum (Ophioglossaceae), a newly recognized species of evergreen grapefern in the Great Lakes Area of North America. Contributions from the University of Michigan Herbarium.
- WCSS. 1998. West Credit Subwatershed Study Characterization Report. Credit Valley Conservation.

Agency and Personal Correspondence

- Clark, Chris. E.I.T. Triton Engineering Services Limited. Email Correspondence, phone and inperson.
- Hale, Lesley. Project Areas Species at Risk Biologist. Ministry of Natural Resources and Forestry, Policy Division. Re: Little Brown Bat Maternity Colony, Banding and Monitoring Project. Dated June 30, 2015. Email Correspondence and in-person.
- Slaght, Tyler. Regulations Officer. Credit Valley Conservation. Email Correspondence and inperson.
- Buck, Graham. Management Biologist. Ministry of Natural Resources and Forestry, Guelph District. Email Correspondence.
- Thompson, Melinda. Management Biologist. Ministry of Natural Resources and Forestry, Guelph District. Email Correspondence.
- Timmerman, Art. Management Biologist. Ministry of Natural Resources and Forestry, Guelph District. Email Correspondence
- Whalen, Rose. Lands and Waters Technical Specialist. Ministry of Natural Resources and Forestry, Guelph District. Email Correspondence and in-person.
- CVC. 2015. Re: Credit Valley Conservation Species of Conservation Concern Project. Dated April 30, 2015.

- ELORA CATARACT TRAILWAY
- STUDY AREA
- CVC BOTANICAL STUDY AREA
- PROPERTY ACCESS
- ☆ HILLSBURGH DAM

OPEN WATER COMMUNITIES

- CVC Botany Study Area: Based on Peel Region Natural Areas Inventory Accessed 2015.
- Open Water Communities. Provided by Wellington County under data sharing agreement. Accessed 2015. Watercourse: Provided by Land Information Ontario (LIO) Accessed 2015.
- Roads. Provided by Wellington County under data sharing agreement Accessed 2015.
- Ortho Image. Wellington County 2010. Provided by First Base Solutions Web Mapping Service 2015.

Title: PROPERTY ACCESS & CVC BOTANICAL SURVEY AREA

Project: HILLSBURGH DAM MUNICIPAL CLASS EA

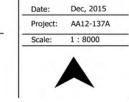


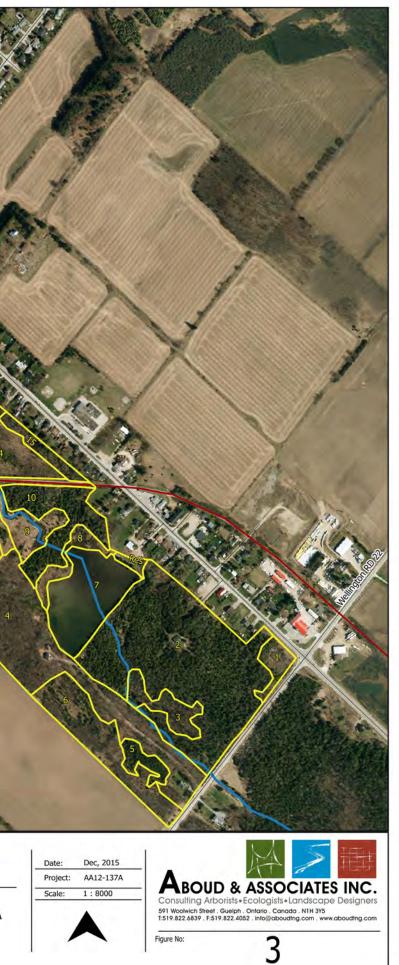
Figure No:

OLYGON		LOGICAL LAND CLASSIFICATION	1		Ale	R
1	MAMO1-2	Cattail Graminoid Organic Mineral Meadow Marsh	1	A	Section 1	1
2	SWCM1-2	White Cedar - Conifer Mineral Coniferous Swamp		1k.	Contraction of the	
3	and the second second		1 1 3		17	100
4	FODM5-8	Dry-Fresh Sugar Maple - White Ash Deciduous Forest	1		19.0	5. 4.
5	FOCM2-2	Dry-Fresh White Cedar Coniferous Forest	14	· ·	50	
6	FOCM6	Naturalized Coniferous Plantation	1 SI		A A	10
7	SAS_1	Submerged Shallow Aquatic Ecosite	1	1	ho for	
8	MASO1-1	Cattail Organic Shallow Marsh Type	A STATE	the state	e states	
9	SWT03-5	Red-osier Organic Deciduous Swamp		1 1	and the se	
10	SWM01-1	White Cedar - Hardwood Organic Mixed Swamp	27		1 A %	1257
10	SAM_1-8	Water Lily - Bullhead lily Mixed Shallow Aquatic		A A A		
12	MEMM3	Dry - Fresh Mixed Meadow Ecosite	24		A CONTRACTOR	
13	CS	Cultural Savannah	500- SCA		and a start of start	6
14	FETC1-2	Tamarack - White Cedar Treed Fen			The second	
15	FODM8-1	Fresh - Moist Poplar Deciduous Forest		3 HD	21	ALL CA
16	FODM6	Fresh - Moist Sugar Maple Deciduous Forest Ecosite	Star All the	Pal		
17	SWCM1-2	White Cedar - Conifer Mineral Coniferous Swamp		24		
18	SAM_1-8	Water Lily - Bullhead lily Mixed Shallow Aquatic		SE	2	3
19		Water Lily - Bullhead lily Mixed Shallow Aquatic		28	A David	4
20	OAW	Open Aquatic		25	7	
21	SWCM1-2	White Cedar - Conifer Mineral Coniferous Swamp		and the		
22	SWTO2-6	Mixed Willow Organic Thicket Swamp Type		11	1	Pro. //
23	FOMM7-2	Fresh - Moist White Cedar - Hardwood Mixed Forest	A start	dia 1		
24	SWDM4-5	Poplar Mineral Deciduous Swamp		3	1 march	Y
25	FODM8-1	Fresh - Moist Poplar Deciduous Forest	I have ,	1 All		
26	SWDM2-1	Black Ash Mineral Deciduous Swamp	to a second	i dante.	and the second second	
27	FOCM6	Naturalized Coniferous Plantation			1 5	
28	SWTO2-3	Meadow Willow Organic Deciduous Thicket Swamp		1. 10 A.V		
29	SWDM4-5	Poplar Mineral Deciduous Swamp		1. 8. 6. 1.		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
30	FODM7-7	Fresh - Moist Manitoba Maple Lowland Deciduous Forest	200	A CONTRACT	X	2 3
31	MAMM1-1	Cattail Graminoid Mineral Meadow Marsh Type		A State		
32	RES	Low Density Residential				

LEGEND

ECOLOGICAL LAND CLASSIFICATION COMMUNITIES

----- ELORA CATARACT TRAILWAY

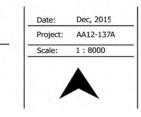

Information Sources: 1. Ecological Land Classification Communities Assessed and Mapped by Aboud & Associates Inc. 2015 2. Roads. Provided by Wellington County under data sharing agreen Accessed 2015.

 Watercourse: Provided by Land Information Ontario (LIO) Accessed 2015.

 Ortho Image. Wellington County 2010. Provided by First Base Solutions Web Mapping Service 2015.

Title: ECOLOGICAL LAND CLASSIFICATION

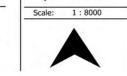
Legend

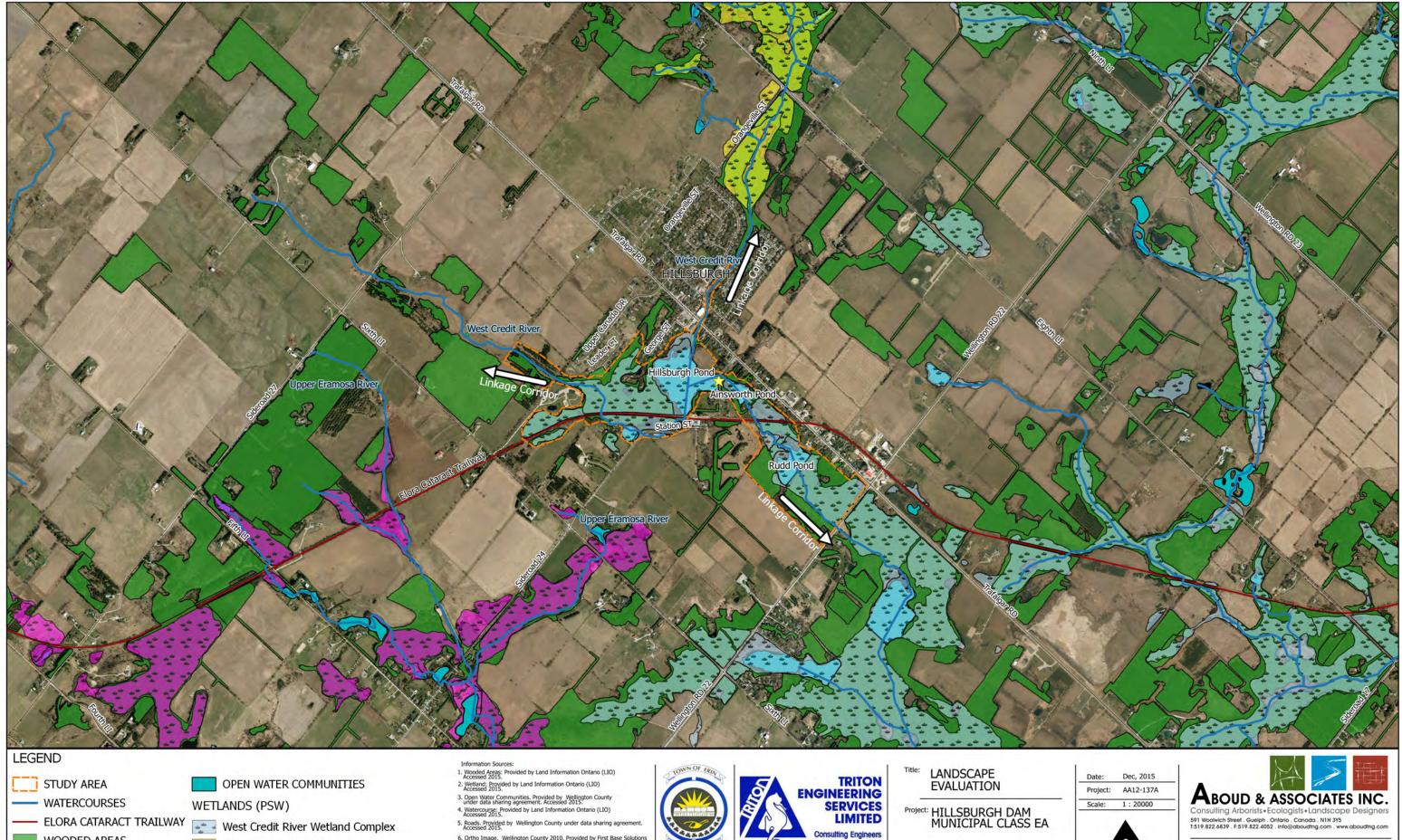

STUDY AREA WINTER WILDLIFE SURVEY TRANSECT CANDIDATE WILDLIFE HABITAT BIRD MIGRATION TRANSECT (1-5) ◆ BREEDING BIRD POINT COUNT (1-10) TURTLES (T1-T5)

AMPHIBIAN SURVEY (A-H) SNAKES (S1-S4) MARSH BIRDS (MB1-MB4)

- Information Sources:
 Roads. Provided by Wellington County under data sharing agreement. Accessed 2015.
 Ortho Image. Wellington County 2010. Provided by First Base Solutions Web Mapping Service 2015.

Title: WILDLIFE HABITAT TARGETS & SURVEY LOCATIONS




- FISH PASSAGE
- FULL BARRIER
- \bigcirc PARTIAL BARRIER
- COOL WATER WARM WATER # AQUATIC HABITAT SEGMENTS

- Watercourse: Provided by Land Information Ontario (LIO) Accessed 2015.
- Roads. Provided by Wellington County under data sharing agreement Accessed 2015.
- Ortho Image. Wellington County 2010. Provided by First Base Soluti Web Mapping Service 2015.

- WOODED AREAS
- ☆ HILLSBURGH DAM
- Alton Hillsburgh Wetland Complex
- Speed Lutteral Swan Creek Wetland Complex

- Roads. Provided by Wellington County under data sharing agreement Accessed 2015.
- Ortho Image. Wellington County 2010. Provided by First Base Solutions Web Mapping Service 2015.

Project: HILLSBURGH DAM MUNICIPAL CLASS EA

Figure No:

SIGNIFICANT SPECIES OBSERVATION

- ★ Little Brown Myotis (END)
- ★ Boboblink (THR)
- Eastern Meadowlark (THR) *
- ★ Bald Eagle (SC)
- ★ Eastern Wood-Pewee (SC)
- ★ Snapping Turtle (SC)
- Great Egret (CVC Tier 1) \star
- ★ Trumpeter Swan (CVC Tier 1)

	And States and States
3	
C ×	
1	
Cat	
CICN	
	IFICANT WILDLIFE HABITAT (SWH) SWH Types
1	Waterfowl Stopover, Turtle Overwintering, Special Concern Species, Amphibian Breedir
2	Turtle Overwintering, Special Concern Species
3	Special Concern Species
4	Special Concern Species, Bat Maternity Habitat
5	Special Concern Species
6	Bat Maternity Habitat
7	Bat Maternity Habitat
8	Bat Maternity Habitat
9 10	Bat Maternity Habitat Bat Maternity Habitat
10	Bat Maternity Habitat
12	Bat Maternity Habitat
13	Amphibian Breeding
14	Amphibian Breeding
15	Amphibian Breeding

LEGEND

STUDY AREA

SIGNIFICANT WILDLIFE HABITAT (SWH)

Information Sources:

- Significant wildlife Habitat and Significant Species Observations Assessed and Mapped by Aboud & Associates Inc. 2015
- Roads. Provided by Wellington County under data sharing agreement. Accessed 2015.
- agreement. Accessed 2015.
 Ortho Image. Wellington County 2010. Provided by First Base Solutions Web Mapping Service 2015.
 Significant Species Status from SARO (2015) and CVC Species of Special Concern Project (2015).

SIGNIFICANT WILDLIFE OBSERVATIONS & SIGNIFICANT WILDLIFE HABITAT Title:

Appendix 1 Notice of Study Commencement

ABOUD & ASSOCIATES INC.

December 19, 2014

Dear Mr. Ziegler:

Re: Class Environmental Assessment Study – Schedule B Proposal for the improved safety of the Hillsburgh Dam and Bridge Town of Erin

Further to receipt of the Notice of Commencement, November 27, 2014, CVC staff offer the following preliminary comments:

It is the understanding of CVC staff that the Town of Erin is undertaking a Class Environmental Assessment (EA) for the purpose of improving safety of the Hillsburgh Dam and bridge.

Site Characteristics:

The study area is traversed by the West Credit River and a tributary of the West Credit River, associated hazards (flooding and erosion). In addition, the area contains wetlands and associated adjacent lands. As a result portions of the study area are subject to the Authority's Development, Interference with Wetlands, and Alterations to Shorelines & Watercourses Regulation (Ontario Regulation 160/06). This regulation prohibits altering a watercourse or wetland and prohibits development within the regulated area without the prior written approval of CVC (i.e. a permit).

Permit Approval Requirements:

In accordance with Ontario Regulation 160/06 (our Development, Interference with Wetlands and Alterations to Shorelines and Watercourses Regulation), a permit would be required from the CVC prior to commencement of the works involving development, interference with a wetland and/or alterations to a watercourse or shoreline.

Fish Habitat and Department of Fisheries and Oceans (DFO):

Please note that CVC is no longer administering the *Fisheries Act* on behalf of Fisheries and Oceans Canada (DFO). As a result, it is up to the proponent to ensure that his/her project meets the DFO requirements under the self-assessment process. See the link below for a description of the self assessment process and a list of projects/activities where DFO review is not required: <u>http://www.dfo-mpo.gc.ca/pnw-ppe/index-eng.html</u>. Measures to avoid causing harm are noted here: <u>http://www.dfo-mpo.gc.ca/pnw-ppe/measures-mesures/index-eng.html</u>

EA Study Objectives:

The EA Study must clearly identify and quantify the environmental constraints and enhancement opportunities within the study area, including the following:

Aquatic Habitat and Valleylands:

The project needs to evaluate alternatives that minimize impacts to the form and function of the West Credit River and Hillsburgh Pond and if possible include opportunities for enhancement. The EA should list and describe the natural features (fish habitat, etc.) and site characteristics (e.g. Rolling topography, high water table, buffering vegetation, etc.) in the study area that may pose constraints to the project.

Page 1 of 3

December 19, 2014 Re: Proposal for the improved safety of the Hillsburgh Dam and Bridge Town of Erin

Stormwater Management:

The project should include quality and quantity control measures to treat stormwater runoff in accordance with Ministry of Environment and CVC guidelines. Typically we request that the proponent provide treatment for all new proposed impervious areas and where possible existing road surfaces.

Hydraulics and Meander Belt

Any alterations to any watercourse crossings may require a hydraulic analysis to ensure that there are no negative up or down stream impacts. In addition, the road improvements or reconstruction at a minimum should maintain existing depth flooding on the road or improve the road such that it is flood free under Regional Storm conditions. In addition, CVC requests that new bridges and where possible replacement bridges span the calculated meander belt of the watercourse.

Subwatershed Study:

The EA should ensure that the subwatershed study environmental targets and objectives are identified and identify proposed measures that implemented these targets and objectives.

Erosion and Sediment Controls

During the detailed design period of this project, all proposed methods to control sedimentation during construction and potential erosion following the completion of the project must be detailed. Furthermore, as means of minimizing impacts to aquatic habitat all works must be completed in the dry.

Restoration

All disturbed areas will need to be stabilized and restored with native/non-invasive seed mixes and woody species.

Given CVC's interest staff would like to be kept informed of future meetings and proceedings through the Environmental Assessment process. Please forward any information or reports when available to ensure that this Authority's policy and program interest are reflected in the planning and design components for this project.

Should you have any further questions please contact the undersigned at (905) 670-1615 extension 406

Regards,

after sleeg 11

Tyler Slaght Regulations Officer

cc: Town of Erin Attention: Larry Van Wyck (via email) Ministry of Natural Resources and Forestry Guelph District Attention: Rose Whalen (via email)

Ministry of Natural Resources and Forestry Peterborough District Attention: Doug Ryan (via email)

Page 2 of

Ryan Hamelin

From: Sent: To: Cc: Subject: Buck, Graham (MNRF) <Graham.Buck@ontario.ca> April-02-15 1:45 PM Ryan Hamelin Whalen, Rose (MNRF) RE: Hillsburgh SAR

Hi Ryan,

With respect to bats we generally only recommend surveys if there is the potential for impacts to the hibernation or roost habitats. If the impact is only to foraging habitat I do not think the activity will damage or destroy habitat.

With respect to Rusty-patched Bumblebee I agree the likelihood is extremely low, given the number of hours of survey completed for this species with very few individuals seen (3, all at Pinery). I would accept incidental observations during plant surveys. Staff can always take pictures of Bumblebees and submit them to <u>http://bumblebeewatch.org/</u> if they are not confident if identification.

The 20102 protocol for Blanding's is still acceptable.

I will follow up with the survey protocols in another email.

Graham

Graham Buck Management Biologist Ministry of Natural Resources and Forestry 1 Stone Road West Guelph ON N1G 4Y2 519 826 4505 graham.buck@ontario.ca

From: Ryan Hamelin [mailto:ryan@aboudtng.com] Sent: March-25-15 3:59 PM To: Whalen, Rose (MNRF); Buck, Graham (MNRF) Cc: Chris Clark; Paul Ziegler Subject: RE: Hillsburgh SAR

Hi Rose and Graham,

As part of the Hillsburgh Dam EA the CVC has requested Targeted Surveys of all SAR with potential habitat within the Study Area.

Based on some winter field work and orthophotography interpretations, I have developed a proposed list of SAR to be surveyed for based on the identified habitat features. Attached is an Excel file with a comprehensive explanation of the proposed species be surveyed for, and what methods will be used.

Would the MNRF be able to provide the survey protocols for the following species? Do any of the survey protocols require handling permits or specific permission?

- Jefferson Salamander
- Eastern Small Footed Myotis
- Little Brown Myotis
- Northern Myotis
- Butlers Garter Snake
- Eastern Ribbon Snake
- Massasauga Rattlesnake
- Milk Snake
- Rusty-patched Bumble Bee

If possible could you comment on the need or benefit of surveying for the three SAR bat species? It would be expected that bats would use the study area for feeding, but there are no known caves, abandoned mines, cliffs or rock outcrops that could be used as over wintering habitat within the study area. Due to the lack of these Key Habitat features it is felt that targeted bat survey may not be necessary. The habitat is also not ideal for rusty-patched bumble bees and potential EA options would be unlikely to impact their habitat, could you also on the need for Rusty-patched Bumble Bee surveys ?

Could you confirm the appropriateness of using the 2012 Blanding's Turtle Survey Protocol to survey for the presence of Snapping Turtles and Spotted Turtles?

If it would be easier to discuss any of this information over the phone please feel free to call me.

Thanks for the assistance,

Ryan Hamelin

Ryan Hamelin, B.S.c (Env). M.Sc. Terrestrial and Wetland Ecologist ABOUD & ASSOCIATES INC. 591 Woolwich Street . Guelph . Ontario . N1H 3Y5 T:519.822.6839 x 2 . F:519.822.4052 www.aboudtng.com . ryan@aboudtng.com

From: Buck, Graham (MNRF) [mailto:Graham.Buck@ontario.ca] Sent: February-10-15 11:48 AM To: Ryan Hamelin Subject: RE: SAR List

I have attached the most recent version of the Wellington County list.

It is always best to use the Guelph District list over the lists available online because the Guelph District list is more comprehensive and up to date.

The online lists should only be used in instances where the district does not maintain a species at risk by municipality list.

Graham Buck Management Biologist Ministry of Natural Resources and Forestry 1 Stone Road West Guelph ON N1G 4Y2 From: Ryan Hamelin [mailto:ryan@aboudtng.com] Sent: February-10-15 11:11 AM To: Buck, Graham (MNRF) Subject: SAR List

Hi Graham,

I am developing a list of SAR that have the potential to be present at the Hillsburgh Dam Study Area. We have a list of SAR Know to occur in Wellington County that was supplied by the MNRF in the summer of 2013. I have also consulted the MNRF online – SAR by Area web-mapper for Wellington County (<u>http://www.ontario.ca/environment-and-energy/species-risk-area</u>). I have noticed that the two lists have some inconsistence in species. Could you confirm what SAR list should be used when assessing for potential SAR within Wellington County ?

I have attached a copy of the original SAR list supplied by the MNRF, with an additional column indicating what species are also listed on the MNRF website for Wellington County.

Thanks,

Ryan Hamelin

From: Buck, Graham (MNRF) [mailto:Graham.Buck@ontario.ca] Sent: January-19-15 11:18 AM To: Ryan Hamelin Subject: RE: SAR / Turtle Survey

Hello Ryan,

I have attached the survey protocol for Blanding's Turtle. It has been finalized and can be used for this species. You may also be able to adapt it for other species.

MNRF Guelph also has draft survey protocols for Stinkpot, Spotted and Wood Turtle but they are not finalized and not applicable to Hillsburgh Dam EA. They are also very species specific and likely not as transferable to other turtles.

Graham Buck Management Biologist Ministry of Natural Resources and Forestry 1 Stone Road West Guelph ON N1G 4Y2 519 826 4505 graham.buck@ontario.ca

From: Ryan Hamelin [mailto:ryan@aboudtng.com] Sent: December-23-14 4:39 PM To: Buck, Graham (MNRF) Cc: Whalen, Rose (MNRF) Subject: SAR / Turtle Survey Hello Graham Buck,

I hope you are doing well.

We are in the process of developing a work plan for a Municipal Class Environmental Assessment and are interested in Species at Risk and Turtle Surveys. Would you be able to provide any information on typical requirements for Species at Risk surveys and Turtle Surveys as part of Municipal Class Environmental Assessments, Schedule C? Also, are there specific protocols or techniques that the MNRF endorses for Species at Risk and Turtle Surveys?

The specific project and site of interest is the Hillsburgh Dam Environmental Assessment in the Township of Erin. Rose Whalen is the primary MNRF contact for the project. The subject property falls within CVC's watershed and they have asked about surveys for 'all' Species at Risk that could possibly be present.

Thanks,

Ryan Hamelin

Ryan Hamelin, B.S.c (Env). M.Sc. Terrestrial and Wetland Ecologist ABOUD & ASSOCIATES INC. 591 Woolwich Street . Guelph . Ontario . N1H 3Y5 T:519.822.6839 x 2 . F:519.822.4052 www.aboudtng.com . ryan@aboudtng.com Archived: December-04-15 1:46:29 PM From: Hale, Lesley (MNRF) Sent: June-30-15 11:00:38 AM To: Cheryl-Anne Ross Subject: RE: Hillsburgh mill Pond Bat study Importance: Normal

Hi Cheryl

Here is a summary of the data from the last few years for the Hillsburgh church bat roost (please note the 2015 data has not been input yet):

	Primary		Sky	Wind		Start	End	Total			
Site Name	Surveyor	Date	Code	Code	Temp	Time	Time	Bats	Technique	Other Surveyors	Comments
Hillsburgh Church	Lesley Hale	June 20, 2012	1	1	26	21:34	22:23	113	visual	Paul Faure, Les Misch, John (Ryan) Caldwell, Lucas Greville	Mist nets set; 3 MYLU captured and banded 002453-002455
Hillsburgh Church	Lesley Hale	July 12, 2012	1	1	24	21:20	22:20	174	visual	Heather Riddell, Iga Stasiak, Ryan Caldwell	Mist nets set; 10 MYLU captured and banded; 002457-58, 002494- 002498, 002500, 002483-84
Hillsburgh Church	Heather Riddell	July 4, 2013	1	1	22	21:20	22:08	125	visual	lga Stasiak, Catherine Jong, Ryan Morin	5 MYLU captured in the mist net (2 mist nets set). 17 bats observed at the front; 108 observed at the back. Not enough surveyors for the side walls of the building.
Hillsburgh Church	Heather Riddell	July 23, 2013	3	4	15	21:01	22:00	106	visual	Les Misch, Dan Bourassa, Alejandra	7 MYLU captured, 2 released accidentally. All male bats. 1 mist net set.
Hillsburgh Church	Lesley Hale	June 9, 2014	1	1	18	21:30	22:15	110	visual	Benoit Talbot, Christy Humphrey	25 exited from south side near centre apex; 85 exited from west side from apex triangle; 6 returned after 22:00; 2 nets set along west line of trees; 17 MYLU and 1 EPFU captured and banded
Hillsburgh Church	Lesley Hale	July 10, 2014	2	1	15	21:15	22:23	219	visual	Christy Humphrey, Christina Smyth	200 bats exited from west wall near peak and 19 exited from south wall; 2 nets erected 37 MYLU captured and banded - no recaptures

As I mentioned, please feel free to join us for the next survey on July 20 (July 21 if it rains on 20th) at 8pm at the church. Bring a headlamp and a folding camp chair (it's a long night otherwise!) and be ready for lots of bugs. My cell number is 705-917-0373 in case you need to reach me.

Cheers

Lesley Hale

From: Cheryl-Anne Ross [mailto:Cheryl@aboudtng.com] Sent: June-19-15 11:53 AM To: Hale, Lesley (MNRF) Cc: Ryan Hamelin Subject: Hillsburgh mill Pond Bat study

Hi Lesley,

We've received your contact information from one of the councillors in the town of Erin (Jeff Duncan), regarding an ongoing study of a little brown bat population at the century Theater, near the station Street Dam. As your voicemail indicated you are out of the office quite a bit this week, I thought I would send an email to follow up on some of the information that we were provided.

Aboud & Associates is currently gathering Existing Information for a municipal class EA for the Station Street Dam, examining alternatives for the failing Dam, working closely with the Local MNRF branch, and the Credit Valley Conservation authority. It's recently come to our attention that the MNRF has been conducting bat assessment work in the vicinity of the station street Dam, and we would really appreciate any further information you could provide to us about the population. Particularly if any known maternity colonies may exist in the forested landscape in the vicinity of the Dam, as well as a discussion about protection of foraging habitat, and if there are any guidelines regarding foraging habitat or regulated habitat that might be in place. I am available until 4:00 pm today, and should be in the office all day Monday, if you would like to give me a call at the number below, my extension is 7.

Thank you,

TRITON IGINEERING SERVICES LIMITED Consulting Engineers

MEETING MINUTES

DATE:	Wednesday, September 24, 2014
TIME:	10:00 a.m.
LOCATION:	Credit Valley Conservation Authority Headquarters – 1255 Old Derry Road, Mississauga
OUR FILE:	A4685E
RE:	HILLSBURGH DAM, MUNICIPAL CLASS ENVIRONMENTAL ASSESSMENT, TOWN OF ERIN

Attendees:

- T. Slaght, J. Wong, J. Clayton; Credit Valley Conservation Authority (CVC)
- R. Whalen, D. Ryan; Ministry of Natural Resources and Forestry (MNRF)
- L. Van Wyck; Town of Erin (Town)
- S. Aboud, R. Hamelin; Aboud & Associates Inc. (Aboud)
- C. Clark; Triton Engineering Services Limited (TESL)
- C. Clark reviewed the projects history, from temporary works completed to repair the Dam/Road in 2011/2012 to the present permanent solution involving the completion of a Municipal Class Environmental Assessment (Class EA) to fulfill the requirements of the MNRF's Non-Application Emergency Works under the Lakes and Rivers Improvement Act.
- 2. D. Ryan asked if project Problem Statement has been formed. C. Clark to detail Problem Statement and circulate to project team. To be included as part of the Class EA Notice of Project Commencement, to be released shortly.
- Aboud presented the proposed project Study Area with respect to the Natural Heritage investigations. MNRF and CVC recommended extension to Wellington Road 22 east to Trafalgar Rd. Logic behind Study Area was connectivity and impact to Provincially Significant Wetlands (PSW).
- 4. Aboud overviewed the required Natural Heritage information that is still outstanding for "desktop investigations".
 - a. All data requests to go through T. Slaght (CVC) and R. Whalen (MNRF)
 - b. All Natural Heritage data requests are to come from Aboud
 - c. Aboud to submit revised Study Area to MNRF/CVC as part of formal data requests
 - d. R. Whalen to provide mapping of wetland evaluations, if available

- 5. Aboud will be utilizing the services of Aquafor Beech for fish habitat investigations. Data required for this portion of investigations are as follows; fish community data (presence/absence, biomass), thermal regimes and temp data, spawning survey, benthic macroinverts, geomorphology, invasive species info (Round Goby) and fish habitat assessment.
- 6. J. Clayton overviewed available fish related data. This includes periodic fish inventories from 1954 to present, fish biomass collection, thermal records, presence of invasive Round Goby, spawning data (2010 2014).
 - a. Temperature loggers currently on-site and logging and could be left longer into the fall/winter season if required.
 - b. Groundwater seeps throughout system, but no specific locations identified in study area.
 - c. Area is historically Brook Trout habitat, with population currently upstream and downstream of the pond.
 - d. CVC considers the Banded Killifish and the Slimy Sculpin as important species due to the rarity in the watershed.
- 7. J. Clayton added that Round Goby control methods may be implemented this fall or next spring within the Hillsburgh Pond and other affected ponds along the watercourse. This would involve lowering the water levels and removing desirable fish species.
 - a. May be an opportunity to inventory fish species at this time
 - b. During previous public contact related to Goby eradication, public was opposed temporary water drawdowns
- 8. According to MNRF, there is no known presence of Species at Risk (SAR) within the Study Area. This will be confirmed through Aboud's desktop/field investigations.
- 9. C. Clark reviewed existing hydraulic data completed as part of the temporary works, as well as, the Dam's "High" Hazard Potential Classification (HPC). CVC agreed to share any relevant data/information completed or acquired post temporary dam repair works in order to perform any additional analysis.
 - a. T. Slaght CVC main criteria when evaluating EA options will be; 1) Flood hazard reduction 2) Sediment/Erosion impact reduction. There must be no negative impacts to flooding or erosion. The options reviewed should seek to improve these conditions, as well as; improve natural heritage features present. Flooding and erosion must be demonstrated as part of the Project File Report while sediment control can be established during the detailed design stage.
- 10. It was agreed that Geomorphology and Hydrogeology investigations be completed as part of the Class EA to cover all areas for the potential alternative outcomes.
 - a. CVC has 2005 fluvial geomorphology data completed by PEIL for West Credit Watershed, which can be provided.
 - b. Provincial Groundwater Monitoring Network and Source Water Protection data may help to provide background. Local water bottling company may also be a source of groundwater data.

- 11. C. Clark and L. Van Wyck reminded the group of the potential restrictions affecting the Class EA due to Town's property limitations. The Town owns the Station Street road right-of-way but not the north and south adjacent properties. A number of field investigations will need to be performed at these locations. The north landowner also owns the Hillsburgh Pond's stop-log control structure.
 - a. D. Ryan reminded everyone of the adjacent landowners "riparian interests" to the Dam. This involves holding their concerns/interests at stake. Further, the Town can perform the Class EA to uphold their responsibilities to the Dam. Adjacent landowner has legislative responsibilities if dam were to fail.
 - b. As the north adjacent landowner and the Town are affiliated "dam owners" and the requirements for land access to south pond (Ainsworth Pond), it was suggested and agreed that a personal letter be distributed to these parties to request their involvement in the Class EA process. This could eliminate any property access restrictions.
- 12. General discussion of how potential options could affect the existing PSW wetland complex. Due to the overall size of the Provincially Significant West Credit Wetland Complex it would be expected that a local reduction in extent around the Station Street Dam site would not affect the PSW status of the complex as a whole. However, specific areas that transition from wetland to upland due to changes in hydrology would no longer be included in the wetland complex and would therefore not have PSW status. However, this is to be determined as part of the Class EA process.
- 13. Those parties and members present at this meeting will be the main Project Team moving forward.
 - a. Technical reporting and any project status updates to be provided approximately every three months.
 - b. All documents will be reviewed by the Committee before release to the Public.
 - c. Meetings will be scheduled as needed.

Project Next Steps/Actions Items:

- 1. Natural Heritage Study Area and project Terms of Reference to be completed and circulated to Committee for data requisitions.
- 2. Draft a letter to send to adjacent landowners requesting their personal involvement in the Class EA process.
- 3. Problem/Opportunity Statement to be developed and included in the Notice of Project Commencement to be released to public.
- 4. Next Status Up-date Mid-December 2014

Archived: December-04-15 1:49:37 PM From: Thompson, Melinda (MNRF) Sent: December-04-15 12:29:01 PM To: Cheryl-Anne Ross Cc: Buck, Graham (MNRF); Whalen, Rose (MNRF) Subject: RE: hillsburgh dam EA project - Ecoregion Criteria clarification Importance: Normal

Hi Cheryl

I believe our interpretation is that you need to have an amphibian breeding population of at least 20 individuals (this can be combined across species).

Melinda

MELINDA J. THOMPSON 🛞 🛞 🛞

 MANAGEMENT BIOLOGIST | ONTARIO MINISTRY of NATURAL RESOURCES and FORESTRY | GUELPH DISTRICT OFFICE

 1 Stone Road West, Guelph, Ontario, N1G 4Y2 | The store about <u>Ontario's Species at Risk</u>

 Learn more about <u>Ontario's Species at Risk</u>

From: Cheryl-Anne Ross [<u>mailto:Cheryl@aboudtng.com</u>] Sent: November 24, 2015 11:57 AM To: Whalen, Rose (MNRF) Cc: Buck, Graham (MNRF); Ryan Hamelin Subject: hillsburgh dam EA project - Ecoregion Criteria clarification

Hi Rose,

We are working on completing the existing conditions report for the Hillsburgh Dam project, and I've run into some confusion in interpreting the defining criteria for confirmed SWH.

For Amphibian Breeding Habitat (Woodland), it states that:

'a population of 2 or more of the listed frog species with at least 20 individuals or 2 or more of the listed frog species with call level codes of 3' are to be considered significant.

Does this indicate that if a station had, for example, 5 species of frogs, but did not have greater than 20 individuals of any two species, that the site would not be considered significant? Despite the fact that the site may have had greater than 20 individual frogs combined across species?

Any help with interpreting this criteria would be greatly appreciated!

Thank you,

Regards, Cheryl-Anne Ross B.Sc. .

Appendix 2 Terms of Reference and Approval

ABOUD & ASSOCIATES INC.

591 Woolwich Street Guelph . Ontario N1H 3Y5

T: 519.822.6839

F: 519.822.4052

info@aboudtng.com www.aboudtng.com

Urban Forestry

Arborist Reports Management Plans Tree Preservation Plans Tree Risk Assessment GIS Tree Inventories Tree Appraisals Monitoring

ECOLOGICAL RESTORATION

NATURAL SYSTEMS DESIGN HABITAT RESTORATION EDGE MANAGEMENT PLANS RAVINE STEWARDSHIP PLANS NATURALIZATION PLANS INTERPRETIVE DESIGN MONITORING CONTRACT ADMINISTRATION

Environmental Studies

Subwatershed Studies Environmental Impact Statements Ecological Land Classification Wetland Evaluation Vegetation Assessment Botanical Inventories Wildlife Surveys Monitoring

Landscape Architecture

Master Planning Residential Communities Commercial/Industrial Healthcare and Education Streetscapes Parks and Open Spaces Trail Systems Green Roofs Contract Administration

EXPERT OPINION

OMB Testimony Legal Proceedings Peer Review Research Education December 8, 2014

Tyler Slaght Credit Valley Conservation 1255 Old Derry Road Mississauga, Ontario L5N 6R4

Care of:

Chris Clark Triton Engineering Services Limited 105 Queen Street West, Unit 14 Fergus, Ontario N1M 1S6

Re: Terms of Reference for Hillsburgh Dam Natural Heritage Existing Conditions Report as part of the Municipal Class Environmental Assessment

Dear Tyler,

This letter outlines the draft Terms of Reference (ToR) of the Hillsburgh Dam Natural Heritage Existing Conditions Report. This report is part of the Municipal Class Environmental Assessment (EA) to address the structural state of the existing earthen berm and dam.

Background and Context

The proposed study area for the project is a total of 78.5 hectares, centered on the Hillsburgh Dam and extending up stream to include the Hillsburgh pond, surrounding wetland and associated tributary sections. The study area also extends downstream from the dam to Wellington Road 22 and includes the associated wetlands and woodlands (see Natural Heritage Study Area Map). The larger landscape level context of the area will also be examined to evaluate the significance of the natural heritage features within the broader region.

The study area is contained entirely within the Town of Erin's municipal boundaries and the Credit Valley Conservation's (CVC) jurisdiction. The majority of the study area contains naturalized environments and hosts a wide variety of flora and fauna. Large sections of the study area contain part of the Provincially Significant West Credit Wetland Complex. The open water community of the Hillsburgh pond, created by the Hillsburgh dam is considered a 'rare community' within the region

Our Project No: AA12-137A Sent by email: cclark@trotoneng.on.ca

591 Woolwich Street Guelph . Ontario N1H 3Y5

T: 519.822.6839

F: 519.822.4052

info@aboudtng.com www.aboudtng.com

Urban Forestry

Arborist Reports Management Plans Tree Preservation Plans Tree Risk Assessment GIS Tree Inventories Tree Appraisals Monitoring

ECOLOGICAL RESTORATION

NATURAL SYSTEMS DESIGN HABITAT RESTORATION EDGE MANAGEMENT PLANS RAVINE STEWARDSHIP PLANS NATURALIZATION PLANS INTERPRETIVE DESIGN MONITORING CONTRACT ADMINISTRATION

ENVIRONMENTAL STUDIES

Subwatershed Studies Environmental Impact Statements Ecological Land Classification Wetland Evaluation Vegetation Assessment Botanical Inventories Wildlife Surveys Monitoring

LANDSCAPE ARCHITECTURE

Master Planning Residential Communities Commercial/Industrial Healthcare and Education Streetscapes Parks and Open Spaces Trail Systems Green Roofs Contract Administration

EXPERT OPINION

OMB Testimony Legal Proceedings Peer Review Research Education according to Phase 1 Erin Service and Settlement Master Plan - Environmental Component. The tributaries above and below the dam are classified as cold water tributaries with associated cold water fish communities, whereas the on-line ponds and adjoining sections of tributaries are classified as warm water systems and fish communities. According to the Credit River Fisheries Management Plan, the Hillsburgh Dam is known to have negative fish community impacts through changes to the thermal regimes and imposed barriers to movement (CVC & MNR. 2002).

Proposed Terms of Reference

The ToR, provided below will be based on background natural heritage information (where available) and site visits by Aboud & Associates to collect detailed natural heritage information related to Ecological Land Classification (ELC) communities, flora, fauna, habitat, watercourses and fish. A description of these existing natural heritage features will be detailed. A preliminary assessment will be provided to determine potential impacts and opportunities to natural heritage features from potential design options to address the structural state of the dam.

ToR for the Natural Heritage Existing Conditions Report are listed below.

- 1. Conduct background screening of relevant documents, material and online mapping sources (e.g. NHIC, CVC, MNR-Guelph District, and Wellington County).
- Conduct ELC evaluation and prepare ELC community mapping using available background resources, supplemented with 3 season ELC field evaluations and desktop analysis.
- Complete a 3 season botanical inventory and review of past available inventories to develop a comprehensive list of flora species present. Review and update status of all identified species (SRank; GRank; COSEWIC; COSSARO; Local significance, as listed in Dougan & Associates and Snell & Cecile. 2009).
- 4. Provincially Significant Wetland:
 - a. Review Wetland Evaluation file to determine presence of potentially significant features.
 - b. Confirm accuracy of current wetland boundaries through desktop analysis and consultation with Ontario Ministry of Natural Resources and Forestry(MNRF).
 - c. (Provisional): Confirm and re-stake wetland boundary of areas that are not current and that may be altered through changes to the dam structure. Work with MNRF to have new boundaries approved.
- 5. Bird Surveys:
 - a. Complete breeding bird survey of study area, following the protocol of the Breeding Bird Atlas (Bird Studies Canada. 2001). Confirm the presence or absence of Eastern Meadowlark and Bobolink.
 - b. Assess for the presence of the following Significant Wildlife habitat (MNR. 2000):
 - i. Waterfowl Stopover and Staging areas
 - ii. Shorebird migratory stopover area
 - iii. Song bird migratory area
 - iv. Raptor Wintering area

- 6. Winter Wildlife Survey:
 - a. Conduct a survey for signs or sightings of winter wildlife and their associated habitat. Location of observed species will be recorded and mapped.
 - b. Assess for the presence of the following Significant Wildlife habitats (MNR. 2000):
 - i. Deer wintering yards
 - ii. Deer Movement Corridors
- 7. Anuran Survey: Complete three evening anuran (frog and toad) call counts surveys for all potentially suitable habitat locations. Protocols described in the Marsh Monitoring Program will be followed (Marsh Monitoring Program. 2003).
- Record incidental wildlife observations made during field investigations and combine data with existing wildlife inventories to create a comprehensive wildlife species list. Review and update status of all identified species (SRank; GRank; COSEWIC; COSSARO; Local significance, as listed in Dougan & Associates and Snell & Cecile. 2009).
- 9. Identify, describe and map wildlife habitat areas and assess for significance using Significant Wildlife Technical Guide (MNR. 2000) and MNRF input.
- Identify specialized habitat or potential SAR habitat for SAR's known to occur in Wellington County. Will be completed using MNRF Wellington County SAR and Habitat Requirements Table along with ELC community maps, field investigation and aerial photo interpretation.
- 11. Fish:
- a. Compile fish community records from MNRF and CVC to create a comprehensive fish species list; supplement existing data with additional field sampling if necessary.
- b. Characterise fish habitat within the study area based on thermal regime, vegetation, barriers to movement, depth, pools and riffles, and substrate.
- 12. Assess the landscape level context of the study area within the broader region, including drainage line, migratory corridors, extended ELC communities, wetlands, and adjacent habitat and wildlife linkages. Specific focus of the landscape level context will be on fish communities and their movement within the West Credit River System.
- 13. Prepare an interim summary report of existing natural heritage conditions and a preliminary assessment of potential impacts and opportunities to natural heritage features. Detailed project information of species lists, maps, photographs and GIS files will be provided.

Yours truly,

ABOUD & ASSOCIATES INC.

Rep Month

Ryan Hamelin Terrestrial and Wetland Ecologist

S:\A+A Projects\2012\12-137A Station Street Dam\Proposal

REFERENCES

Bird Studies Canada. 2001. *Ontario Breeding Bird Atlas Guide for Participants*. Environment Canada, Ministry of Natural Resources, Bird Studies Canada, Federation of Ontario Naturalists, and Ontario Field Ornithologists. 43 pp

CVC & MNR. 2002. Credit River Fisheries Management Plan. Credit Valley Conservation Authority and Ministry of Natural Resources. 5-36 pp

- Dougan & Associates and Snell & Cecile. 2009. *Guelph Natural Heritage Strategy. Appendix A: Significant Plant List for Wellington County & Appendix B2: List of Significant Wildlife in Wellington County*. Guelph, Ontario.
- Marsh Monitoring Program. 2003 Edition. *Training Kit and Instructions for Surveying Marsh Birds, Amphibians, and Their Habitats.* Published by Bird Studies Canada in cooperation with Environment Canada and the U.S. Environmental Protection Agency. 44 pp

MNR. 2000. Significant Wildlife Habitat: Technical Guide. Ministry of Natural Resources.

Ryan Hamelin

From:	Slaght, Tyler <tslaght@creditvalleyca.ca></tslaght@creditvalleyca.ca>
Sent:	December-17-14 2:43 PM
То:	'Chris Clark'; 'rose.whalen@ontario.ca'
Cc:	Steven Aboud; Ryan Hamelin; Paul Ziegler
Subject:	RE: Hillsburgh Dam and Bridge Class EA - Natural Heritage Component - Project Terms of Reference

Hi Chris,

CVC has reviewed the terms of reference for the natural heritage component and provide the following comments:

- 1. CVC recommends the limits of the study area on the eastern tributary upstream of the pond be a formal reach break (e.g. road crossing, feature boundary) rather than an arbitrary break.
- 2. List and describe the natural areas on site, including any natural area designations as defined by CVC, the Town of Erin, Wellington County and/or the Ministry of Natural Resources.
- 3. Outline relevant federal, provincial, municipal and agency legislation and policies related to the natural area/s and designations that will be applied to options associated with the dam.
- 4. Please note that while the fish community in the Hillsburgh Pond is characterized by warm water species, the pond is managed as coldwater due to the presence of Brook Trout upstream and downstream of the pond. Mapping in the EA and mitigation measures (e.g. timing windows) should reflect this.
- 5. Review CVC's available water temperature data (to be provided) and fill data gaps as required. A thermal profile of the pond over as long a period as possible should be considered to assess stratification and the dissolved oxygen profile.
- 6. Please note that Round Goby, an invasive aquatic species, have been found upstream and downstream of Hillsburgh Dam. The presence and potential spread of this species should be considered in the EA.
- 7. Breeding bird surveys are to be completed in accordance with the Marsh Monitoring Program (CWS and Bird Studies Canada). That is, two surveys must be conducted at least 10 days apart between late May and July 5th. The surveys must be conducted in either the early morning and/or early evening depending on habitat and potential species present, as per the protocol.
- In addition to the Significant Wildlife Habitat Technical Guide (MNR 2000), the assessment of Significant Wildlife habitat should follow the MNRF's SWH Ecoregion 6E Criterion Schedule. Based on criteria for Ecoregion 6E, data collected by CVC in 2011 and 2012 indicates that the Hillsburgh Pond is Significant Wildlife Habitat for Waterfowl Stopover and Staging Areas (Aquatic).
- 9. Surveys for Species at Risk should target all possible Species at Risk based on the presence of suitable habitat, and not just Meadowlark and Bobolink. Based on the habitat features present CVC questions whether surveys for Meadowlark and Bobolink are warranted. Target species may include, but are not limited to: Blanding's Turtle, Snapping Turtle, Least Bittern, Butternut, Chorus Frog, Barn Swallow, and Species-at-Risk bats. MNRF should be contacted for Species at Risk screening.
- 10. Complete turtle surveys and provide discussion on the suitability of features within the study area for overwintering, nesting and movement habitat.

- 11. In addition to assessing local rarity based on *Guelph Natural Heritage Strategy* (Dougan & Associates and Snell & Cecile, 2009), GPS the location and describe the distribution of all rare or uncommon species based upon *Vascular Plant Flora of the Region of Peel and the Credit River Watershed* (Kaiser, 2001 and amendments). CVC may request detailed mapping of the species occurrence at a later date.
- 12. CVC requests an invitation to be present for the staking of the PSW with the MNRF.
- 13. Identify mitigation measures/restoration opportunities to eliminate and/or minimize negative impacts associated with the preferred option.

Please let me know if you have any questions. Please note I will be out of the office between December 24 returning January 19.

Regards,

Tyler Slaght Regulations Officer Credit Valley Conservation <u>tslaght@creditvalleyca.ca</u> | 905.670.1615 ext 406

From: Chris Clark [mailto:cclark@tritoneng.on.ca]
Sent: December 8, 2014 2:40 PM
To: Slaght, Tyler; 'rose.whalen@ontario.ca'
Cc: Steven Aboud; Ryan Hamelin (ryan@aboudtng.com); Paul Ziegler
Subject: Hillsburgh Dam and Bridge Class EA - Natural Heritage Component - Project Terms of Reference

Hi Tyler/Rose,

I have attached the Natural Heritage portion of the project's Terms of Reference for CVC and MNR review and comment. The Fluvial Geomorpholgy and Hydro technical Terms of Reference will follow under separate cover.

Let us know if you have any questions or require clarification on anything.

Thanks,

Chris Clark, M.A.Sc. E.I.T.

Triton Engineering Services Limited 105 Queen Street West, Unit 14 Fergus, ON N1M 1S6 Tel - (519) 843-3920 • Fax - (519) 843-1943 • <u>www.tritoneng.on.ca</u>

The information contained in this Credit Valley Conservation electronic message is directed in confidence solely to the person(s) named above and may not be otherwise distributed, copied or disclosed including attachments. The message may contain information that is privileged, confidential and exempt from disclosure under the Municipal Freedom of Information and Protection and Privacy Act and by the Personal Information Protection Electronic Documents Act. The use of such personal information except in compliance with the Acts, is strictly prohibited. If you have received this message in error, please notify the sender immediately advising of the error and delete the message without making a copy. Thank you.

Ryan Hamelin

From:	Ryan Hamelin
Sent:	January-06-15 10:34 AM
То:	'Slaght, Tyler'
Cc:	Chris Clark; Steven Aboud; Larry Van Wyck
Subject:	RE: Hillsburgh Dam and Bridge Class EA - Natural Heritage Component - Project Terms
	of Reference

Hello Tyler,

Thank you for your comments on our proposed Terms of Reference (ToR) for the Hillsburgh Dam EA.

Throughout this process we want to be as efficient as possible in our project, and to make sure we are not completing any unnecessary work or analyses. Based on that, is there any proposed actions in our initial ToR that the CVC feels would not need to be included as part of the EA process?

Based on your provided comments there are a few points that we would like some clarification on before finalizing our ToR. I have addressed each of your comments below and where applicable requested additional information or clarification on a few of the points (4,5,7,8,9).

CVC Comments and Aboud & Associates Notes:

- 1. CVC recommends the limits of the study area on the eastern tributary upstream of the pond be a formal reach break (e.g. road crossing, feature boundary) rather than an arbitrary break.
 - This can be accommodated by moving the study boundary downstream approximately 100 m to Covert Lane in Hillsburgh. The further upstream reaches will still be included in the landscape level analysis already proposed. An updated study area map has been provided to show the new limits of the study area.
- 2. List and describe the natural areas on site, including any natural area designations as defined by CVC, the Town of Erin, Wellington County and/or the Ministry of Natural Resources.
 - This is already accounted for as part of the background screening outlined in Term 1 of the proposed Terms of Reference. We will re-write the Term to more directly address your comment in the final ToR.
- 3. Outline relevant federal, provincial, municipal and agency legislation and policies related to the natural areas and designations that will be applied to options associated with the dam.
 - This is already accounted for as part of the background screening outlined in Term 1 of the proposed Terms of Reference. We will re-write the Term to more directly address your comment in the final ToR.
- 4. Please note that while the fish community in the Hillsburgh Pond is characterized by warm water species, the pond is managed as coldwater due to the presence of Brook Trout upstream and downstream of the pond. Mapping in the EA and mitigation measures (e.g. timing windows) should reflect this.
 - This difference between the actual thermal regime and associated fish species vs. how the Hillsburgh Pond is managed will be noted and may have implications around recommended mitigation measures. Are the two ponds directly downstream from the Hillsburgh Pond also managed in the same way (i.e. Cold water)? Besides timing windows, are there other CVC active fish management decisions or actions associated with cold water management?

- 5. Review CVC's available water temperature data (to be provided) and fill data gaps as required. A thermal profile of the pond over as long a period as possible should be considered to assess stratification and the dissolved oxygen profile.
 - We have already received temperature Data from CVC that has continuous monitoring from June 3rd to November 15th for 2013. From this data we can assess temperature profiles of the distinct tributary reaches and comment on the seasonal fluctuations. Does CVC have Temperature data for additional years? The data we have already received appears to be a complete and accurate temperature profile for the study area and I would not anticipate collecting additional temperature data.
 - Does CVC already have the data on lake stratification and dissolved oxygen profile, or would this be something that has to be collected? If the data has not been collected could you expand on the expectation of the study as well as the relevance to the Dam EA and how it should be used to assess impacts or determine best options?
- 6. Please note that Round Goby, an invasive aquatic species, have been found upstream and downstream of Hillsburgh Dam. The presence and potential spread of this species should be considered in the EA.
 - We can specifically assess the potential impact of Round Goby movement and habitat as part of our already proposed background fish screening studies to be completed. Since the CVC and MNRF already have records of the Goby upstream and downstream of the Dam I wouldn't expect any additional sampling to be required.
- 7. Breeding bird surveys are to be completed in accordance with the Marsh Monitoring Program (CWS and Bird Studies Canada). That is, two surveys must be conducted at least 10 days apart between late May and July 5th. The surveys must be conducted in either the early morning and/or early evening depending on habitat and potential species present, as per the protocol.
 - This was part of our initial ToR, but was under a different protocol reference. The actual study
 methodology is the same between the ToR and CVC comments and will be completed in accordance
 to the Marsh Monitoring Program.
 - Part of the data already received from the CVC includes a two visit Breeding Bird Survey Completed by Bob Curry in June and July 2009. Can this data be used to fulfil the Breeding Bird Survey Requirements of the EA, or does a new full Breeding Bird Survey need to be completed? If the CVC survey suffices, could the meta data such as study area maps be provided ?
- In addition to the Significant Wildlife Habitat Technical Guide (MNR 2000), the assessment of Significant Wildlife habitat should follow the MNRF's SWH Ecoregion 6E Criterion Schedule. Based on criteria for Ecoregion 6E, data collected by CVC in 2011 and 2012 indicates that the Hillsburgh Pond is Significant Wildlife Habitat for Waterfowl Stopover and Staging Areas (Aquatic).
 - The SWH Ecoregion 6E Criterion Schedule will be used in conjunction with the Significant Wildlife Habitat Technical Guide.
 - Can the detailed data from the past CVC SWH studies be provided?
- 9. Surveys for Species at Risk should target all possible Species at Risk based on the presence of suitable habitat, and not just Meadowlark and Bobolink. Based on the habitat features present CVC questions whether surveys for Meadowlark and Bobolink are warranted. Target species may include, but are not limited to: Blanding's Turtle, Snapping Turtle, Least Bittern, Butternut, Chorus Frog, Barn Swallow, and Species-at-Risk bats. MNRF should be contacted for Species at Risk screening.
 - Our initial Terms of Reference proposed a background Species at Risk Habitat Screening using the Wellington MNRF SAR list. Consultation with MNRF has started regarding their requirements for

Specie at Risk surveys, techniques and to identify specific target species. The CVC will be provided a list of proposed species at risk to be surveyed for based on consultation with MNRF.

- 10. Complete turtle surveys and provide discussion on the suitability of features within the study area for overwintering, nesting and movement habitat.
 - Will be added to our terms of reference. Consultation with MNRF has started regarding requirements and methodology for Turtle surveys.
- 11. In addition to assessing local rarity based on *Guelph Natural Heritage Strategy* (Dougan & Associates and Snell & Cecile, 2009), GPS the location and describe the distribution of all rare or uncommon species based upon *Vascular Plant Flora of the Region of Peel and the Credit River Watershed* (Kaiser, 2001 and amendments). CVC may request detailed mapping of the species occurrence at a later date.
 - This component will be added to our ELC surveys and plant inventories field surveys and mapped.
- 12. CVC requests an invitation to be present for the staking of the PSW with the MNRF.
 - Wetland boundary delineation was included as a provisional item in the ToR if the existing wetland boundary was found to be inaccurate and needed to be refined. If boundaries are staked and redelineated for any portions of the study area CVC would be informed and invited to participate in the approval of the new boundary delineation. Based on preliminary interpretation of the current wetland boundary and ortho images it appears the delineated boundary may be a reasonably accurate representation of the actual wetland feature. It is our opinion that the wetland boundary would only need to be re-delineated if found to be inaccurate and unsuitable for identifying preferred EA options.
 - Could you please comment as to CVC's position regarding if portions of the wetland boundary need to be re-delineated as part of the existing features study, or if the 2005 MNRF updated boundary should suffice.
- 13. Identify mitigation measures/restoration opportunities to eliminate and/or minimize negative impacts associated with the preferred option.
 - As part of the EA, opportunities for mitigation / restoration of the preferred options will be provided.

It should also be noted that the majority of the study area is on private property and access has not yet been granted for large sections of the Natural Heritage study area. Communication with landowners is ongoing and permission to access properties has been requested. However, it is still likely that much of the proposed study area will not be accessible. In these instances, where access to portions of the study area are not granted, alternative study methods such as observation from adjacent lands, orthophotography analysis, and background materials will be used to characterise the existing conditions of the property.

Thank you Tyler for reviewing the ToR and providing detailed comments. Perhaps it would be best to have a phone conversation to clarify the above points and to better understand the CVC's positions. If you could let me know if there is a time we could talk that would be appreciated.

We look forward to hearing back from you.

Ryan Hamelin

Ryan Hamelin

From:	Slaght, Tyler <tslaght@creditvalleyca.ca></tslaght@creditvalleyca.ca>
Sent:	January-23-15 10:13 AM
То:	Ryan Hamelin
Cc:	'Chris Clark'
Subject:	RE: Hillsburgh Dam and Bridge Class EA - Natural Heritage Component - Project Terms of Reference

Hi Ryan,

We've put together some responses to your questions, see below. If have you any further questions, perhaps our ecology staff can chat with you, it probably makes more sense for something like this. Let me know which points you still have questions about and I'll arrange to have them call you.

#4. The 2 ponds downstream of the Station Street pond are also managed the same way (i.e. warmwater species present but managed for the coldwater species that are up and downstream). The only other "formal" management action that was in the Credit River Fisheries Management Plan would be requesting a 30m buffer rather than a 15m buffer.

#5. Continuous Temperature logging data for six sites in the summer of 2014 is available. CVC has no data on water temperatures or dissolved oxygen levels in the pond. This would be useful for assessing the existing impacts of the pond (e.g. does it stratify, do anoxic conditions exist) and benefits of some mitigation options (e.g. installation of a bottom draw and determining discharge volumes).

#6. No additional surveys for Round Goby are needed.

#7: Additional surveys are required as Bob Curry's surveys were completed over a smaller study area and did not include the pond. The meta data can be provided.

#8: As above, no concerns with providing the data.

#12: As indicated in the ToR, CVC is of the understanding that staking of the wetland boundary is provisional and dependent upon consultation with MNRF. If MNRF determines that the PSW boundary requires staking, CVC requests an invitation to be present.

For the additional information above we will put that together and send it to you as soon as possible.

Regards,

Tyler Slaght Regulations Officer Credit Valley Conservation tslaght@creditvalleyca.ca | 905.670.1615 ext 406

From: Ryan Hamelin [mailto:ryan@aboudtng.com] **Sent:** January 21, 2015 11:01 AM **To:** Slaght, Tyler

Ministry of Natural Resources and Forestry

Ministère des Richesses naturelles et des Forêts

Guelph District 1 Stone Road West Guelph, Ontario N1G 4Y2 Telephone: (519) 826-4955 Facsimile: (519) 826-4929

January 26, 2015

Ryan Hamelin Aboud & Associates Inc. 591 Woolwich Street Guelph, ON N1H 3Y5

Dear Mr. Hamelin

Re: Terms of Reference for Hillsburgh Dam, Natural Heritage Existing Conditions Report As Part of the Municipal Class Environmental Assessment

The Ministry of Natural Resources and Forestry Guelph District Office (MNRF) had a chance to review the attached terms of reference (ToR) for the Hillsburgh dam regarding the existing natural heritage conditions report as part of the Municipal Class Environmental Assessment and offer the following comments:

 If the order in which the surveys/screening presented in the ToR is in chronological order, it may be beneficial for the survey to identify specialized habitat or potential SAR habitat for SAR to occur immediately after the Ecological Land Classification (ELC) evaluation.

This may inform the types of surveys required for the subject properties.

- Some of the described surveys may be limited due to property access. How does Aboud & Associates plan to resolve this?
- A proposed clarification in the Background and Context section, regarding the comment "whereas the on-line ponds and adjoining sections of tributaries are classified as warm water systems and fish communities". This should be amended to reflect that the stream sections between the Hillsburgh and Ainsworth pond and between Ainsworth and Rudd pond have coldwater fish communities.
- Regarding 5 a. Bird surveys, confirm the presence of other SAR along with Eastern Meadowlark and Bobolink.
- Regarding 6 b. i, Deer wintering yards are referred to as Deer Winter Congregation Areas in this area.

Thank you for giving us the opportunity to review. If you have any questions, please do not hesitate to contact me

Sincerely.

Rose Whalen T: 519-826-4910

To meet with our staff please be sure to call ahead and make an appointment. For general information visit: <u>www.mnr.gov.on.ca</u> or <u>www.ontario.ca</u>

591 Woolwich Street Guelph . Ontario N1H 3Y5

T: 519.822.6839

F: 519.822.4052

info@aboudtng.com www.aboudtng.com

Urban Forestry

Arborist Reports Management Plans Tree Preservation Plans Tree Risk Assessment GIS Tree Inventories Tree Appraisals Monitoring

ECOLOGICAL RESTORATION

NATURAL SYSTEMS DESIGN HABITAT RESTORATION EDGE MANAGEMENT PLANS RAVINE STEWARDSHIP PLANS NATURALIZATION PLANS INTERPRETIVE DESIGN MONITORING CONTRACT ADMINISTRATION

Environmental Studies

Subwatershed Studies Environmental Impact Statements Ecological Land Classification Wetland Evaluation Vegetation Assessment Botanical Inventories Wildlife Surveys Monitoring

LANDSCAPE ARCHITECTURE

Master Planning Residential Communities Commercial/Industrial Healthcare and Education Streetscapes Parks and Open Spaces Trail Systems Green Roofs Contract Administration

EXPERT OPINION

OMB Testimony Legal Proceedings Peer Review Research Education April 10, 2015

Tyler Slaght Credit Valley Conservation 1255 Old Derry Road Mississauga, Ontario L5N 6R4

c/o:

Chris Clark Triton Engineering Services Limited 105 Queen Street West, Unit 14 Fergus, Ontario N1M 1S6

Re: Proposed Targeted Species at Risk Survey

Dear Tyler,

As requested, Aboud & Associates Inc. have undertaken a review of all Species at Risk (SAR) which may occur in the project location using the Wellington County MNRF species at risk list.

The following targeted surveys for SAR are proposed for the Hillsburgh dam, existing conditions report. Species which were not considered likely in the project location are discussed in brief, following the recommended surveys, and the specifics of their exclusion. The accompanied summary table includes proposed surveys for all SAR within Wellington County, including SAR surveys which follow general survey protocols (e.g. Breeding Bird Protocol).

Our Project No: AA12-137A Sent by email: cclark@trotoneng.on.ca

Jefferson Salamander Surveys

Likelihood of occurrence: Possible, populations located north-east of project location in Orangeville area and east of project location, south of Caledon.

Proposed field work:

 In 2015, Visual surveys for *Ambystoma* egg masses in candidate ponds identified during initial site visit will be inspected in early April by a qualified wildlife ecologist to determine the presence or absence of any *Ambystoma* species occurring in the project location. Jefferson Salamanders are one of three *Ambystoma* species in Ontario, these survey will help to determine the possible presence of Jefferson Salamander within the Study area. Site visit timings will occur within less than 15 days of approximate salamander movement windows, in order to ensure salamander egg hatches have not yet occurred.

Survey Methods: Visual inspection of any candidate pools will be performed on sunny cloudless days in April, using polarized lenses, with no entry into candidate pools. All egg masses will be identified based on characteristics as frog, toad or salamander, with no effort to determine salamander species in order to avoid disturbance of egg masses and entry into ponds.

 Should Ambystoma egg masses occur in candidate habitat during 2015 visual surveys, application for permits and subsequent field planning for salamander trapping surveys would be expected to occur in late March-early April 2016, after acquiring all permits and training personnel. Survey methods will follow the Jefferson Salamander sampling protocol as provided by the Guelph MNR (2013).

Bat Maternity Roost Surveys

Likelihood of occurrence: probable, all three species are found throughout Ontario.

Target Species: Eastern small-footed Myotis (*Myotis Leibii*), Little Brown Myotis (*Myotis lucifugus*), and Northern Myotis (*Myotis septentrionalis*)

Proposed Desktop work:

1. Identification of all ELC communities (FOD, FOM, FOC, SWD, SWM, SWC) which may be considered candidate bat maternity habitat, following guidelines provided in the bat and bat habitat: guidelines for wind projects (2011), will be treated as confirmed habitat and appropriate mitigation will be applied as outlined below. This proposed methodology is based on communication with Guelph District MNRF, which "only recommend surveys if there is potential for impacts to the hibernation or roost habitat." (pers. comm. Graham. Buck 2015)

Mitigation recommendations- tree removal must occur outside bat maternity season, from September-April, in all habitats considered candidate bat maternity habitat based on ELC results.

Turtle Basking Surveys

Likelihood of occurrence: Blanding's turtle-Possible, populations occur in the vicinity of Guelph and Luther Marsh. Snapping turtle-Probable, populations occur throughout southern Ontario. Spotted turtle-unlikely, populations of spotted turtle are generally found in the vicinity of Georgian Bay and along the Lake Erie shoreline.

Target species: Blanding's turtle (Emydonidea Blandingii), snapping turtle (chelydra serpentine), spotted turtle (Clemmys guttata)

Proposed field work:

A total of 5 Basking surveys in all candidate habitats within the project location will be conducted in 2015 following the MNR Guelph district Blanding's survey protocol (2012). Basking surveys, including overwintering (late march-early April) and summer habitat (late April-June 15), will be conducted in all waterbodies and wetlands.

Methods: All shorelines and potential basking sites in the project location will be surveyed from the sunlit side using high power binoculars or a spotting scope. If shorelines are obstructed by vegetation, surveys will be conducted from canoe or while wearing waders in water as required; provided that access is granted. Between late March and early May, surveys will be conducted between 9am and 5pm. between late May and early June turtles are less reliably found late in the day, as a result surveys will occur between 9am and 12pm. When temperatures fall between 6c and 10c, surveys may only occur on sunny days with no wind between 10am and 5pm, at full sunlight basking sites. When temperatures fall between 10c and 25c, surveys will be conducted between 9am and noon on sunny days.

Snake Visual Encounter and Active Hand Search Surveys

Target Species: Eastern ribbonsnake (*Thamnophis sauritus*), milksnake (*Lamptropeltis Triangulum*)

Proposed field work:

Visual encounter and active hand search surveys will occur from late April through late June in all candidate habitats identified during initial ELC screening and site visit. A minimum of 3 surveys, two weeks apart, searching all suitable habitats and flipping any natural or naturalized cover, will occur in all suitable habitat identified in the project location.

Methods: surveys will occur on sunny days when air temperatures are between 8c and 25c, and on overcast day's air temperatures must be above 15c. Surveys will follow pre-determined transects, traversing all areas of suitable habitat for both eastern ribbonsnake and milksnake.

West Virginia White Visual Survey

Likelihood of occurrence: possible, species host plant occurs in the project location.

Proposed field work:

Visual surveys for adults and caterpillars will occur within moist, deciduous woodlands in areas where two-leaved toothwort has been previously identified by the CVC. Surveys will be conducted during spring botanical surveys. Caterpillars feed on the two-leaved toothwort which blooms from April to June. Caterpillars will be looked for carefully on the host plant.

Species that are unlikely to occur in the project location for which targeted surveys exist:

Barn Owl- No habitat is present within the project location, barn owl have not been identified as occurring in the vicinity of the project location. During the second breeding bird Atlas, a single Barn owl was identified in Wellington County with no confirmation on breeding status. This species is unlikely to occur in the project location.

Bobolink and Eastern meadowlark- these grassland bird species are unlikely to occur in the project location, no grassland habitat, pasture or fallow fields were identified through air photo interpretation or initial site visits. Presence/absence will be confirmed through Breeding bird Surveys.

Nightjar survey (Common nighthawk and Whip-poor-will) – habitat for these species was not identified in the project location based on air photo interpretation and initial site visit. As a result, no additional targeted surveys are recommended.

Least bittern – No suitable habitat was identified in the project location. Targeted surveys are not recommended. General Marsh monitoring playback surveys for marsh birds will occur in appropriate habitat in the project location.

Short-eared owl - No suitable habitat was identified in the project location. Targeted surveys are not recommended.

Fish Species at Risk- Black redhorse, Redside Dace and Silver Shiner were not documented in past fish surveys conducted by MNRF or CVC. Ideal habitat is not present. No surveys to be conducted.

Rusty-patched bumble- Not documented in project location. No suitable habitat was identified in the project location. Discussion with Graham Buck at the MNRF indicates that there is no requirement to complete targeted surveys for this species in the project location, if a bee is identified as suspect, photos and UTM will be recorded during botanical surveys.

Mollusc Species at Risk – Rainbow mussel and Wavy-rayed lampmussel have not been identified in the Upper Credit River, Ideal habitat is not present in project location, not detected during previous aquatic sampling.

Butler's gartersnake- Ideal habitat for this species is unlikely to occur in the project location based on air photo interpretation and initial site visit. Butler's gartersnake occur in fragmented populations in Ontario, the nearest population is located in Luther marsh, which is ~30km from the project location. One home range study in Michigan indicated that Butler's gartersnake occupy a very small home range, with a maximum distance of 300m. It is unlikely that Butler's gartersnake would occur in the Project location as a result of the distance to the nearest known population.

Massasauga rattlesnake- Ideal habitat is unlikely to occur in the project location. This species is only known to occur historically in Wellington County; as a result, it is unlikely to occur in the project location.

Yours truly, **ABOUD & ASSOCIATES INC.**

My Ame from

Cheryl-Anne Ross, B.Sc., Wildlife Ecologist

Repor Mondi

Ryan Hamelin, M.Sc, Terrestrial and Wetland Ecologist

cc. P. Ziegler, Triton Engineering Services Ltd

- C. Clark, Triton Engineering Services Ltd
- R. Whalen, Ministry of Natural Resources and Forestry

WELLINGTON - U	oper Tier - N	INRF SAR List]
Species Al ENDANGERED THREATENED SPECIAL CONCERN EXTIRPATED			
AMPHIBIANS		ESA Protection	Proposed Survey Action
Jefferson Salamander (Ambystoma jeffersonianum)	Known to Occur	Species Protection and Habitat Regulation	Targeted Survey - Egg Survey
BIRDS		ESA Protection	Proposed Survey Action
Acadian Flycatcher (<i>Empidonax</i> virescens)	Suspected to Occur	Species and General Habitat Protection	Breeding Bird Survey
Bald Eagle (Haliaeetus leucocephalus)	Known to Occur	N/A	Breeding Bird Survey
Bank Swallow (Riparia riparia)	Known to Occur	Species and General Habitat Protection June 27, 2014	Breeding Bird Survey
Barn Owl (<i>Tyto alba</i>)	Known to Occur	Species Protection and Habitat Regulation	Breeding Bird Survey - No targeted night survey based on lack of suitable habitat
Barn Swallow (Hirundo rustica)	Known to Occur	Species and General Habitat Protection	Breeding Bird Survey
Black Tern (Childonias niger)	Known to Occur	N/A	Breeding Bird Survey
Bobolink (<i>Dolichonyx oryzivorus</i>)	Known to Occur	Species and General Habitat Protection	Breeding Bird Survey
Canada Warbler (Cardellina canadensis)	Suspected to Occur	N/A	Breeding Bird Survey
Cerulean Warbler (Setophaga cerulea)	Known to Occur	Species and General Habitat Protection	Breeding Bird Survey
Chimney Swift (Chaetura pelagica)	Known to Occur	Species and General Habitat Protection	Breeding Bird Survey
Common Nighthawk (Chordeiles minor)	Known to Occur	N/A	Breeding Bird Survey- No additional targeted survey based on lack of appropriate habitat.
Eastern Meadowlark (Sturnella Magna)	Known to Occur	Species and General Habitat Protection	Breeding Bird Survey - Three survey days to confirm absence
Eastern Wood-Pewee (<i>Contopus virens</i>)	Known to Occur	N/A	Breeding Bird Survey
Eastern Whip-poor-will <i>(Caprimlugus vociferus)</i>	Known to Occur	Species and General Habitat Protection	Breeding Bird Survey- No additional survey based on lack of appropriate habitat.
Golden-winged Warbler (Vermivora chrysoptera)	Known to Occur	N/A	Breeding Bird Survey
Henslow's Sparrow (Ammodramus henslowii)	Known to Occur	Species and General Habitat Protection	Breeding Bird Survey
Least Bittern (Ixobrychus exilis)	Known to Occur	Species and General Habitat Protection	Breeding Bird Survey- No additional survey based on lack of appropriate habitat.
Loggerhead Shrike (Lanius Iudovicianus)	Historically Known to Occur	Species and General Habitat Protection	Breeding Bird Survey

Aboud & associates inc.

Hillsburgh Dam EA: SAR Summary Table Proposed Targeted Species at Risk Surveys

BIRDS		ESA Protection	Proposed Survey Action
Louisiana Waterthrush (Seiurus	Suspected to		
motacilla)	Occur	N/A	Breeding Bird Survey
Northern Bobwhite (Colinus virginianus)	Known to Occur	Species and General Habitat Protection	Breeding Bird Survey
Olive-sided Flycatcher (Contopus cooperi)	Suspected to Occur	N/A	Breeding Bird Survey
Red-Headed Woodpecker (Melanerpes erythrocephalus)	Known to Occur	N/A	Breeding Bird Survey
Short-eared Owl (Asio flammeus)	Known to Occur	N/A	Breeding Bird Survey - No targeted night survey based on lack of habitat
Wood Thrush (Hylocichla mustelina)	Known to Occur	N/A	Breeding Bird Survey
Yellow-breasted Chat (Icteria virens)	Historically Known to Occur	Species and General Habitat Protection	Breeding Bird Survey
FISH		ESA Protection	Proposed Survey Action
Black Redhorse (Moxostoma duquesnei)	Known to Occur	Species and General Habitat Protection	Not identified in past MNRF or CVC sampling. No targeted survey to be conducted.
Redside Dace (Clinostomus elongatus)	Known to Occur	Species Protection and Habitat Regulation	Not identified in past MNRF or CVC sampling. No targeted survey to be conducted.
Silver Shiner (Notropis photogenis)	Known to Occur	Species and General Habitat Protection	Not identified in past MNRF or CVC sampling. No targeted survey to be conducted.
INSECTS		ESA Protection	Proposed Survey Action
Monarch Butterfly (Danaus plexippus)	Known to Occur	N/A	Survey following MNRF survey protocol
Rusty-patched Bumble Bee (Bombus affinis)	Formerly Occurred and May Still Occur	Species and General Habitat Protection	Incidental observation during plant surveys. (pers. Comm. Graham Buck 2015)
West Virginia White (Pieris virginiensis)	Known to Occur	N/A	Survey following MNRF survey protocol
MAMMALS		ESA Protection	Proposed Survey Action
Eastern Small-footed Myotis (Myotis leibii)	Suspected to Occur	Species and General Habitat Protection as of June 27, 2014	Desktop habitat identification, following Guideline for Wind Projects (2011)
Grey Fox (Urocyon cineroargenteus)	Known to Occur	Species and General Habitat Protection	Winter Wildlife survey and incidental wildlife. No targeted survey
	Occui	TIDLECLION	based on habitat and past observations.
Little Brown Myotis (Myotis lucifugus)	Known to	Species and General Habitat Protection	Desktop habitat identification, following Guideline for Wind Projects (2011)
	Known to	Species and General Habitat	Desktop habitat identification, following Guideline for Wind Projects
Little Brown Myotis (Myotis lucifugus) Northern Myotis (Myotis septentrionalis)	Known to Occur Known to	Species and General Habitat Protection Species and General Habitat Protection	Desktop habitat identification, following Guideline for Wind Projects (2011) Desktop habitat identification, following Guideline for Wind Projects (2011)
Little Brown Myotis (Myotis lucifugus) Northern Myotis (Myotis	Known to Occur Known to	Species and General Habitat Protection Species and General Habitat	Desktop habitat identification, following Guideline for Wind Projects (2011) Desktop habitat identification, following Guideline for Wind Projects

Hillsburgh Dam EA: SAR Summary Table Proposed Targeted Species at Risk Surveys

PLANTS		ESA Protection	Proposed Survey Action
American Chestnut (Castanea dentata)	Known to Occur	Species and General Habitat Protection	Plant Inventory
American Ginseng (Panax quinquefolius)	Known to Occur	Species and General Habitat Protection	Plant Inventory
Butternut (Juglans cinerea)	Known to Occur	Species and General Habitat Protection	Plant Inventory
Hill's Pondweed (Potamogeton hillii)	Known to Occur	N/A	Plant Inventory
REPTILES		ESA Protection	Proposed Survey Action
Blanding's Turtle <i>(Emydonidea blandingii)</i>	Known to Occur	Species and General Habitat Protection	Turtle Survey - Blanding's Turtle Protocol
Butler's Gartersnake (Thamnophis butleri)	Known to Occur	Species and General Habitat Protection	No Targeted Survey - Unlikely to occur in project study area based on habitat
Eastern Ribbonsnake (Thamnophis sauritus)	Known to Occur	N/A	Visual Encounter and Active Hand Search Surveys
Massassauga Rattlesnake (Sistrurus catenatus)	Historically Known to Occur	Species and General Habitat Protection	No Targeted Survey - Unlikely to occur in project study area based on habitat
Milksnake (Lampropeltis triangulum)	Known to Occur	N/A	Visual Encounter and Active Hand Search Surveys
Snapping Turtle (Chelydra serpentina)	Known to Occur	N/A	Turtle Survey - Blanding's Turtle Protocol
Spotted Turtle (Clemmys guttata)	Known to Occur	Species and General Habitat Protection	Turtle Survey - Blanding's Turtle Protocol

Ryan Hamelin

From:	Slaght, Tyler <tslaght@creditvalleyca.ca></tslaght@creditvalleyca.ca>
Sent:	April-13-15 1:06 PM
То:	Ryan Hamelin
Cc:	Cheryl-Anne Ross; Chris Clark; Paul Ziegler; Whalen, Rose (MNRF)
Subject:	RE: Hillsburgh Dam and Bridge Class EA - Natural Heritage Component - Project Terms
	of Reference

Hi Ryan,

This looks good to us.

Regards,

Tyler Slaght Regulations Officer Credit Valley Conservation <u>tslaght@creditvalleyca.ca</u> | 905.670.1615 ext 406

From: Ryan Hamelin [mailto:ryan@aboudtng.com]
Sent: April 10, 2015 2:41 PM
To: Slaght, Tyler
Cc: Cheryl-Anne Ross; Chris Clark; Paul Ziegler; Whalen, Rose (MNRF)
Subject: FW: Hillsburgh Dam and Bridge Class EA - Natural Heritage Component - Project Terms of Reference

Hi Tyler,

I hope you are doing well.

In response to Comment 9. of CVC's earlier Terms of Reference review, Aboud & Associates have completed a SAR Targeted Survey proposal for all SAR possibly present within the Hillsburgh Dam Study Area, based on available habitat. A SAR habitat assessment was completed based on winter field observations, background resources and orthophotography interpretation. A proposed list of possible SAR was circulated to MNRF Guelph District for comments and recommendation on survey protocol.

The attached letter details our proposed survey protocol for specie specific targeted surveys or desk top analysis's. The accompanying table outlines the proposed action for all Wellington County SAR. Please let us know if you have any comments or recommendation regarding our proposed SAR Survey approach.

Also, I would like to introduce you to Aboud & Associates newest staff Member, Cheryl-Anne Ross. Cheryl-Anne is our new Wildlife Ecologist and will be leading the wildlife portion of the Hillsburgh Dam EA.

Thanks,

Ryan Hamelin

APPENDIX 3. SITE INVESTIGATION DETAILS Hillsburgh Dam Environmental Assessment, Natural Heritage - Existing Conditions

				Г				
SURVEY	DATE	TIME	OBSERVER(S)	TEMP	WIND	CLOUD COVER	PRECIPITATION	PRECIPITATION - PAST 24h
Winter Wildlife	25/02/2015	10:00-16:35	R. Hamelin, M. Iles	-10	2	20	none	snow-1cm
Anuran	15/04/2015	20:31-22:04	C.A. Ross, R.Hamelin	7	1	10	none	none
Salamander Egg Mass Survey	15/04/2015	13:30-17:45	C.A., Ross, R. Hamelin	12	2	5	none	none
Snake Basking	15/04/2015	13:30-17:45	C.A., Ross, R. Hamelin	12	2	5	none	none
Wildlife Habitat Assessment-spring	15/04/2015	13:30-17:45	C.A., Ross, R. Hamelin	12	2	5	none	none
Snake Basking	29/04/2015	9:00-13:00	C.A. Ross, R. Hamelin	10	2	15	none	none
Turtle Basking	29/04/2015	9:25-11:30	C.A. Ross, R.Hamelin	10	1	10	none	none
Turtle Basking	08/05/2015	9:20-11:00	C.A. Ross	19	1	10	none	none
ELC Spring	13/05/2015	9:30 -16:45	R. Hamelin	8	3		none	rain
Snake Basking	14/05/2015	11:30- 12:30	R. Hamelin	16	2	10	none	none
ELC Spring	14/05/2015	12:30- 17:00	R. Hamelin	17	2		none	none
Turtle Basking	15/05/2015	10:10-11:31	R. Hamelin	11	2	10	none	none
ELC Spring	22/05/2015	9:00-16:45	R. Hamelin	12	3		none	none
Anuran	28/05/2015	21:25-22:55	C.A. Ross, R.Hamelin	19	1	0	none	none
Turtle Basking	28/05/2015	10:27-11:45	C.A. Ross	18	2	0	none	rain
Breeding Bird	11/06/2015	7:00-10:53	C.A. Ross	17	3	10	none	rain
Marsh Breeding Birds	11/06/2015	7:00-11:01	C.A. Ross	17	3	10	none	rain
Turtle Basking	11/06/2015	9:10-10:47	R. Hamelin	17	2	20	none	rain
ELC Spring	11/06/2015	12:30- 16:30	R. Hamelin	22	2		rain	rain
Anuran	24/06/2015	21:37-22:54	C.A. Ross, R.Hamelin	16	1	0	none	none
Breeding Bird	09/07/2015	6:22-10:23	C.A. Ross	14	0	80	none	none
Marsh Breeding Birds	09/07/2015	6:22-10:30	C.A. Ross	14	0	80	none	none
ELC Summer	30/07/2015	9:00-16:45	R. Hamelin	27	2		none	none
Shorebird Habitat Assessment	05/08/2015	9:30-10:15	C.A. Ross	17	3	10	none	none
Shorebird Survey	05/08/2015	9:30-10:15	C.A. Ross	17	3	10	none	none
Wetland Boundary Verification	05/08/2015	9:00-14:45	R. Hamelin	23	2		none	rain
ELC Summer	05/08/2015	10:00- 17:00	R. Hamelin	23	2		none	rain
ELC Summer	10/08/2015	9:00-14:45	R. Hamelin	22	1		rain	none
ELC Fall	24/09/2015	10:00- 17:00	R. Hamelin	24	1		none	none
ELC Fall	25/09/2015	9:30 -16:45	R. Hamelin	22	2		none	none
Songbird Migration	08/10/2015	7:20-9:40	C.A. Ross	5	1	0	none	none
Wildlife Habitat Assessment-fall	08/10/2015	9:40-11:00	C.A. Ross	5	1	0	none	none
Aquatic Habitat Assesment	19/10/2015	9:00-14:00	R. Hamelin	13.5	2	5	rain	none

ELC Code	Map ID	Vegetation Type	Community Description
Mixed Meadow (MEN	1)	1	1
MEMM3	12	Dry - Fresh Mixed Meadow Ecosite	This community is of cultural influence with evidence of past disturbance and clearing. The community is dominated by a mixture of Fringed Brome (<i>Bromus ciliates</i>), Common Milk Weed (<i>Asclepias syriaca</i>), Tall Goldenrod (<i>Solidago altissima</i>), Canada Goldenrod (<i>Solidago canadensis</i>) and a variety of Aster species. A mixture of small shrub and trees are present along the edge of the community where vegetation clearing has not occurred recently.
Coniferous Forest (F	OC)		
FOCM2-2	5	Dry-Fresh White Cedar Coniferous Forest	This community is composed almost entirely of Eastern White Cedar (<i>Thuja occidentalis</i>) with little to no understory or ground cover. The Cedar community is dense with some individuals in poor condition due to overcrowding. Soil is a well-drained mineral soil on a moderate slope.
FOCM6	27	Naturalized Coniferous Plantation	Access was not available for this community. ELC is based on observations from a distance and through air photo interpretation. The community is a Naturalized Coniferous Plantation containing approximately equal amounts of mature Norway Spruce (<i>Acer platanoides</i>), White Spruce (<i>Picea glauca</i>), Eastern White Pine (<i>Eastern White Pine</i>) and White Cedar. Understory and ground cover communities are unknown, as well as soil and moisture properties.
FOCM6	6	Naturalized Coniferous Plantation	This community is of cultural influences, with evidence of past disturbance and plantings. The canopy is comprised of a mixture of primarily planted species with some volunteer establishment of native tree species from surrounding communities. Dominant canopy species include; European Larch (<i>Larix decidua</i>) and White Pine, with White Ash (<i>Fraxinus americana</i>), Red Oak (<i>Quercus rubra</i>), Sugar Maple (<i>Acer saccharum ssp. saccharum</i>), Black Cherry (<i>Prunus serotina</i>), Balsam Fir (<i>Abies balsamea</i>) and White Cedar associates. Sub-canopy and understory is dense in areas, with Choke Cherry (<i>Prunus virginiana</i>), Domestic Apple (<i>Malus pumila</i>), European Buckthorn (<i>Rhamnus cathartica</i>), and Tartarian Honeysuckle (<i>Lonicera tatarica</i>).
			The Community contains an inclusion of Dry-Fresh Forb Meadow Ecosite (MEFM1) composed primarily of Tall Goldenrod, Canada Goldenrod, New England Aster (<i>Symphyotrichum novae-angliae</i>) and White Heath Aster (<i>Symphyotrichum ericoides var. ericoides</i>).
Mixed Forest (FOM)			
FOMM7-2	23	Fresh - Moist White Cedar - Hardwood Mixed Forest	This narrow community occurs between the Elora-Cataract Trail way and residential properties. Co-dominant species within the community are Eastern White Cedar and White Birch (<i>Betula papyrifera</i>); other canopy tree species include Balsam Poplar (<i>Populus balsamifera</i>), Trembling Aspen (<i>Populus tremuloides</i>), Domestic Apple, American Elm (<i>Ulmus americana</i>), Black Cherry, Sugar Maple and White Ash. The understory contains a variety of woody species, with Alternate-leaf Dogwood (<i>Cornus alternifolia</i>) and White Ash saplings as the most abundant species. Ground layer varies inversely with the abundance of White Cedar and includes Red Trillium (<i>Trillium erectum</i>), Smooth Yellow Violet (<i>Viola macloskeyi</i>), Labrador Violet (<i>Viola labradorica</i>), Wild Leek (<i>Allium tricoccum var. tricoccum</i>) and Sensitive Fern (<i>Onoclea sensibilis</i>).
			Canopy composition varies and includes a complex of Fresh - Moist White Cedar Coniferous Forest Type, that is almost entirely White Cedar, with little understory of ground cover.
Deciduous Forest (FO	DD)	-	
FODM5-8	4	Dry-Fresh Sugar Maple - White Ash Deciduous Forest	This large upland community is dominated by Sugar Maple, with White Ash as sub-dominant. Associates include; Black Cherry, Red Oak, White Cedar, Balsam Fir, American Elm, Trembling Aspen, Eastern Hop-hornbeam (<i>Ostrya virginiana</i>), Basswood (<i>Tilia americana</i>) and Birch species. The community is mature containing a number of large trees with a DBH of 50 cm or greater. Understory and ground layer cover is diverse, and includes; Yellow Trout-lily (<i>Erythronium americanum</i>), Smooth Yellow Violet (<i>Viola pubescens var. scabriuscul</i>), Blood Root (<i>Sanguinaria canadensis</i>), Red Baneberry (<i>Actaea rubra</i>), and Giant Blue Cohosh (<i>Caulophyllum giganteum</i>), as well as a number of upland grass and sedge species.
FODM6	16	Fresh - Moist Sugar Maple Deciduous Forest Ecosite	This long narrow community borders residential properties and has a high edge to area ratio. Cultural influences include plantings within the community and property maintenance along the edge of the community. Sugar Maple is the dominant canopy species in the community with an abundance of Manitoba Maple (<i>Acer negundo</i>) and Green Ash (<i>Fraxinus pennsylvanica</i>) in the wetter areas. Other canopy species include Black Walnut (<i>Juglans nigra</i>), Balsam Poplar, White Ash and planted White Pine, European Alder (<i>Alnus glutinosa</i>), and Freeman's Maple (<i>Acer x freemanii</i>). The sub-canopy and understory is dense with immature canopy species, and a variety of native and non-native shrub and herbaceous species. Low trees and shrubs are often covered with Riverbank Grape (<i>Vitis riparia</i>) and Wild Mock-cucumber (<i>Echinocystis lobata</i>).
FODM7-7	30	Fresh - Moist Manitoba Maple Lowland Deciduous Forest	This culturally influenced riverine community occurs along the tributary within the town of Hillsburgh, upstream of the main pond. The canopy is dominated by Manitoba Maple and Crack Willow (<i>Salix fagilis</i>), with occurrences of American Elm, Sugar Maple, and Black Cherry, White Willow (<i>Salix alba</i>), Black Walnut and Scots Pine (<i>Pinus sylvestris</i>). The understory is a mix of native and non-native shrub and herbaceous species. Soil moisture varies with proximity from the watercourse, with more wetland characteristics directly adjacent to the tributary.

ELC Code	Map ID	Vegetation Type	Community Description
FODM8-1	25	Fresh - Moist Poplar Deciduous Forest	This upland community is located between the Elora-Cataract Trail way and agricultural lands. The co-dominant tree species in the community are Trembling Aspen and Sugar Maple, the two trees species are generally separated within the community, with the Sugar Maple dominant along the trail edge. Associate canopy tree species include Bass Wood, White Ash, and White Cedar. The understory includes young White Ash along with Alternate-leaf Dogwood, Wild Red Raspberry (Rubus idaeus ssp. strigosus) and Staghorn Sumac (<i>Rhus typhina</i>) along the community edge.
FODM8-1	15	Fresh - Moist Poplar Deciduous Forest	This is a narrow culturally influenced community behind residential properties. The community is dominated by Trembling Aspen and Balsam Poplar with occurrences of Norway Maple, Manitoba Maple, Black Cherry, and White Cedar. Understory species are a mixture of native species and exotic weedy species such as Goutweed (<i>Aegopodium podagraria</i>) and Colt's Foot (<i>Tussilago farfara</i>). Soil is mineral with moisture varying from Fresh to Moist.
Coniferous Swamp	(SWC)	1	
SWCM1-2	17	White Cedar - Conifer Mineral Coniferous Swamp	This community surrounds the Ainsworth Pond and the lands directly south of the Pond. The community is dominated by Eastern White Cedar, with occurrences of a variety of other deciduous and coniferous species as minor canopy components. The understory is a diverse variety of mostly native plants, which includes Downy Serviceberry (<i>Amelanchier arborea</i>) and Alderleaf buckthorn (<i>Rhamnus alnifolia</i>), with Dwarf Scouring Rush (<i>Equisetum scirpoides</i>) among the ground layer species. Surface water and organic soil is present throughout much of the community with some areas of dry mineral soil. The community is complexed with Fresh - Moist White Cedar Coniferous Forest Types around the upland edge of much of the community.
SWCM1-2	21	White Cedar - Conifer Mineral Coniferous Swamp	This large community is comprised predominantly of White Cedar - Conifer Mineral Coniferous Swamp, with a complex of Fresh - Moist White Cedar - Hardwood Mixed forest Type (FOMM7-2) in the drier, more upland areas. Soil within the community varies from organic in areas to primarily mineral. The community is mature and includes a variety of canopy tree species. Canopy cover is greater than 60% throughout most of the community, with areas of reduced canopy providing a diversity of light conditions and ground cover. The dominant canopy species is Eastern White Cedar and Balsam Fir as the subdominant species. Associates include White Spruce, Black Spruce, American Larch (<i>Larix laricina</i>), Eastern Hemlock (<i>Tsuga Canadensis</i>), White Birch, Yellow Birch (<i>Betula alleghaniensis</i>), Red Maple (<i>Acer rubrum</i>), Trembling Aspen and Green Ash, among other less frequent species. Sub-canopy has lower coverage of between 10% and 25% and is comprised of immature canopy species along with occurrences of Red-osier Dogwood (<i>Cornus sericea</i>), Alternate-leaf Dogwood and Tartarian Honeysuckle. The understory and ground layer includes a variety of mostly native forbs, graminoids and ferns. Understory cover varied with light exposure and soil moisture.
SWCM3-2	2	White Cedar – Conifer Organic Coniferous Swamp	This large community extends from Wellington Road 22 to the berm of the Rubb pond. The community is dominated by White Cedar, with White Spruce, Black Spruce (<i>Picea mariana</i>), Balsam Fir, American Larch, White Ash, Green Ash, American Elm, Wild Black Cherry, Trembling Aspen, Balsam Poplar, White Birch and Yellow Birch. Canopy cover is greater than 60 % throughout most of the community with small patches of opening. Understory is composed of immature canopy species, as well as Alternate-leaf Dogwood, Red-osier Dogwood, Choke Cherry, February Daphne (<i>Daphne mezereum</i>) and Tartarian Honeysuckle. Understory and ground cover is a mixture of graminoids and forbs that varied greatly in cover and composition depending on moisture and canopy cover. The community contains an inclusion of Cattail Organic Meadow Marsh and is complexed with a Fresh - Moist White Cedar - Hardwood Mixed Forest Type (FOMM7-2), which is of similar species composition, but with dry mineral soils.
Mixed Swamp (SW	/M)	1	
SWMO1-1	10	White Cedar - Hardwood Organic Mixed Swamp	This community is primarily White Cedar - Hardwood Organic Mixed Swamp, complexed with Fresh - Moist White Cedar - Hardwood Mixed Forest Type (FOMM7-2), which is of similar species composition, but dry and with mineral soil. Dominant canopy species within the community are White Cedar and Balsam Fir with a variety of deciduous species throughout the community. Understory and groundcover varied inversely with canopy cover, species composition varyies based on moisture. The community is primarily organic soil with a complex of mineral soils.
SWMO3-3	3	White Birch - Conifer Organic Mixed Swamp	This riverine community is similar in species composition to the adjacent White Cedar – Conifer Organic Coniferous Swamp community, with a lower component of conifers and high proportion of White Birch, Yellow Birch and Poplar species. The community is located along the tributary and is bordered by a driveway that allows greater light penetration to the understory and ground layer. Soil composition is mixed, with organic soil in the lower areas and mineral soil on the slopes. Canopy cover is greater than 60 %, with sub canopy, understory and ground layer cover between 25% and 60%.
Deciduous Swamp	(SWD)		
SWDM2-1	26	Black Ash Mineral Deciduous Swamp	This community is dominated by Black Ash (<i>Fraxinus nigra</i>), with American Elm, and Trembling Aspen associates; and Sugar Maple occurs in the more upland areas along the trail way. The community has a sparse understory of Common Elderberry (<i>Sambucus Canadensis</i>), Inserted Virginia Creeper (<i>Parthenocissus inserta</i>), Smooth Gooseberry (<i>Ribes hirtellum</i>) and Wild Black Currant (<i>Ribes americanum</i>). Herbaceous ground cover is sparse with Sensitive Fern, Downy Yellow Violet (<i>Viola pubescens var. pubescens</i>) and Garlic Mustard (<i>Alliaria petiolate</i>) as the most common species, along with various grasses and sedges.

ELC Code	Map ID	Vegetation Type	Community Description				
SWDM4-5	24	Poplar Mineral Deciduous Swamp	This community is dominated by Trembling Aspen, with White Birch as the sub-dominant canopy species. Other tree species include; White Cedar, Black Spruce and Green Ash, with Black Cherry and Sugar Maple in the more upland areas. The understory contains immature canopy species, and a mix of Willow and Dogwood species.				
SWDM4-5	29	Poplar Mineral Deciduous Swamp	This is a culturally influenced community with a residential property occupying a large portion of the community. Trembling Aspen is the dominant species in the community, with Green Ash, Manitoba Maple, White Birch, and White Cedar as associate species. Sugar Maple occurs in the more upland locations. Planted Norway Maple and White Willow are also present. Understory species consist of Inserted Virginia Creeper, Alternate-leaf Dogwood a Riverbank Grape. Pale Jewel Weed (<i>Impatiens pallida</i>) is present in the understory, but may be from anthropoger origins based on its location along the disturbed edge of a residential property.				
Thicket Swamp (SV	WT)						
SWTO2-3	28	Meadow Willow Organic Deciduous Thicket Swamp	This shrub thicket community contained a mixture of willow species, with Meadow Willow as the most dominant, other shrub species present include; Choke Cherry, Red-osier Dogwood, Wild Red Raspberry, Dwarf Raspberry, Wild Black Currant. Open areas will little low shrub cover contained a variety of herbaceous species, including Common Woolly Bulrush (<i>Scirpus cyperinus</i>), Dark-green Bulrush (<i>Scirpus atrovirens</i>), Spotted Joe-pye Weed (<i>Eutrochium maculatum var. maculatum</i>) and Spotted Jewel-weed (<i>Impatiens capensis</i>). Tree Canopy cover is sparse with Trembling Aspen as the most abundant canopy species.				
SWTO2-6	22	Mixed Willow Organic Thicket Swamp Type	This is a diverse community comprised primarily of Mixed Willow Organic Thicket Swamp Type with complexes of Mixed Shallow Water (SAM), Mixed Mineral Meadow Marsh. The community canopy cover is between 10% - 25%, containing White Spruce, Black Spruce, White Cedar, Balsam Poplar, Green Ash and planted White Willow. The understory shrubs are dominated by an assortment of willow species, with abundant Red-osier Dogwood. There is a dense understory and ground layer of herbaceous species, including; Cattail, Marsh Marigold (<i>Caltha palustris</i>), Common Woolly Bulrush, Dark Green Bulrush, Lake Bank Sedge (<i>Carex lacustris</i>), Water Horsetail (<i>Equisetum fluviatile</i>), Broadleaf Arrowhead (<i>Sagittaria latifolia</i>) and various species of Asters and Goldenrods.				
SWTO3-5	9	Red-osier Organic Deciduous Swamp	This riverine thicket swamp community is species rich with a variety of native wetland trees, shrubs, and herbaceous species. Red-osier Dogwood is the dominant species within the community, with Narrow-leaved Meadow-sweet (<i>Spiraea alba</i>), Willow Species and Reed Canary Grass (<i>Phalaris arundinacea</i>) as sub-dominant. Greenfruit Bur-reed (<i>Sparganium emersum</i>), Marsh Fern (<i>Thelypteris palustris</i>) and Lake Bank Sedge are among the herbaceous species in the community.				
Treed Fen (FET)							
FETC1-2	14	Tamarack - White Cedar Treed Fen	This community is composed primarily of Tamarack - White Cedar Treed Fen vegetation type, with complexes of Tamarack Organic Coniferous Swamp Type (SWOC2-2), Mixed Willow Organic Deciduous Thicket Swamp Type (SWTO2-6); and Cattail Graminoid Organic Meadow Marsh Type (MAMO1-2). Canopy cover within the community varies from less than 10 % to greater than 60% coverage. The community includes a high number of regionally rare species including; Loesel's Twayblade (<i>Liparis loeselii</i>), Hooded Ladies'-tresses (<i>Spiranthes romanzoffiana</i>), Marsh Blue Violet (<i>Viola cucullata</i>), Tussock Sedge (<i>Carex stricta</i>), Kalm's Lobelia (<i>Lobelia kalmii</i>), Marsh Bellflower (<i>Campanula aparinoides</i>), Linear-leaved Willow-herb (<i>Epilobium leptophyllum</i>) and Common St. John's-wort (<i>Hypericum punctatum</i>). Water is present at or just below the surface throughout most of the community. Soil ranged from saturated calcareous mineral soil to greater that 40 cm deep organic soil.				
Meadow Marsh (M.	AM)						
MAMM1-1	31	Cattail Graminoid Mineral Meadow Marsh Type	This community in dominated by Narrow-leaved Cattail (<i>Typha angustifolia</i>) with associates of Redtop (<i>Agrostis gigantea</i>), Reed Canary Grass, Orchard Grass (<i>Dactylis glomerata</i>), Spotted Jewel-weed and Purple-stemmed Aster (<i>Symphyotrichum puniceum</i>). Tree and shrub species on the edge of the community include Manitoba Maple, American Elm, Red-osier Dogwood, and Wild Red Raspberry.				
MAMO1-2	1	Cattail Graminoid Organic Mineral Meadow Marsh	This small Community is at the corner of Trafalgar Road and Wellington Road 22. The community has evidence of past cultural influence and clearing, as indicated by the absence of mature trees. The community is dominated by Cattails with an abundance of European Reed (<i>Phragmites australis ssp. australis</i>) and Reed Canary Grass. The edges of the community contain a mixture of Cattail Graminoid Organic Mineral Meadow Marsh and the adjacent White Cedar – Conifer Organic Coniferous Swamp community. A low tree and shrub layer of between 2m - 10m, composed of primarily of White Cedar, Trembling Aspen and Tamarack is starting to grow throughout the community.				
Shallow Marsh (MA	AS)	-					
MASO1-1	8	Cattail Organic Shallow Marsh Type	This riverine community borders the Submerged Shallow Aquatic Ecosite and the associated tributary. The community is dominated by Cattails, with a groundcover of sphagnum moss. Other associated species include; Red-osier Dogwood, Black Currant, Reed Canary Grass, Lake Bank Sedge, and Tussock Sedge. Occasional occurrences of American Larch and White Cedar are present along the upland edge of the community.				
			· · · · · · · · · · · · · · · · · · ·				

ELC Code	Map ID	Vegetation Type	Community Description
Submerged Shallow	Aquatic (SAS))	
SAS_1	7	Submerged Shallow Aquatic Ecosite	This aquatic community is of unknown maximum depth, but appears to be less than 2m throughout most of the community. The aquatic community is anthropogenic in origin through the building of a berm to dam the West Credit River. Submergent aquatic species are visible below the surface, with White Water-lily (<i>Nymphaea odorata ssp. odorata</i>) as the associated floating species. Cattail and Dark Green Bulrush are present along the community edge. Occasional standing snags and deadfall are present throughout the community.
Mixed Shallow Aqua	tic	1	This can be a set of a factor of the set of the factor of the last the factor of the factor of the
SAM_1-8	11	Water Lily - Bullhead lily Mixed Shallow Aquatic	This aquatic community is of unknown maximum depth, but appears to be less than 2m throughout most of the community. The aquatic community is of anthropogenic origin, through creation of a dug offline pond, feed by the adjacent watercourse. Submergent aquatic species are visible below the surface, with Yellow Cowlily (<i>Nuphar variegata</i>) as the dominant floating species. Cattail, Dark Green Bulrush, Spotted Joe-pye Weed, Broadleaf Arrowhead are present along the community edge along with shrub species, such as willow and Red-osier Dogwood.
SAM_1-8	19	Water Lily - Bullhead lily Mixed Shallow Aquatic	This open water community comprises the shallow portions of the Hillsburgh Pond. The aquatic community is of unknown maximum depth, but appeared to be less than 2m throughout most of the community. The aquatic community is of anthropogenic origin, occurring as a result of the Hillsburgh dam at Station Street. Submergent aquatic species are visible below the surface, with White Water-lily as the dominant floating species. Cattail, and Dark Green Bulrush, Spotted Joe-pye Weed, Broadleaf Arrowhead, Jewel Weed, Bulb-bearing Water-hemlock (<i>Cicuta bulbifera</i>), Blueflag Iris (<i>Iris versicolor</i>) and Yellow Iris (<i>Iris pseudacorus</i>) are present along the community edge, along with shrub species, such as Willow species and Red-osier Dogwood.
			Abundant to occasional standing snags and deadfall are present throughout the community.
SAM_1-8	18	Water Lily - Bullhead lily Mixed Shallow Aquatic	This aquatic community is of unknown maximum depth, but appeared to be less than 2m throughout most of the community. The aquatic community is of anthropogenic origin, resulting from the dam. Submergent aquatic species are visible below the surface, with White Water-lily as the dominant floating species. Cattail, Dark Green Bulrush, Spotted Joe-pye Weed, Broadleaf Arrowhead and Bulb-bearing Water-hemlock are present along the community edge. Abundant to occasional standing snags and deadfall are present throughout the community.
Open Aquatic (OAO)		
OAW	20	Open Aquatic	This is an open water community with depth greater than 2m. No floating or emergent aquatic species are present, but submerged aquatic species are suspected.
Cultural (CU)		1	
CS	13	Cultural Savannah	This community runs along the Elora-Cataract Trail way, south of the Ainsworth Pond and is highly culturally influenced. The community has a mixture of predominantly non-native tree, shrub and herbaceous species. Canopy cover varies along the length of the community from less than 10% cover to approximately 60% cover. The most abundant canopy and sub-canopy species include; Manitoba Maple, Scots Pine, White Willow, Colorado Blue Spruce (<i>Picea pungens</i>), Norway Maple, Staghorn Sumac and Common Lilac (<i>Syringa vulgaris</i>). Understory and ground cover is primarily non-native weedy species with few native herbaceous species, such as Canada Anemone (<i>Anemone canadensis</i>).
Constructed (CV)		а. 	
CVR_1	Res	Residential	Residential properties, including building, driveways and yards.
CVI_1	Road	Transportation	Roadway

Appendix 5 Ecological Land Classification Data Sheets

ABOUD & ASSOCIATES INC.

Project No: 12-137A	Project Name: Hil	lsburgh Dam EA	Surveyor(s): RH Date: May 14; Aug 10; Sept 25 2015	
Polygon Description P1	Community Series: MA	Ecosite: MAM	Vegetation Type: MAMO1-2 Cattail Graminoid Organic Mineral Meadow Marsh	
System	Topographic Feature	-	Dominant Plant Form	
Terrestrial Wetland	Lacustrine Riverine Botto	mland Terrace Valley slope Ta	Fableland Rolling upland Plankton Submerged Floating-lvd. Graminoid Forb	
Aquatic	Cliff Talus Crevice C	ave Alvar Rockland Beach	Bar Sand dune Bluff Lichen Bryophyte Deciduous Coniferous Mixed	I
Cover Open Shrub Treed	History Natural Cultural	Community ClassBeach-BarBarrenTallgrass PrairieSaOpen WaterShallow Water	r Sand Dune Bluff Cliff Talus Alvar Rock Barren Crevice-Cave Sa Savannah Woodland Forest Thicket Cultural Swamp Fen Bog Marsh	nd
Stand Description:			Soil Analysis:	
Community Age		Basal Area (m²/ha)	Soil Drainage	
Pioneer Young Mi	d-Aged Mature Old Gr	rowth	Very Rapid Rapid Well Moderately Well Imperfect Poor Very Po	or
Standing Snags			Soil Moisture Regime	
Rare Occasional	Abundant Dominant		Dry Fresh Moist Wet	
Deadfall Logs			Effective Soil Texture	
Rare Occasional	Abundant Dominant		Organic	
Health	Sensitivity	Botanical Quality	Depth to Mottles / Gley	
Low Medium High	Low Medium Hig	h Low <u>Medium</u> High	Sample: M - cm / G - cm	
Slope			Depth to Groundwater metres Depth to Bedrock metre	S
none gentle m	oderate steep (simple o	or complex)	at surface less than 1m more than 1 m at surface less than 1m more than 1	m

۷	Vegetation Layer Height 1 Cover 2		Cover ²	Dominant Species per Vegetation Layer	
1	Canopy	2	1	Larix laricina > Picea mariana = Thuja occidentalis	
2	Subcanopy	3	2	Larix laricina = Thuja occidentalis = Populus tremuloides	
3	Understorey	4	4	Typha angustifolia >> Thuja occidentalis = Phalaris arundinacea	
4	Ground Layer	6	2	Juncus tenuis = Thelypteris palustris = Carex sp.	

¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4 = >60% (1 + 10) (1

Size Class Analysis ³	А	0	R	NA
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance: Mowed grass around edges

Wildlife / Habitat Observations: NA

Comments: Road side observation due to private property restrictions.

 Community Name
 Code
 % Coverage

 Inclusion
 Complex

 <t

ABOUD & ASSOCIATES INC.

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 14; Aug 10; Sept 25 2015

Polygon: P1

	L Abunda	Layer / Abundance Abundance Code: R=Rare, 0=Occasional, A=Abundant, D=Dominant					
Plant Species List	1	2	3	4			
Trees							
Thuja occidentalis	0	А	0				
Populus tremuloides		А					
Larix laricina	А	А					
Picea mariana	0						
Shrubs and Woody Vines	1	1	1	1			
Salix discolor			0				
Sorbus aucuparia			R				
			1				
		<u> </u>					

	L Abunda	.ayer / A nce Code: R A=Abundan	bundanc =Rare, O=Oc t, D=Dominan	e casional, t
Plant Species List	1	2	3	4
Ferns & Fern Allies, Herbs, Gramin	oids			
Typha angustifolia			D	
Phalaris arundinacea			А	
Phragmites australis ssp. australis			А	
Tussilago farfara				Α
Eutrochium maculatum			0	
Eupatorium perfoliatum			R	
Solidago canadensis			0	
Juncus tenuis				Α
Hypericum punctatum			0	
Thelypteris palustris				Α
Carex flava				0
Carex stipata				0
Carex hystericina				0
Eriophorum viridicarinatum				0
Grass sp.				
Sedge sp.				

ABOUD & ASSOCIATES INC.

Project No: 12-137A	12-137A Project Name : Hillsburgh Dam EA						Sı	urveyor(s):	RH	Date: Ma	y 14; Aug	y 10; Sept 2	5, 2015
Polygon Description P2					n Type: SW Iar – Conife	CM1-2 r Mineral Co	niferous	Swamp					
System	Topographi	c Feature						Dominant	Plant Form	1			
Terrestrial Wetland	Lacustrine	Riverine Bott	tomland	Terrace Valley s	lope Ta	ableland Rol	lling upland	Plankton	Submerge	ed Floatir	ıg-lvd.	Graminoid	Forb
Aquatic	Cliff Talus	Crevice	Cave A	Ivar Rockland	Beach	Bar Sand d	une Bluff	Lichen	Bryophyte	e Decidu	lous	Coniferous	Mixed
Cover	History		Comm	unity Class Be	each-Bar	Sand Dune	e Bluff	Cliff Talu	us Alvar	Rock Bar	ren Cre	evice-Cave	Sand
Open Shrub Treed	Natural	Cultural	Barren	Tallgrass Prai	irie Sa	avannah W	oodland F	orest Thio	ket Cult	ural Swam	p Fen	Bog Ma	arsh
	ratara	ountarian	Open V	Open Water Shallow Water									
Stand Description:	Soil Analysis:												
Community Age				Basal Area (m ²	²/ha)	Soil Drainag	je						
Pioneer Young Mid	d-Aged Ma	ature Old C	Growth			Very Rapid	Rapid	Well	Moderately	Well Im	perfect	Poor	Very Poor
Standing Snags						Soil Moistur	re Regime						
Rare Occasional	Abundant	Dominant				Dry	Fresh	Moist	Wet				
Deadfall Logs						Effective So	il Texture						
Rare Occasional	Abundant	Dominant				Organic							
Health	Sensitiv	/ity	В	otanical Quality		Depth to Mo	ottles / Gley						
Low Medium High	Low	Medium H	ligh Lo	ow Medium	High	Sample: M -	cm /	G -	cm				
Slope	•					Depth to Gr	oundwater		metres	Depth to Be	drock		metres
none gentle m	oderate	steep (simple	or comple	ex)		at surface	less than 1m	n more	than 1 m	at surface	less thar	n 1m mo	ore than 1 m
Vegetation Layer	Height ¹	Cover ²	Dominant	t Species per Veç	getation	Layer							
1 Canopy	2	4	Thuja occi	identalis = Abies b	alsamea	> Larix laricin	a = Picea gla	uca					

1	Canopy	2	4	Thuja occidentalis = Abies balsamea > Larix laricina = Picea glauca				
2	Subcanopy	3	3	Cornus alternifolia > Prunus virginiana				
3	Understorey	4	3	Typha angustifolia = Impatiens capensis				
4	Ground Layer	6	3	Equisetum arvense = Caltha palustris > Fern sp. = Carex sp.				
1 	¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4= >60%							

Size Class Analysis ³	0	А	D	0
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

vidence of Disturbance:	٦
Vildlife / Habitat Observations:	_
vindine / Habitat Observations:	
Comments:	_
issessed from property edge due to private property restrictions.	

				Community Name	Code	% Coverage
Inclusion	Х	Complex		Cattail Organic Meadow Marsh	MAM01-2	10 %
Inclusion		Complex	х	Fresh – Moist White Cedar – Hardwood Mixed Forest Type	FOMM7-2	20 %

ABOUD & ASSOCIATES INC.

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 14; Aug 10; Sept 25, 2015

	l Abunda	Layer / Abundance Abundance Code: R=Rare, O=Occasional, A=Abundant, D=Dominant					
Plant Species List	1	2	3	4			
Trees		1	1				
Thuja occidentalis	D	Α	Α	[
Picea glauca	А						
Fraxinus americana		0					
Ulmus americana	0	0					
Malus pumila		R					
Populus tremuloides	0						
Prunus serotina	A	Α					
Populus balsamifera	0						
Betula papyrifera	A	0					
Abies balsamea	D	A	А				
Betula alleghaniensis	0	~	~				
Larix laricina	-	0	0				
Fraxinus pennsylvanica	D	0	0				
	R	0					
Shrubs and Woody Vines							
Cornus alternifolia			Α	0			
Prunus virginiana			Α				
Daphne mezereum			R				
Lonicera tartarian			R				
-							
		1	1	1			

	Layer / Abundance Abundance Code: R=Rare, O=Oc A=Abundant, D=Dominar				
Plant Species List	1	2	3	4	
Ferns & Fern Allies, Herbs, Graminoids		<u> </u>			
Taraxacum officinale				А	
Equisetum arvense				А	
Fragaria vesca				0	
Caltha palustris				Α	
Impatiens capensis			0		
Ranunculus abortivus				R	
Typha angustifolia			Α		
Athyrium filix-femina var. angustum				0	
Solanum dulcamara				0	
Thelypteris palustris				0	
Sisyrinchium montanum				0	
Cerastium fontanum				0	
Cornus canadensis				0	
				-	
Fern sp.				Α	
Moss sp				0	
Carex sp.				A	
				~	

Project No: 12-137A

Surveyor(s): RH

Representative Photographs of Vegetation Community:

Project No: 12-137A Project Name: Hillsburgh Dam EA					n Dam EA	Surveyor(s): RH Date: May 14; Aug 10; Sept 25, 2015					
Polygon Description P3 Community Series: SW					Ecosite: SWM	Vegetation Type: SWMO3-3 White Birch – Conifer Organic Mixed Swamp					
Sy	/stem	Topograph	ic Feature			Dominant Plant Form					
Te	errestrial Wetland	Lacustrine	Riverine Bo	ttomland	Terrace Valley slope Ta	ableland Rolling upland Plankton Submerged Floating-lvd. Graminoid Forb					
Ac	quatic	Cliff Talus	s Crevice			Bar Sand dune Bluff Lichen Bryophyte Deciduous Coniferous Mixed					
Co	over	History		Com	munity Class Beach-Bar	Sand Dune Bluff Cliff Talus Alvar Rock Barren Crevice-Cave Sand					
	pen Shrub Treed	Natural	Cultural	Barre	n Tallgrass Prairie Sa	avannah Woodland Forest Thicket Cultural <mark>Swamp</mark> Fen Bog Marsh					
~ı		ruturui	oundrui	Open	Water Shallow Water						
Sta	ind Description:			-		Soil Analysis:					
Co	mmunity Age				Basal Area (m²/ha)	Soil Drainage					
Pio	neer Young Mi	d-Aged M	ature Old	Growth		Very Rapid Rapid Well Moderately Well Imperfect Poor Very Poor					
Sta	inding Snags					Soil Moisture Regime					
Rai	re Occasional	Abundant	Dominant			Dry Fresh Moist Wet					
De	adfall Logs					Effective Soil Texture					
Rai	re Occasional	Abundant	Dominant			Organic					
Hea	alth	Sensitiv	vity	1	Botanical Quality	Depth to Mottles / Gley					
Lov	v Medium High	Low	Medium	High I	Low Medium High	Sample: M - cm / G - cm					
Slo	ре					Depth to Groundwater metres Depth to Bedrock metres					
nor	ne gentle m	oderate	steep (simple	e or comp	lex)	at surface less than 1m more than 1 m at surface less than 1m more than 1 m					
Ve	egetation Layer	Height ¹	Cover ²	Domina	nt Species per Vegetation	Layer					
1	Canopy	2	4	Betula pa	apyrifera > Thuja occidentali	is > Betula alleghaniensis					
2	Subcanopy	3	3	Cornus a	Cornus alternifolia						
3	Understorey	4	3	Impatien	s capensis > Ranunculus ab	portivus					
4	Ground Laver	6	3	Caltha p	alustris						

¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%- 10%, 2 = 10%- 25%, 3 = 25%-60%, 4= >60%

Size Class Analysis ³	0	А	D	0
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance:
Wildlife / Habitat Observations:
Comments:
Assessed from property edge due to private property restrictions.

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

Date:	May	14;	Aug	10;	Sept	25,	201

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 14; Aug 10; Sept 25, 2015

	Abunda	Layer / Abundance Abundance Code: R=Rare, O=Occasional, A=Abundant, D=Dominant					
Plant Species List	1	2	3	4	F		
Trees	1		1		ł		
Betula papyrifera	D	Α	Α		Т		
Betula alleghaniensis	А				E		
Populus tremuloides	0				F		
Prunus serotina	A	Α			(
Populus balsamifera	0				l		
Thuja occidentalis	D	Α			F		
Picea glauca	A				Т		
					0		
					E		
					F		
					F		
					Ν		
Shrubs and Woody Vines							
Cornus alternifolia			A	0			
Cornus alternifolia Prunus virginiana			A	0			
Cornus alternifolia				0			
Cornus alternifolia Prunus virginiana			A	0			
Cornus alternifolia Prunus virginiana			A	0			
Cornus alternifolia Prunus virginiana			A	0			
Cornus alternifolia Prunus virginiana			A	0			
Cornus alternifolia Prunus virginiana			A	0			
Cornus alternifolia Prunus virginiana			A	0			
Cornus alternifolia Prunus virginiana			A	0			
Cornus alternifolia Prunus virginiana			A	0			
Cornus alternifolia Prunus virginiana			A	0			
Cornus alternifolia Prunus virginiana			A	0			
Cornus alternifolia Prunus virginiana			A	0			
Cornus alternifolia Prunus virginiana			A	0			
Cornus alternifolia Prunus virginiana			A	0			
Cornus alternifolia Prunus virginiana			A				
Cornus alternifolia Prunus virginiana			A				

	L Abunda	ayer / A nce Code: R= A=Abundant	bundanc =Rare, O=Oc , D=Dominan	e casional, t
Plant Species List	1	2	3	4
Ferns & Fern Allies, Herbs, Graminoids			1	
Taraxacum officinale		[А
Equisetum arvense				А
Fragaria vesca				0
Caltha palustris				A
Impatiens capensis			0	0
Ranunculus abortivus			R	0
Thelypteris palustris			ĸ	^
Coptis trifolia				A
Epilobium leptophyllum				R
Ranunculus recurvatus				0
Rahuliculus leculvalus				0
Fern sp.				Α
Moss sp				0
		<u> </u>		
		İ		
		<u> </u>		

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Representative Photographs of Vegetation Community:

Project No: 12-137A	Project Name: H	Hillsburgh Dam EA	Surveyor(s): RH Date: May 14; Aug 10; Sept 25, 2015						
Polygon Description P4	Community Series: FO	Ecosite: FOD	Vegetation Type: FODM5-8 Dry-Fresh Sugar Maple – White Ash Deciduous Forest						
System	Topographic Feature		Dominant Plant Form						
Terrestrial Wetland	Lacustrine Riverine Bott	tomland Terrace Valley slope Ta	ableland Rolling upland Plankton Submerged Floating-lvd. Graminoid Forb						
Aquatic	Cliff Talus Crevice	Cave Alvar Rockland Beach	Bar Sand dune Bluff Lichen Bryophyte Deciduous Coniferous Mixed						
Cover Open Shrub Treed	History Natural Cultural	Community Class Beach-Bar Barren Tallgrass Prairie Sa Open Water Shallow Water	Sand Dune Bluff Cliff Talus Alvar Rock Barren Crevice-Cave Sand avannah Woodland <mark>Forest</mark> Thicket Cultural Swamp Fen Bog Marsh						
Stand Description:		·	Soil Analysis:						
Community Age Pioneer Young Mid	I-Aged Mature Old (Basal Area (m²/ha) Growth	Soil Drainage Very Rapid Rapid Well Moderately Well Imperfect Poor Very Poor						
Standing Snags			Soil Moisture Regime						
Rare Occasional	Abundant Dominant		Dry Fresh Moist Wet						
Deadfall Logs			Effective Soil Texture						
Rare Occasional	Abundant Dominant								
Health	Sensitivity	Botanical Quality	Depth to Mottles / Gley						
Low Medium High	Low Medium H	High Low <u>Medium</u> High	Sample: M - cm / G - cm						
Slope			Depth to Groundwater metres Depth to Bedrock metres						
none gentle mo	oderate steep (simple	e or complex)	at surface less than 1m more than 1 m at surface less than 1m more than 1 m						
Vegetation Layer	Height ¹ Cover ²	Dominant Species per Vegetation	Layer						
1 0	1 2	Come Marila Black Observe With	A A - L - MATHAR D'H -						

	getation Layer	neight	00101	bonnant opcolos per vegetation Layer
1	Canopy	1	3	Sugar Maple > Black Cherry = White Ash = White Pine
2	Subcanopy	3	4	Sugar Maple > White Ash > Black Cherry
3	Understorey	4	3	Sugar Maple > Alt Lve Dogwood > Black Cherry = Chock Cherry
4	Ground Layer	6	3	Yellow Trout Lily > Coltsfoot > Smooth Yellow Violet
	1 2 3 4	2 Subcanopy 3 Understorey 4 Ground Layer	1Canopy12Subcanopy33Understorey44Ground Layer6	ICanopyI32Subcanopy343Understorey43

¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4= >60%

Size Class Analysis ³	0	А	D	R
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance: Trails, garden waist
Wildlife / Habitat Observations:
wildlife / Habitat Observations:
Comments:
connients.

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

D				40.	C	0E	20
Date:	мау	14;	Aug	10;	Sept	25,	20

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 14; Aug 10; Sept 25, 2015

Polygon: P4

	Abunda	Layer / Abundance Abundance Code: R-Rare, O=Occasional, A=Abundant, D=Dominant					
Plant Species List	1	2	3	4			
Trees							
Acer saccharum ssp. saccharum	D	D	D	Α			
Prunus serotina	D	Α	А				
Pinus strobus	А	R					
Quercus rubra	0						
Malus pumila		0					
Acer negundo		R					
Fraxinus americana	А	0	0				
Thuja occidentalis	0	0	0				
Abies balsamea	А	0	0				
Larix laricina	0	R	R				
Ulmus americana		0	0				
Sorbus aucuparia			R				
Populus tremuloides		R	R				
Betula papyrifera		R	R				
Tilia americana		R					
Fagus grandifolia	0	0					
Betula alleghaniensis		R					
Ostrya virginiana		R					
Shrubs and Woody Vines							
Cornus alternifolia			D	D			
Ribes americanum			А				
Lonicera tartarian			R				
Toxicodendron rydbergii			R				
Sambucus canadensis			R				
Prunus virginiana			А	А			
Ribies sp.			0				

		nce Code: R	bundanc =Rare, O=Oci t, D=Dominan	casional,
Plant Species List	1	2	3	4
Ferns & Fern Allies, Herbs, Graminoids		1		1
Narcissus pseudonarcissus				Α
Tussilago farfara				D
Taraxacum officinale				D
Erythronium americanum				Α
Viola pubescens var. scabriuscula				Α
Maianthemum racemosum				0
Fragaria vesca				А
Arctium minus				0
Alliaria petiolata				0
Maianthemum canadense				A
Maianthemum stellatum				0
Asarum canadense				0
Sanguinaria canadensis				R
Actaea rubra				R
Geranium robertianum				R
Ranunculus acris				R
Carex gracillima				0
Carex pensylvanica				0
Agrimonia gryposepala				R
Epipactis helleborine				0
Hypericum punctatum			R	0
Prunella vulgaris ssp. lanceolata			ĸ	R
			0	ĸ
Symphyotrichum ericoides Solidago altissima			0	
Dryopteris marginalis			0	D
Caulophyllum giganteum				R
Trientalis borealis			R	_
				R
			<u> </u>	
			<u> </u>	
		•	•	•

ABOUD & ASSOCIATES INC.

Project No: 12-137A

Representative Photographs of Vegetation Community:

Project No: 12-137A	Pr	oject Name: H	Hillsburgh [Dam EA			Su	urveyor(s):	RH	Date: Ma	ay 14; Au	g 10; Sept 3	25, 2015
Polygon Description P5	Community	Series: FO	Ec	osite: FOC					n Type: FO White Ced	CM2-2 lar Conifero	us Fores	t	
System	Topographi	ic Feature						Dominant	Plant Forn	n			
Terrestrial Wetland	Lacustrine	Riverine Bot	tomland T	errace Valley s	lope Ta	ableland R	olling upland	Plankton	Submerg	jed Float	ing-lvd.	Graminoi	d Forb
Aquatic	Cliff Talus	Crevice	Cave Al	var Rockland	Beach	Bar Sand	dune Bluff	Lichen	Bryophyt	e Deci	duous	Coniferou	s Mixed
Cover Open Shrub Treed	History Natural	Cultural	Commu Barren Open V	Tallgrass Prai		Sand Dur avannah V		Cliff Tal orest Thi		Rock Ba		revice-Cav Bog N	e Sand Aarsh
Stand Description:				-		Soil Analys	sis:						
Community Age				Basal Area (m ²	²/ha)	Soil Draina	ge						
Pioneer Young Mid	d-Aged Ma	ature Old	Growth			Very Rapid	Rapid	Well	Moderately	y Well II	mperfect	Poor	Very Poor
Standing Snags						Soil Moistu	ire Regime						
Rare Occasional	Abundant	Dominant				Dry	Fresh	Moist	Wet				
Deadfall Logs						Effective S	oil Texture						
Rare Occasional	Abundant	Dominant											
Health	Sensitiv	/ity	Bo	otanical Quality		Depth to M	ottles / Gley						
Low Medium High	Low	Medium H	High Lo	w Medium	High	Sample: M	- cm /	G -	cm				
Slope						Depth to G	roundwater		metres	Depth to B	edrock		metres
none gentle m	oderate	steep (simple	e or comple	ex)		at surface	less than 1n	n more	than 1 m	at surface	less tha	an 1m 🛛 r	nore than 1 m
Vegetation Layer	Height ¹	Cover ²	Dominant	Species per Veç	getation	Layer							
1 Canopy	2	4	Thuja occi	dentalis									

1	Canopy	2	4	Thuja occidentalis
2	Subcanopy	3	2	Thuja occidentalis
3	Understorey			
4	Ground Layer			
1 H	leight Code: 1=>20m, 2=	10m-20m, 3=	2m-10m, 4=1	m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%- 10%, 2 = 10%- 25%, 3 = 25%-60%, 4 = >60%

Size Class Analysis ³	A	А	0	NA
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance:	
Wildlife / Habitat Observations:	
maine / nasial observations.	
Comments:	

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Polygon: P5 Date: May 14; Aug 10; Sept 25, 2015

	L Abunda	.ayer / A	bundanc =Rare, O=Oc t, D=Dominar	e casional,
Plant Species List	1	2	3	4
Trees		<u> </u>		<u>.</u>
Thuja occidentalis	D	D		
Shuppe and Woody Vines				
Shrubs and Woody Vines				
			1	
			<u> </u>	
			1	

ABOUD & ASSOCIATES INC.

•	•				
Project No: 12-137A	Description Community Series: FO Ecosite: FOC Vegetation Type: FOCM6 Naturalized Conferous Plantation Wetland Topographic Feature Lacustrine Riverine Bottomland Terrace Valley slope Tableland Rolling upland Cliff Talus Crevice Cave Alvar Rockland Beach Bar Sand dune Bluff Dominant Plant Form Plankton Submerged Floating-lvd. Graminoid Forb Lichen Bryophyle Deciduous Conferous Mixed Barren Tallgrass Prairie Savannah Woodland Fores nub Treed History Natural Community Class Beach-Bar Sand Dune Bluff Cliff Talus Alvar Rock Barren Crevice-Cave San Barren Tallgrass Prairie Savannah Woodland Fores Thicket Cultural Swamp Fen Bog Marsh y Age Basal Area (m²/ha) Soil Analysis: Soil Analysis: Soil Analysis: Soil Orainage Very Rapid Rapid Weil Moderately Weil Imperfect Poor Very Poor Soil Moisture Regime Dry Frest Moist Wet Occasional Abundam Dominant Effective Soil Texture Soil Medium High Event Medium High Depth to Mottles / Gley Sample: M - cm / G - cm pentle Medium High Event Medium High Depth to Groundwater at surface less than 1m more than 1m pentle Mederate Steep (Empteor complex) Depth to Groundwater at surface less than 1m more than 1m	Surveyor(s): RH Date: May 14; Aug 10; Sept 25, 2015			
Polygon Description P6	Community	Series: FO	Ec	osite: FOC	
Polygon Description P6 Community Series: F0 Ecosite: F0C Vegetation Type: F0CM6 Naturalized Conferous Plantation System Topographic Feature Dominant Plant Form Terrestria Wetland Aquatic Correct Cave Alvar Rockland Bas Baren Sand Dune Bluff Lichen Bryophyle Deciduous Conferous Mixed Cover History Natural Continue Baren Tallgrass Prairie Sand Dune Bluff Cilf Talus Alvar Rock Baren Crevice-Cave Sand Open Shrub Tereof Natural Cultural Community Class Beach-Bar Sand Dune Bluff Cilf Talus Alvar Rock Baren Crevice-Cave Sand Open Shrub Treed Natural Cultural Baren Tallgrass Prairie Savannah Woodland Forest Thicket Cultural Swamp Fen Bog Marsh Open Water Standing Snags Soil Analysis: Soil Moderately Well Imperfect Poor Very Poi Standing Snags Abundant Dominant Effective					
Terrestrial Wetland	Lacustrine	Riverine Bot	tomland 7	Ferrace Valley slope	ableland Rolling upland Plankton Submerged Floating-Ivd. Graminoid Forb
Aquatic	Cliff Talus	Crevice	Cave A	lvar Rockland Beach	Bar Sand dune Bluff Lichen Bryophyte Deciduous Coniferous Mixed
0	12-1		Comm	unity Class Beach-Ba	Sand Dune Bluff Cliff Talus Alvar Rock Barren Crevice-Cave Sand
		Cultural	Barren	Tallgrass Prairie S	avannah Woodland Forest Thicket Cultural Swamp Fen Bog Marsh
Open Shrub Treed	Naturai	Cultural	Open V	Vater Shallow Water	
Stand Description:					Soil Analysis:
Community Age				Basal Area (m²/ha)	Soil Drainage
Pioneer Young Mic	I-Aged Ma	ature Old	Growth		Very Rapid Rapid Well Moderately Well Imperfect Poor Very Poor
Standing Snags				•	Soil Moisture Regime
Rare Occasional	Abundant	Dominant			Dry Fresh Moist Wet
Deadfall Logs					Effective Soil Texture
Rare Occasional	Abundant	Dominant			
Health	Sensitiv	/ity	B	otanical Quality	Depth to Mottles / Gley
Low Medium High	Low	Medium I	High Lo	ow Medium High	Sample: M - cm / G - cm
Slope					Depth to Groundwater metres Depth to Bedrock metres
	oderate	steep (simple	e or comple	ex)	at surface less than 1m more than 1 m at surface less than 1m more than 1 m
Vegetation Layer	Height ¹	Cover ²	Dominant	Species per Vegetation	Layer
1 Canopy	1	3	Larix decid	dua > Pinus strobus = Fra	xinus americana
2 Subcanopy	3	4	Pinus stro	bus > Malus pumila > Thu	ja occidentalis

4 Ground Layer 6 1 Fragaria vesca > Tussilago farfara > Epipactis helleborine

3

¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4= >60%

Size Class Analysis ³	0	А	D	R
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Rhamnus cathartica > Thuja occidentalis > Prunus virginiana = Lonicera tartarian = Solidago altissima

Evidence of Disturbance: Non-native planting, trail, clearing.

4

Wildlife / Habitat Observations:

Comments:

3

Understorey

			Community Name	Code	% Coverage
Inclusion	Х	Complex	Goldenrod Forb Meadow Type	MEFM1-1	15
Inclusion		Complex			

ABOUD & ASSOCIATES INC.

Project No: 12-137A

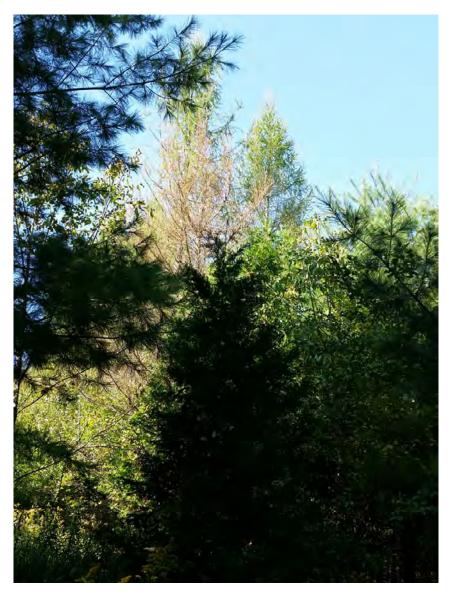
Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 14; Aug 10; Sept 25, 2015

Polygon: P6

	Layer / Abundance Abundance Code: R=Rare, 0=Occasional, A=Abundant, D=Dominant						
Plant Species List	1	2	3	4			
Trees			•				
Fraxinus americana	А	А					
Quercus rubra	0	R					
Larix decidua	A						
Thuja occidentalis		0	Α				
Malus pumila		O-A					
Abies balsamea	0	0					
Pinus strobus	А	0					
Acer saccharum ssp. saccharum	R						
Prunus serotina		R					
		1					
		1					
Shrubs and Woody Vines							
Prunus virginiana			А				
Rhamnus cathartica		А	A				
Lonicera tartarian			A				
			~				


	Abunda	nce Code: R=	Bundanc Rare, O=Occ , D=Dominant	e casional,
Plant Species List	1	2	3	4
Ferns & Fern Allies, Herbs, Graminoids		•	I	
Solidago altissima			0	
Symphyotrichum novae-angliae			0	
Pilosella caespitosa				R
Symphyotrichum ericoides			0	
Fragaria vesca				0
Epipactis helleborine				R
Tussilago farfara				0
				0
		1		

ABOUD & ASSOCIATES INC.

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Representative Photographs of Vegetation Community:

Project No: 12-137A Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 14; Aug 10; Sept 24, 2015

Polygon: P7

Polygon Description P7	Community Series:SA	Ecosite:SAS_1 Submerged Shallow Aquat	ic Ecosite
System	Topographic Feature		Dominant Plant Form
Terrestrial Wetland	Lacustrine Riverine Bott	tomland Terrace Valley slope Ta	ableland Rolling upland Plankton Submerged Floating-lvd. Graminoid Forb
Aquatic	Cliff Talus Crevice	Cave Alvar Rockland Beach	Bar Sand dune Bluff Lichen Bryophyte Deciduous Coniferous Mixed
Cover Open Shrub Treed	History Natural Cultural	Community Class Beach-Bar Barren Tallgrass Prairie Sa Open Water Shallow Water	Sand Dune Bluff Cliff Talus Alvar Rock Barren Crevice-Cave Sand avannah Woodland Forest Thicket Cultural Swamp Fen Bog Marsh
Stand Description:			Soil Analysis:
Community Age Pioneer Young Mi	d-Aged Mature Old (Basal Area (m²/ha) Growth	Soil Drainage Very Rapid Rapid Well Moderately Well Imperfect Poor Very Poor
Standing Snags Rare Occasional	Abundant Dominant		Soil Moisture Regime Dry Fresh Moist Wet
Deadfall Logs Rare Occasional	Abundant Dominant		Effective Soil Texture
Health	Sensitivity	Botanical Quality	Depth to Mottles / Gley
Low Medium High	Low Medium H	ligh Low Medium High	Sample: M - cm / G - cm
Slope			Depth to Groundwater metres Depth to Bedrock metres
none gentle m	oderate steep (simple	e or complex)	at surface less than 1m more than 1m at surface less than 1m more than 1 m
Vegetation Layer	Height ¹ Cover ²	Dominant Species per Vegetation	Layer
1 Canopy			
2 Subcanopy			

3	Understorey			
4	Ground Layer		2	Nymphaea odorata ssp. odorata > Typha latifolia > Potamogeton
1 H	leight Code: 1=>20m, 2=	10m-20m, 3=	2m-10m, 4=1	Im-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0% - 10%, 2 = 10% - 25%, 3 = 25% - 60%, 4 = >60%

Size Class Analysis ³				
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance: Earthen Dam creating pond. No fish passage into community from downstream

Wildlife / Habitat Observations: Large Mouth Bass, Mallard Duck, King Fisher, Canada Goose, Erget

Comments: Greater than 2 meters at south end, becoming shallow in the middle and towards the north. Mud flats at the north end. Little to no vegetation

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

. ...

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Polygon: P7 Date: May 14; Aug 10; Sept 24, 2015

	L Abunda	.ayer / A nce Code: R A=Abundan	bundanc =Rare, O=Oc t, D=Dominar	; e casional, it
Plant Species List	1	2	3	4
Trees				
Shrubs and Woody Vines				1
				<u> </u>
				İ
				İ
			1	

ABOUD & ASSOCIATES INC.

Project No: 12-137A

Surveyor(s): RH

Representative Photographs of Vegetation Community:

ABOUD & ASSOCIATES INC.

Project No: 12-137A	Project Name: Hi	illsburgh Dam EA	S	urveyor(s): RH	Date: May 14; Aug 10; Sept 24, 2015	
Polygon Description P8	Community Series: MA	Ecosite: MAS	Vegetation Type: MASO1-1 Cattail Organic Shallow Marsh Type			
System	Topographic Feature			Dominant Plant Form		
Terrestrial Wetland	Lacustrine Riverine Botte	omland Terrace Valley slope Ta	ableland Rolling upland	Plankton Submerge	ed Floating-Ivd. Graminoid Forb	
Aquatic	Cliff Talus Crevice C	Cave Alvar Rockland Beach	Bar Sand dune Bluff	Lichen Bryophyte	Deciduous Coniferous Mixed	d
Cover Open Shrub Treed	History Natural Cultural	Community Class Beach-Bar Barren Tallgrass Prairie Sa Open Water Shallow Water	Sand Dune Bluff avannah Woodland F	Cliff Talus Alvar Forest Thicket Cultu		and
Stand Description:			Soil Analysis:			
Community Age		Basal Area (m²/ha)	Soil Drainage			
Pioneer Young Mi	d-Aged Mature Old G	rowth	Very Rapid Rapid	Well Moderately	Well Imperfect Poor Very Po	or
Standing Snags			Soil Moisture Regime			
Rare Occasional	Abundant Dominant		Dry Fresh	Moist Wet		
Deadfall Logs			Effective Soil Texture			
Rare Occasional	Abundant Dominant					
Health	Sensitivity	Botanical Quality	Depth to Mottles / Gley			
Low Medium High	Low Medium Hi	gh Low <u>Medium</u> High	Sample: M - cm	/ G - cm		
Slope			Depth to Groundwater	metres	Depth to Bedrock metre	es
none gentle m	oderate steep (simple o	or complex)	at surface less than 1	m more than 1 m	at surface less than 1m more than 1	m
Vegetation Layer	Height ¹ Cover ²	Dominant Species per Vegetation	Layer			

v	vegetation Layer Theight Cover		Cover	Dominant Species per vegetation Layer		
1	Canopy	2	1	Thuja occidentalis = Betula papyrifera > Larix laricina		
2	Subcanopy	3	1	Thuja occidentalis = Betula papyrifera		
3	Understorey	4	4	Typha latifolia >> Phalaris arundinacea		
4	Ground Layer	6	2	Sphagnum sp.>> Caltha palustris > Carex lacustris		
1	¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%- 10%, 2 = 10%- 25%, 3 = 25%-60%, 4= >60%					

Size Class Analysis ³	0	R	NA	NA
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance:	
Nildlife / Habitat Observations:	
Dominion to	
Comments:	

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 14; Aug 10; Sept 24, 2015

		Layer / Abundance Abundance Code: R=Rare, O=Occasional, A=Abundant, D=Dominant				
Plant Species List	1	2	3		nt Spe	
Trees					rns &	
Thuja occidentalis	0	R			na latif	
Betula papyrifera	0	R			laris a	
Larix laricina	R				ex lacu	
					ex stric	
				Equi	isetum	
				Calt	ha pal	
				Sph	agnun	
					ex sp.	
					ss sp.	
Shrubs and Woody Vines		1				
Ribes americanum			0			
Cornus stolonifera			А			
			1	1 1		

	L Abunda	.ayer / Al nce Code: R= A=Abundant	Dundanc	e casional,
Plant Species List	1	2	3	4
Ferns & Fern Allies, Herbs, Graminoids		<u>I</u>		
Typha latifolia			А	
Phalaris arundinacea			0	
Carex lacustris				А
Carex stricta				0
Equisetum fluviatile				0
Caltha palustris				Α
Sphagnum sp.				D-A
Carex sp.				Α
Grass sp.				А
	<u> </u>			
	<u> </u>			

Project No: 12-137A	Project Name:	Hillsburgh Dam EA	Si	urveyor(s): RH	Date: May 14; Aug 10; Sept	24, 2015	
Polygon Description P9	Community Series: SW	Ecosite: SWT		Vegetation Type: SW Red-osier Organic De			
System	Topographic Feature			Dominant Plant Form			
Terrestrial Wetland	Lacustrine Riverine Bo	ttomland Terrace Valley slope T	ableland Rolling upland	Plankton Submerge	ed Floating-lvd. Graminoid	Forb	
Aquatic	Cliff Talus Crevice	Cave Alvar Rockland Beach	Bar Sand dune Bluff	Lichen Bryophyte	e Deciduous Coniferou	s Mixed	
Cover Open Shrub Treed	History Natural Cultural	Community Class Beach-Bar Barren Tallgrass Prairie Sa Open Water Shallow Water		Cliff Talus Alvar orest <u>Thicket</u> Cult	Rock Barren Crevice-Cave ural <u>Swamp</u> Fen Bog M	e Sand Iarsh	
Stand Description:			Soil Analysis:				
Community Age		Basal Area (m²/ha)	Soil Drainage				
Pioneer Young Mie	d-Aged Mature Old	Growth	Very Rapid Rapid	Well Moderately	Well Imperfect Poor	Very Poor	
Standing Snags			Soil Moisture Regime				
Rare Occasional	Abundant Dominant		Dry Fresh	Moist Wet			
Deadfall Logs			Effective Soil Texture				
Rare Occasional	Abundant Dominant		Organic				
Health	Sensitivity	Botanical Quality	Depth to Mottles / Gley				
Low Medium High	Low Medium	High Low Medium <u>High</u>	Sample: M - cm /	G-cm			
Slope			Depth to Groundwater	metres	Depth to Bedrock	metres	
none gentle m	oderate steep (simpl	e or complex)	at surface less than 1n	m more than 1 m	at surface less than 1m n	nore than 1 m	
Vegetation Layer	Height ¹ Cover ²	Dominant Species per Vegetation	Layer				

	vegetation Layer neight Cover -		Cover-	Dominant Species per vegetation Layer			
-	Canopy	3	1	Thuja occidentalis > Acer saccharinum			
2	2 Subcanopy	4	1	a occidentalis = Salix discolor			
	3 Understory	5	4	Cornus stolonifera >> Salix discolor = Spirea alba			
4	Ground Layer	6	3	Phalaris arundinacea > Typha latifolia > Caltha palustris			
1	¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%- 10%, 2 = 10%- 25%, 3 = 25%-60%, 4= >60%						

Size Class Analysis ³	0	D	NIA	NA
	0	R	NA	NA
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

dence of Disturbance:	
dlife / Habitat Observations:	
mments:	

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 14; Aug 10; Sept 24, 2015

Polygon: P9

	Abuno	Layer / Abundance Abundance Code: R=Rare, O=Occasional, A=Abundant, D=Dominant					
Plant Species List	1	2	3	4			
Trees			<u> </u>				
Thuja occidentalis	0	0					
Betula papyrifera	R						
Larix laricina	R						
Acer saccharinum	0						
Ulmus americana	R	R					
Shrubs and Woody Vines			-				
Ribes americanum			0				
Cornus stolonifera			D				
Salix discolor		0	Α				
Viburnum opulus			R				
Spirea alba			А				
Salix petiolaris			0				
Salix eriocephala			Α				
Salix lucida			0				

	Layer / Abundance Abundance Code: R=Rare, O=Occasional, A=Abundant, D=Dominant					
Plant Species List	1	2	3	4		
Ferns & Fern Allies, Herbs, Graminoids						
Phalaris arundinacea				А		
Typha latifolia				А		
Caltha palustris				А		
Actaea rubra				R		
Onoclea sensibilis				R		
Carex lacustris				0		
Eupatorium perfoliatum			0			
Impatiens capensis			0			
Eutrochium maculatum			D-A			
Chelone glabra			А			
Sparganium emersum				R		
Solidago altissima			0			
Euthamia graminifolia			0			
Symphyotrichum puniceum			0			
Solidago rugosa var. rugosa			R			
Bidens tripartita				R		
Thelypteris palustris				R		
Athyrium filix-femina var. angustum				0		
Grass sp.				D		
Sedge sp.				А		
	1	1	1			

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Representative Photographs of Vegetation Community:

Project No: 12-137A	Pr	roject Name: ⊦	Hillsburgh I	Dam EA	Si	urveyor(s): RH	Date: May 14; Au	ug 10; Sept 24, 2015
Polygon Description P10	Community Series: SW Ecosite: SWM					Vegetation Type: White Cedar – Ha	SWMO1-1 rdwood Organic Mixed	Swamp
System	Topograph	ic Feature				Dominant Plant Fo	orm	
Terrestrial Wetland	Lacustrine	Riverine Bot	tomland	Terrace Valley slope Ta	ableland Rolling upland	Plankton Subm	erged Floating-lvd.	Graminoid Forb
Aquatic	Cliff Talus	s Crevice	Cave A	Ivar Rockland Beach	Bar Sand dune Bluff	Lichen Bryop	hyte Deciduous	Coniferous Mixed
Cover	History		Comm	unity Class Beach-Bar	Sand Dune Bluff	Cliff Talus Al	var Rock Barren	Crevice-Cave Sand
Open Shrub Treed Natural Cultural		Barren	Tallgrass Prairie Sa	wannah Woodland F	orest Thicket (Cultural Swamp Fe	n Bog Marsh	
Open Shiub Inceu	ivaturai	Cultural	Open V	Vater Shallow Water				
Stand Description:				•	Soil Analysis:			
Community Age				Basal Area (m²/ha)	Soil Drainage			
Pioneer Young M	id-Aged M	ature Old (Growth		Very Rapid Rapid	Well Modera	tely Well Imperfect	Poor Very Poor
Standing Snags					Soil Moisture Regime			
Rare Occasional	Abundant	Dominant			Dry Fresh	Moist We	t	
Deadfall Logs					Effective Soil Texture			
Rare Occasional	Abundant	Dominant						
Health	Sensiti	vity	B	otanical Quality	Depth to Mottles / Gley			
Low Medium High	n Low	Medium	High Lo	ow <u>Medium</u> High	Sample: M - cm /	G- cm		
Slope			·		Depth to Groundwater	metre	Depth to Bedrock	metres
none gentle n	noderate	steep (simple	e or comple	ex)	at surface less than 1r	m more than 1 m	at surface less th	nan 1m more than 1 m
Vegetation Layer	Height ¹	Cover ²	Dominant	Species per Vegetation	Layer			
1 Canopy	2	4	White Ced	lar > Balsam Fir > White Bi	irch			
2 Subcanopy	3	3	White Ced	lar > Balsam Fir > White Bi	irch			

 3
 Understorey
 4
 3
 White Cedar > Red osier dogwood

 4
 Ground Layer
 6
 2
 Sensitive Fern > Sedge sp. > Sphagnum

¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4= >60%

Size Class Analysis ³	А	А	0	NA	
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH	

dence of Disturbance:	
dlife / Habitat Observations:	
nments:	

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 14; Aug 10; Sept 24, 2015

Polygon: P10

	Layer / Abundance Abundance Code: R-Rare, O=Occasional, A=Abundant, D=Dominant						
Plant Species List	1	2	3	4			
Trees				•			
Thuja occidentalis	D	D					
Abies balsamea	D	Α					
Betula alleghaniensis	0						
Betula papyrifera	А						
Ulmus americana		0					
Acer rubrum		0					
Populus grandidentata	0						
Picea mariana	0						
Prunus serotina	0	0					
Larix laricina		R					
Fraxinus pennsylvanica		0					
Shrubs and Woody Vines		1	1				
Cornus stolonifera		1	А				
Spiraea alba			0				
· · · · · · ·			0				
			<u> </u>				
			<u> </u>				

	Layer / Abundance Abundance Code: R=Rare, O=Occasiona A=Abundant, D=Dominant			
Plant Species List	1	2	3	4
Ferns & Fern Allies, Herbs, Graminoids				
Onoclea sensibilis				А
Cardamine diphylla				R
Epipactis helleborine				R
Thelypteris palustris				0
Gymnocarpium dryopteris				R
Monotropa uniflora				R
Equisetum palustre				R
Rubus pubescens				0
Caltha palustris				0
Prunella vulgaris				R
Equisetum scirpoides				R
Eutrochium maculatum			0	
Geum aleppicum			R	
Solanum dulcamara			А	
Symphyotrichum puniceum			Α	
Carex lacustris				0
Ranunculus acris				Α
Solidago canadensis			R	
Scirpus atrovirens			R	
Typha angustifolia			R	
Carex stipata				R
Achillea millefolium				R
Lycopus americanus				0
Iris versicolor				R
Carex lacustris				0
Osmundastrum cinnamomeum				R
Hypericum punctatum				R
Mitchella repens				R
Epilobium sp.				
				0
Sedge Sp.				A
Sphagnum				A

Project No: 12-137A

Surveyor(s): RH

Representative Photographs of Vegetation Community:

Project No: 12-137A	Pr	oject Name: Hill	lsburgh [)am EA		S	urveyor(s):	RH	Date: May 22; Au	ıg 5; Sept 24,	2015
Polygon Description P11	Community	/ Series: SA	Ec	osite: SAM				n Type: SAM_ / – Bullhead Li	1-8 ly Mixed Shallow	Aquatic	
System	Topograph	ic Feature					Dominant	Plant Form			
Terrestrial Wetland	Lacustrine	Riverine Bottor	mland T	errace Valley slope T	ableland Rolling	upland	Plankton	Submerged	Floating-lvd.	Graminoid	Forb
Aquatic	Cliff Talu	s Crevice Ca	ave Al	var Rockland Beach	Bar Sand dune	Bluff	Lichen	Bryophyte	Deciduous	Coniferous	Mixed
Cover	History		Comm	unity Class Beach-Bar	Sand Dune	Bluff	Cliff Tal	us Alvar	Rock Barren (Crevice-Cave	Sand
			Barren	Tallgrass Prairie S	avannah Woodl	and F	Forest Thio	cket Cultura	I Swamp Fen	n Bog Ma	rsh Open
Open Shrub Treed	Natural	Cultural	Water	Shallow Water							
Stand Description:	Į	<u> </u>			Soil Analysis:						
Community Age				Basal Area (m²/ha)	Soil Drainage						
Pioneer Young M	id-Aged M	lature Old Gr	owth		Very Rapid	Rapid	Well	Moderately We	ell Imperfect	Poor	Very Poor
Standing Snags					Soil Moisture Re	egime					
Rare Occasional	Abundant	Dominant			Dry Fres	sh	Moist	Wet			
Deadfall Logs					Effective Soil Te	exture					
Rare Occasional	Abundant	Dominant									
Health	Sensiti	vity	Bo	otanical Quality	Depth to Mottles	s / Gley					
Low Medium High	n Low	Medium Hig	gh Lo	w Medium High	Sample: M -	cm /	/ G -	cm			
Slope					Depth to Ground	dwater		metres De	epth to Bedrock		metres
none gentle m	oderate	steep (simple o	r comple	x)	at surface les	s than 1r	m more	than 1 m at	surface less th	an 1m m	ore than 1 m
Vegetation Layer	Height ¹	Cover ² D	ominant	Species per Vegetation	Layer						
1 Canopy											
2 Subcanopy											
3 Understorey											

2 Nuphar variegate > Sagittaria latifolia = Typha latifolia 4 Ground Layer 6 ¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4= >60%

Size Class Analysis ³	NA	NA	NA	NA
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

vidence of Disturbance:
Vildlife / Habitat Observations:
virulie / Habitat Observations.
Comments:

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

Surveyor(s):	RH
--------------	----

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 22; Aug 5; Sept 24, 2015

Polygon: P11

	l Abunda	.ayer / A nce Code: R A=Abundan	bundanc =Rare, O=Oc t, D=Dominar	; e casional, it		Layer / Abundance Abundance Code: R-Rare, O-Occasional, A=Abundant, D=Dominant				
Plant Species List	1	2	3	4	Plant Species List	1	2	3	4	
Trees		<u> </u>		<u> </u>	Ferns & Fern Allies, Herbs, Graminoids			<u> </u>		
					Nuphar variegata				D-A	
					Sagittaria latifolia				0	
					Typha latifolia				0	
					Phalaris arundinacea				0	
					Eutrochium maculatum				0	
					Scirpus atrovirens				R	
									1	
									+	
									-	
									+	
									+	
									+	
									+	
									+	
									-	
									+	
									+	
									+	
									+	
									+	
Churches and Wessley Vin se										
Shrubs and Woody Vines Cornus stolonifera		[0	[_			+	
			0							
									+	
									+	
						_				
									_	
									_	
									<u> </u>	
								ļ	1	
								ļ	1	
			1				1		1	

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Polygon: P11 Date: May 22; Aug 5; Sept 24, 2015

Representative Photographs of Vegetation Community:

Project No: 12-137A			Su	rveyor(s):	RH	Date: M	ay 22 ; Aı	ıg 10; Sepi	24, 2015				
Polygon Description P12	Community	v Series: ME	Ec	osite: MEM					n Type: ME sh Mixed Me				
System	Topographi	ic Feature						Dominant	Plant Form	1			
Terrestrial Wetland	Lacustrine	Riverine Botto	omland T	Ferrace Valley	slope Ta	ableland Ro	lling upland	Plankton	Submerg	ed Floati	ing-lvd.	Graminoi	d Forb
Aquatic	quatic Cliff Talus Crevice Cave Alvar Rockland Be						lune Bluff	Lichen	Bryophyte	e Decid	luous	Coniferou	s Mixed
Cover	History		Comm	unity Class B	each-Bar	Sand Dun	e Bluff (Cliff Talu	ıs Alvar	Rock Ba	irren C	revice-Cav	e Meadow
	Natural	Cultural	Sand B	arren Tallgra	ss Prairie	Savannal	woodland	Forest	Thicket	Cultural	Swamp	Fen Bo	og Marsh
Open Shrub Treed	Open V	Vater Shallow	/Water										
Stand Description:			Soil Analysis:										
Community Age		ı²/ha)	Soil Draina	ge									
Pioneer Young Mi	d-Aged M	ature Old G	Growth			Very Rapid	Rapid	Well	Moderately	Well Ir	nperfect	Poor	Very Poor
Standing Snags						Soil Moistu	re Regime						
Rare Occasional	Abundant	Dominant				Dry	Fresh	Moist	Wet				
Deadfall Logs						Effective Soil Texture							
Rare Occasional	Abundant	Dominant											
Health	Sensitiv	vity	Bo	otanical Quality		Depth to M	ottles / Gley						
Low Medium High	Low	Medium H	igh Lo	w Medium	High	Sample: M	- cm /	G -	cm				
Slope			•			Depth to G	oundwater		metres	Depth to B	edrock		metres
none gentle moderate steep (simple or complex)							less than 1m	more t	han 1 m	at surface	less tha	n 1m r	nore than 1 m
Vegetation Layer	Height ¹	Cover ²	Dominant	Species per Ve	getation	Layer							

	vegetation Layer neight oover		00001	Dominant Opecies per Vegetation Layer				
1	Canopy	3	2	Populus balsamifera = Pinus sylvestris				
2	2 Subcanopy	4	2	Populus balsamifera = Pinus sylvestris > Prunus virginiana				
3	3 Understorey	5	4	Phalaris arundinacea = Solidago Canadensis > Bromus inermis = Asclepias syriaca				
2	Ground Layer	6	4	Vicia cracca > Linaria vulgaris = Anemone canadensis				
1	Heinet Code: 1, 20m 2, 10m 20m 2, 2m 10m 4, 1m 2m E, 0.Em 1m 4, 0.2m 0.Em 7, 4.0.2m 2 Course Codes: 0, page 1, 00/ 100/ 2, 100/ 20/ 2, 200/ 400/ 4, 4.00/							

1 Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m 2 Cover Codes: 0 = none, 1 = 0% - 10%, 2 = 10% - 25%, 3 = 25% - 60%, 4 = >60% - 25% - 2

Size Class Analysis ³	0	0	Na	Na
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

dence of Disturbance:	
dlife / Habitat Observations:	
nments:	

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 22 ; Aug 10; Sept 24, 2015

Polygon: P12

	Abunda	.ayer / A nce Code: R: A=Abundant	bundanc =Rare, O=Oco , D=Dominan	e casional, t
Plant Species List	1	2	3	4
Trees				
Acer saccharum ssp. saccharum	0	0		
Pinus sylvestris	А	Α		
Populus balsamifera	Α	Α		
Thuja occidentalis	0	0		
Populus tremuloides		0		
Malus pumila		0		
•		0		
Shrubs and Woody Vines				
Amelanchier arborea		0		
Prunus virginiana		0	0	
		0	0	
Syringa vulgaris Alnus glutinosa				
Lonicera tatarica		R		
			0	
Sambucus racemosa			R	
				-
				l

	Abundar	nce Code: R	bundanc Rare, O=Occ	asional,
Plant Species List	1	2	3	4
Ferns & Fern Allies, Herbs, Graminoids		1	1	
Fragaria vesca				А
Arctium lappa				R
Asclepias syriaca			Α	0
Alliaria petiolata				0
Taraxacum officinale				0
Phalaris arundinacea			D-A	D
Solidago canadensis			D	
Vicia cracca				А
Bromus inermis			D-A	
Cirsium arvense			Α	
Anemone canadensis				А
Eutrochium maculatum			0	
Carex vulpinoidea				R
Rudbeckia hirta			0	
Achillea millefolium				0
Solidago altissima			Α	
Symphyotrichum novae-angliae			Α	
Pilosella caespitosa				R
Linaria vulgaris				А
Symphyotrichum ericoides			0	
Euthamia graminifolia			Α	
Symphyotrichum lateriflorum			0	
Symphyotrichum puniceum			R	
Symphyotrichum novae-angliae			Α	
	ļ			
	<u> </u>			
	l	I	1	<u> </u>

Project No: 12-137A	Pr	oject Name: H	illsburgh D	Dam EA		Su	urveyor(s):	RH	Date: Ma	y 22; July 3	0; Sept 2	4, 2015
Polygon Description P13	Community	Series	-	osite: CS Itural Savannah			Vegetatio	on Type				
System	Topographi	ic Feature	I				Dominan	t Plant Form				
Terrestrial Wetland	Lacustrine	Riverine Botto	omland T	errace Valley slope Ta	ableland Rollin	ng upland	Plankton	Submerge	ed Floatir	ıg-lvd. Gi	raminoid	Forb
Aquatic	Cliff Talus	G Crevice (Cave Al	var Rockland Beach	Bar Sand dur	ne Bluff	Lichen	Bryophyte	Decid	uous Co	oniferous	Mixed
Cover Open Shrub Treed	History Natural	Cultural	Commu Barren Open W	5	Sand Dune avannah Woo			lus Alvar icket Cultu	Rock Bar ural Swam		ce-Cave Bog Ma	Sand Irsh
Stand Description:			• 		Soil Analysis:							
Community Age				Basal Area (m²/ha)	Soil Drainage							
Pioneer Young Mi	d-Aged Ma	ature Old G	Frowth		Very Rapid	Rapid	Well	Moderately	Well Im	perfect	Poor	Very Poor
Standing Snags					Soil Moisture Regime							
Rare Occasional	Abundant	Dominant			Dry F	resh	Moist	Wet				
Deadfall Logs					Effective Soil Texture							
Rare Occasional	Abundant	Dominant										
Health	Sensitiv	/ity	Bo	otanical Quality	Depth to Mott	les / Gley						
Low Medium High	Low	Medium H	igh La	w Medium High	Sample: M -	cm /	G -	cm				
Slope	·				Depth to Grou	undwater		metres	Depth to Be	drock		metres
none gentle m	oderate	steep (simple	or comple	x)	at surface le	ess than 1m	more	than 1 m	at surface	less than 1	m mo	ore than 1 m
Vegetation Layer	Height ¹	Cover ²	Dominant	Species per Vegetation	Layer							
-												

	egetation Layer	neight	00001	Dominant Opecies per vegetation Layer				
1	Canopy	2	2	Acer negundo > Malus pumila > Pinus sylvestris = Populus tremuloides				
2	Subcanopy	3	3	Malus pumila > Pinus sylvestris = Syringa vulgaris = Rhus typhina				
3	Understorey	4	2	Lonicera tatarica > Solidago Canadensis = Lathyrus latifolius = Vitis Riparia				
4	Ground Layer	6	3	Alliaria petiolate > Galium triflorum > Anemone canadensis				
1 L	Height Code 1, 20m 2, 10m 20m 2, 2m 10m 4, 1m 2m E 0.Em 1m 4, 0.2m 0.Em 7, 4.0.2m 2 Course Codes 0, page 1, 00/ 100/ 2, 100/ 20/ 2, 200/ 40/ 4, 400/							

1 Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m 2 Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4 = >60%

Size Class Analysis ³	0	А	R	NA
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance: Trail, invasive species, cut grass

Wildlife / Habitat Observations:

Comments:

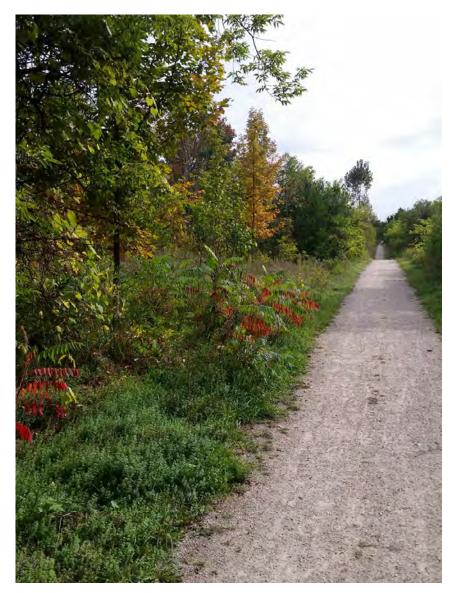
			Community Name	Code	% Coverage
Inclusion		Complex			
Inclusion		Complex			

ABOUD & ASSOCIATES INC.

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH


Date: May 22; July 30; Sept 24, 2015

	Abunda	ance Code: R	bundanc =Rare, O=Oc t, D=Dominar	casional,
Plant Species List	1	2	3	4
Trees				
Malus pumila	0	А		
Acer negundo	А			
Picea glauca	R			
Acer saccharum ssp. saccharum	R			
Thuja occidentalis		0		
Fraxinus americana		0		
Acer platanoides	R	0		
Picea pungens		R		
Prunus serotina	R			
Pinus sylvestris	0	0		
Salix alba		0		
Populus balsamifera	0	0		
Populus tremuloides	0	0		
Shrubs and Woody Vines		1	1	
Rhus typhina		0		
Cornus stolonifera		Ű	R	
Lonicera tatarica			A	
Cornus alternifolia			R	
Syringa vulgaris		0	0	
Prunus virginiana		0	R	
Vitis Riparia			0	
Parthenocissus inserta			R	
			ĸ	
			ļ	

	L Abunda	nce Code: R=	Bundanc Rare, O=Occ , D=Dominant	asional,
Plant Species List	1	2	3	4
Ferns & Fern Allies, Herbs, Graminoids				
Taraxacum officinale				0
Alliaria petiolata				А
Cichorium intybus			Α	
Lathyrus latifolius			Α	А
Achillea millefolium				R
Ambrosia artemisiifolia				0
Phleum pratense				0
Erigeron annuus				0
Silene vulgaris				0
Asclepias syriaca			0	
Galium triflorum				А
Asparagus officinalis			R	
Dactylis glomerata			0	
Solidago canadensis			А	
Melilotus albus			0	
Daucus carota			A	
Potentilla simplex			R	
Echium vulgare			A	
Anemone canadensis				А
Fragaria virginiana				0
Symphyotrichum novae-angliae			0	•
Sonchus arvensis			0	
Verbascum thapsus			R	
Trifolium pratense				0
Bromus inermis			А	
Symphyotrichum ericoides ericoides			R	
Pteridium aquilinum			R	
Apocynum androsaemifolium			R	
			K	

Project No: 12-137A

Representative Photographs of Vegetation Community:

6

3

Project No: 12-137A	Pi	roject Name: I	Hillsburgh [Dam EA	Surveyor(s): RH Date: May 22; Aug 5; Sept 24, 2015	
Polygon Description P14	Community	y Series: FE	Ec	cosite: FET	Vegetation Type: FETC1-2 Tamarack – White Cedar Treed Fen	
System	Topograph	ic Feature	I		Dominant Plant Form	
Terrestrial Wetland	Lacustrine	Riverine Bo	ttomland	Terrace Valley slope Ta	Tableland Rolling upland Plankton Submerged Floating-lvd. Graminoid For	rb
Aquatic	Cliff Talu	s Crevice	Cave A	Ivar Rockland Beach	Bar Sand dune Bluff Lichen Bryophyte Deciduous Coniferous Mix	ked
Cover Open Shrub Treed	History Natural	Cultural	Comm Barren Open V	5	r Sand Dune Bluff Cliff Talus Alvar Rock Barren Crevice-Cave S Savannah Woodland Forest Thicket Cultural Swamp Fen Bog Marsh	Sand
Stand Description:				1	Soil Analysis:	
	d-Aged N	lature Old	Growth	Basal Area (m²/ha)	Soil Drainage Very Rapid Rapid Well Moderately Well Imperfect Poor Very I	Poor
Standing Snags Rare Occasional	Abundant	Dominant			Soil Moisture Regime Dry Fresh Moist Wet	
Deadfall Logs Rare Occasional	Abundant	Dominant			Effective Soil Texture	
Health	Sensiti	vity	В	otanical Quality	Depth to Mottles / Gley	
Low Medium High	Low	Medium	High Lo	ow Medium High	Sample: M - cm / G - cm	
Slope	I		I		Depth to Groundwater metres Depth to Bedrock metres	tres
none gentle m	oderate	steep (simple	e or comple	ex)	at surface less than 1m more than 1 m at surface less than 1m more than	n1m
Vegetation Layer	Height 1	Cover ²	Dominant	Species per Vegetation	n Layer	
1 Canopy	3	2	Thuja occi	identalis = Larix Iaricina		
2 Subcanopy	4	2	Thuja occi	identalis > Larix laricina		
3 Understorey	5	3	Salix sp. >	· Cornus stolonifera = Typh	ha angustifolia	

4 Ground Layer Carex sp. > Caltha palustris > Liparis loeselii > Impatiens capensis ¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4=>60%

Size Class Analysis ³	D	А	0	NA
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance:								
	I							
	l							
	l							
Wildlife / Habitat Observations: Leopard frog, muskrat den								
	l							
	I							
	I							
Comments: Soil primarily organic > 50 cm with areas of calcareous mineral soil.	I							
	I							
	l							
	I							

				Community Name	Code	% Coverage
Inclusion		Complex	Х	Tamarack Organic Coniferous Swamp Type	SWOC2-2	15
Inclusion		Complex	Х	Mixed Willow Organic Deciduous Thicket Swamp Type	SWTO2-6	10
		Complex	Х	Cattail Graminoid Organic Meadow Marsh Type	MAMO1-2	20

ABOUD & ASSOCIATES INC.

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 22; Aug 5; Sept 24, 2015

Polygon: P14

	Abunda	Layer / Abundance Abundance Code: R=Rare, O=Occasional, A=Abundant, D=Dominant					
Plant Species List	1	2	3	4			
Trees		1		1			
Larix laricina	А						
Thuja occidentalis	А	D - A	0				
Populus tremuloides	0						
Populus balsamifera		R					
Betula papyrifera		R	0				
Acer negundo		R					
Fraxinus pennsylvanica		R					
		1					
		1					
Shrubs and Woody Vines							
Cornus stolonifera			A				
Ribes americanum			0				
Lonicera tatarica			R				
Viburnum opulus			R				
Rhamnus alnifolia			R				
			A				
Salix eriocephala			A				
Salix lucida Salix discolor			A				
Salix petiolaris			0				
			0				

	Layer / Abundance Abundance Code: R=Rare, O=Occas A=Abundant, D=Dominant 1 2 3				
Plant Species List	1	2	3	4	
Ferns & Fern Allies, Herbs, Graminoids					
Caltha palustris				А	
Fragaria vesca				0	
Taraxacum officinale				R	
Typha angustifolia			D-A		
Geum canadense				0	
Tussilago farfara				R	
Impatiens capensis			А	Α	
Myosotis laxa				0	
Equisetum palustre				0	
Eutrochium maculatum			A-O		
Leucanthemum vulgare				R	
Iris versicolor				0	
Eupatorium perfoliatum				0	
Leonurus cardiaca				0	
Spiranthes romanzoffiana				O-R	
Chelone glabra			0		
Carex aurea				R	
Carex lacustris				0	
Carex stricta				А	
Nasturtium microphyllum				0	
Miscanthus x giganteus			R		
Geranium robertianum				0	
Onoclea sensibilis				0	
Sagittaria latifolia				R	
Bidens cernua			0		
Equisetum fluviatile				0	
Epilobium leptophyllum				R	
Epilobium coloratum			0		
Lobelia kalmii				0	
Liparis loeselii				A-O	
Solidago uliginosa			0		
Viola cucullata				0	
Rumex orbiculatus			R	-	
Solidago rugosa var. rugosa			A-O		
Symphyotrichum ericoides			R		
Euthamia graminifolia			A		
Symphyotrichum puniceum			A		
Campanula aparinoides				R	
Scutellaria galericulata				0	
Solidago uliginosa			A-O	-	
Carex interior				0	
				~	
			I		

Project No: 12-137A

Surveyor(s): RH

Representative Photographs of Vegetation Community:

Project No: 12-137A	Pro	oject Name: Hi	illsburgh D	Dam EA	S	Surveyor(s) : R	H C	Date: May 22; Au	g 5; Sept 24	4, 2015
Polygon Description P15	Community	Series: FO	Ec	osite: FOD	Vegetation Type: FODM8-1 Fresh – Moist Poplar Deciduous Forest					
System	Topographic	c Feature				Dominant P	lant Form			
Terrestrial Wetland	Lacustrine F	Riverine Botto	omland T	errace Valley slope Ta	ableland Rolling upland	Plankton	Submerged	Floating-lvd.	Graminoid	Forb
Aquatic	Cliff Talus	Crevice C	Cave Al	var Rockland Beach	Bar Sand dune Bluff	Lichen	Bryophyte	Deciduous	Coniferous	s Mixed
Cover Open Shrub Treed	History Natural	Cultural	Commu Barren Open W	5	Sand Dune Bluff wannah Woodland	Cliff Talus Forest Thick			revice-Cave Bog M	s Sand arsh
Stand Description:					Soil Analysis:					
Community Age				Basal Area (m²/ha)	Soil Drainage					
Pioneer Young Mid	d-Aged Ma	iture Old G	rowth		Very Rapid Rapid	Well	loderately We	ll Imperfect	Poor	Very Poor
Standing Snags					Soil Moisture Regime					
Rare Occasional	Abundant	Dominant			Dry Fresh	Moist	Wet			
Deadfall Logs					Effective Soil Texture					
Rare Occasional	Abundant	Dominant			Mineral					
Health	Sensitiv	ity	Bo	otanical Quality	Depth to Mottles / Gley					
Low Medium High	Low	Medium Hi	igh Lo	w Medium High	Sample: M - cm	/G-c	m			
Slope	•				Depth to Groundwater		metres De	pth to Bedrock		metres
none gentle m	oderate	steep (simple	or comple	x)	at surface less than 1	m more tha	an 1 m at s	surface less that	in 1m 🛛 ma	ore than 1 m
Vegetation Layer	Height ¹	Cover ²	Oominant	Species per Vegetation	Layer					
1 Canony	4	4 Γ	Dopulue tre	mulaidae > Danulus halsa	mifora > Acor platanoidos					

1	Canopy	4	4	Populus tremuloides > Populus balsamifera > Acer platanoides				
2	Subcanopy	3	3	Populus tremuloides > Populus balsamifera > Acer platanoides = Acer negundo				
3	Understorey	2	3	Cornus alternifolia > Thuja occidentalis = Prunus virginiana > Symphyotrichum novae-angliae				
4	Ground Layer	1	2	Tussilago farfara > Aegopodium podagraria > Myosotis scorpioides = Fragaria vesca				
1 F	¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0% - 10%, 2 = 10% - 25%, 3 = 25% -60%, 4= >60%							

Size Class Analysis ³	0	А	А	NA
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

vidence of Disturbance:	
ildlife / Habitat Observations:	
omments:	

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

Polygon: P15

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 22; Aug 5; Sept 24, 2015

Polygon: P15

	Layer / Abundance Abundance Code: R=Rare, 0=Occasional, A=Abundant, D=Dominant				
Plant Species List	1	2	3	4	
ſrees					
Populus tremuloides	D	Α			
Populus balsamifera	А	А			
Picea abies	R				
cer platanoides	0	0			
cer negundo		0			
Prunus serotina	R				
huja occidentalis		0	0		
		0	0		
Shrubs and Woody Vines					
Cornus alternifolia			А	[
			~		
			0		
Prunus virginiana			0		
			0		
			0		
			0		
			0		
			0		
			0		
			0		
			0		
			0		
			0		
			0		
			0		
			0		

	Layer / Abundance Abundance Code: R=Rare, O=Occasional A=Abundant, D=Dominant				
Plant Species List	1	2 2	3	4	
Ferns & Fern Allies, Herbs, Graminoids	<u> </u>	<u> </u>	L		
Fragaria vesca	<u> </u>			0	
Taraxacum officinale				R	
Tussilago farfara				А	
Aegopodium podagraria				A-0	
Myosotis scorpioides				0	
Glechoma hederacea				0-R	
Solidago altissima			0		
Symphyotrichum novae-angliae			А		

Project No: 12-137A	Proje	ct Name: Hills	burgh Dam EA			Su	rveyor(s): RH	Date: May	/ 22; Aug 5; Sept	t 24, 2015	
Polygon Description P16	Community Se	eries: FO	Ecosite: FOD				Vegetation Type: FODM6 Fresh – Moist Sugar Maple Deciduous Forest Ecosite				
System	Topographic F	eature					Dominant Plant For	m			
Terrestrial Wetland	Lacustrine Riv	verine Bottom	land Terrace Va	lley slope Ta	ableland Ro	olling upland	Plankton Subme	rged Floatin	g-lvd. Gramir	noid Forb	
Aquatic	Cliff Talus	Crevice Ca	ve Alvar Rockla	and Beach	Bar Sand o	lune Bluff	Lichen Bryophy	/te Decidu	Jous Conifer	rous Mixed	
Cover	History		Community Class	Beach-Bar	Sand Dun	e Bluff (Cliff Talus Alva	ar Rock Bar	ren Crevice-C	ave Sand	
Open Shrub Treed		ultural	Barren Tallgras	s Prairie Sa	avannah W	loodland Fo	prest Thicket C	ultural Swam	p Fen Bog	Marsh	
open on an inced	i vatarai O		Open Water Sh	allow Water							
Stand Description:					Soil Analys	is:					
Community Age			Basal Are	a (m²/ha)	Soil Draina	ge					
Pioneer Young Mid	d-Aged Matur	re Old Gro	wth		Very Rapid	Rapid	Well Moderate	ly Well Im	perfect Poor	Very Poor	
Standing Snags			•		Soil Moistu	re Regime					
Rare Occasional	Abundant	Dominant			Dry	Fresh	Moist Wet				
Deadfall Logs					Effective Se	oil Texture					
Rare Occasional	Abundant	Dominant									
Health	Sensitivity		Botanical Qu	ality	Depth to M	ottles / Gley					
Low Medium High	Low Me	edium Higl	n Low Med	um High	Sample: M	- cm /	G-cm				
Slope	·		·		Depth to G	roundwater	metres	Depth to Be	drock	metres	
none gentle me	oderate ste	eep (simple or	complex)		at surface	less than 1m	more than 1 m	at surface	less than 1m	more than 1 m	
Vegetation Layer	Height ¹ C	Cover ² Do	minant Species pe	r Vegetation	Layer						
1 Canopy	2	2 3 Acer saccharum ssp. saccharum > Acer negundo > Fraxinus pennsylvanica > Juglans nigra									

1	Canopy	2	3	Acer saccharum ssp. saccharum > Acer negundo > Fraxinus pennsylvanica > Juglans nigra		
2	Subcanopy	3	4	Acer negundo > Fraxinus pennsylvanica > Vitis riparia		
3	Understorey	4	4	Lonicera tatarica > Rubus allegheniensis > Vitis riparia = Echinocystis lobata		
4	Ground Layer	6	4	Alliaria petiolate >> Anemone Canadensis = Vicia cracca = Equisetum arvense		
1	¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%- 10%, 2 = 10%- 25%, 3 = 25%-60%, 4= >60%					

Size Class Analysis ³	А	А	0	NA
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance:
Wildlife / Habitat Observations:
Comments: Cut-grass, planted non-native plants, occupied residence.
ELC done from property edge.

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

r (s): I	RH	Date:	May

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 22; Aug 5; Sept 24, 2015

	Layer / Abundance Abundance Code: R=Rare, O=Occasional, A=Abundant, D=Dominant					
Plant Species List	1	2	3	4		
Trees		1				
Juglans nigra	0	0				
Acer saccharum ssp. saccharum	A	0	0	0		
Acer negundo	A	А				
Fraxinus pennsylvanica	A	А				
Pinus strobus (Planted)						
Alnus glutinosa (Planted)	0	0				
Thuja occidentalis	0	0	0			
Picea glauca		0				
Populus balsamifera		Ŭ				
Prunus serotina		R				
Acer x freemanii (Planted)	R	K				
Salix alba	R					
	ĸ					
Shrubs and Woody Vines						
Vitis riparia		А	Α			
Cornus alternifolia		0	0			
Prunus virginiana			0			
Lonicera tatarica			А			
Rubus idaeus ssp. strigosus			А			
Viburnum opulus			0			
Ribes americanum			A			
Cornus stolonifera			0			
Ribes cynosbati			0			
Parthenocissus inserta			0			
Salix discolor			R			
Rhamnus cathartica		0	к 0			
Echinocystis lobata		-				
Prunus virginiana		0	0			
Sorbus aucuparia		<u> </u>	0			
		R				
Rubus allegheniensis		<u> </u>	A-0			
Rhus typhina		O-R				
Lonicera Sp.			0			
				_		

	Layer / Abundance Abundance Code: R=Rare, 0=Occasional, A=Abundant, D=Dominant			
Plant Species List	1	2	3	4
Ferns & Fern Allies, Herbs, Graminoids				
Equisetum arvense				0
Taraxacum officinale				A - 0
Arctium lappa			0	
Alliaria petiolata				Α
Onoclea sensibilis				R
Asparagus officinalis				R
Geranium robertianum				R
Anemone canadensis				0
Hemerocallis fulva			Α	
Circaea canadensis				0
Chelidonium majus				R
Matteuccia struthiopteris (Planted)				O-R
Oenothera biennis			0	0
Erigeron philadelphicus			0	
Leonurus cardiaca				R
Dactylis glomerata			А	
Solidago altissima			0	
Nepeta cataria				R
Euthamia graminifolia				R
Bromus inermis			0	
Melilotus albus			R	
Silene vulgaris				R
Asclepias syriaca			0	
Daucus carota			0	
Tragopogon dubius			R	
Achillea millefolium				R
Malva moschata				R
Chenopodium album				0-R
Abutilon theophrasti			R	
Phalaris arundinacea			0	
Lactuca canadensis			0	
Vicia cracca				0
Hypericum perforatum			R	Ŭ

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Representative Photographs of Vegetation Community:

Project No: 12-137A	Pr	oject Name: I	Hillsburgh	Dam EA	S	urveyor(s): RH	Date: May 22; Aug	5; Sept 24, 2015	5	
Polygon Description P17	Community	/ Series: SW	E	cosite: SWC		Vegetation Type: SWCM1-2 White Cedar – Conifer Mineral Coniferous Swamp				
System	Topographi	ic Feature				Dominant Plant Form	n			
Terrestrial Wetland	Lacustrine	Riverine Bo	ttomland	Terrace Valley slope Ta	ableland Rolling upland	Plankton Submer	ged Floating-lvd.	Graminoid F	orb	
Aquatic	Cliff Talus	s Crevice	Cave A	Alvar Rockland Beach	Bar Sand dune Bluff	Lichen Bryophy	e Deciduous	Coniferous N	Vixed	
Cover Open Shrub Treed	History Natural	Cultural	Barrer	nunity Class Beach-Bar n Tallgrass Prairie Sa Water Shallow Water	Sand Dune Bluff Ivannah Woodland F	Cliff Talus Alva Forest Thicket Cul	r Rock Barren Cr tural Swamp Fen	evice-Cave Bog Marsh	Sand	
Stand Description:					Soil Analysis:					
Community Age Pioneer Young Mid	d-Aged Ma	ature Old	Growth	Basal Area (m²/ha)	Soil Drainage Very Rapid Rapid	Well Moderatel	y Well Imperfect	Poor Ver	ry Poor	
Standing Snags					Soil Moisture Regime					
Rare Occasional	Abundant	Dominant			Dry Fresh	Moist Wet				
Deadfall Logs					Effective Soil Texture					
Rare Occasional	Abundant	Dominant								
Health	Sensitiv	vity	E	Botanical Quality	Depth to Mottles / Gley					
Low Medium High	Low	Medium	High L	₋ow Medium High	Sample: M - cm	/G- cm				
Slope					Depth to Groundwater	metres	Depth to Bedrock	r	netres	
none gentle m	oderate	steep (simple	e or comp	lex)	at surface less than 1	m more than 1 m	at surface less that	n 1m more th	nan 1 m	
Vegetation Layer	Height ¹	Cover ²	Dominar	nt Species per Vegetation	Layer					
1 Canany	2		Thula an	cidentelie Freuinue nonne		أمنامه				

•	Vegetation Layer									
1	Canopy	2	4	occidentalis >> Fraxinus pennsylvanica > Populus tremuloides						
2	Subcanopy	3	2	Thuja occidentalis >> Abies balsamea > Fraxinus pennsylvanica						
3	Understorey	4	2	Ribes americanum = Cornus alternifolia > Cornus stolonifera						
4	4 Ground Layer 6 3 Caltha palustris > Equisetum palustre > Impatiens capensis									
1	Height Code: 1=>20m, 2=	10m-20m, 3=	2m-10m, 4=1	Im-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%- 10%, 2 = 10%- 25%, 3 = 25%-60%, 4= >60%						

Size Class Analysis ³				
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance: Trails, sand bags, water control structures.

Wildlife / Habitat Observations: Canada goose nest, snapping turtle along edge of pond.

Comments: Mostly Wetland, with areas of upland cedar forest on slopes around pond.

Inclusion Complex				Community Name	Code	% Coverage
Inclusion		Complex	X	Fresh – Moist White Cedar Coniferous Forest Type	FOCM4-1	20
Inclusion		Complex				

ABOUD & ASSOCIATES INC.

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 22; Aug 5; Sept 24, 2015

Polygon: P17


	L Abunda	nce Code: R:	bundanc =Rare, O=Oci , D=Dominan	re, O=Occasional,		
Plant Species List	1	2	3	4		
Trees	•					
Larix laricina	R					
Thuja occidentalis	D	D				
Populus tremuloides	0	0				
Acer negundo	R					
Picea glauca	R					
Fraxinus pennsylvanica	O-A	0				
Ulmus americana	R	R				
Prunus serotina	O-R	R				
Abies balsamea	0	А				
Shrubs and Woody Vines			1			
Cornus stolonifera			Α			
Lonicera tatarica			0			
Prunus virginiana			0			
Viburnum lentago			0			
Rhamnus alnifolia			R			
Cornus alternifolia			Α	0		
Ribes americanum			Α			
Sambucus canadensis			R			
Amelanchier arborea			R			

	L Abunda	nce Code: R	bundanc =Rare, O=Occ ;, D=Dominant	e asional,
Plant Species List	1	2	3	4
Ferns & Fern Allies, Herbs, Graminoids				
Typha sp.				0
Myosotis laxa				0
Caltha palustris				А
Asparagus officinalis				R
Impatiens capensis				А
Tussilago farfara				А
Taraxacum officinale				А
Vinca minor				R
Onoclea sensibilis				0
Solanum dulcamara				0
Equisetum scirpoides				0
Equisetum palustre				А
Lemna minor				0
Clematis virginiana			0	
Hypericum punctatum				R
Cystopteris bulbifera			0-R	
Vitis riparia			0	
Circaea alpina			-	0
Rumex orbiculatus			R	-
Lythrum salicaria			0	
Symphyotrichum puniceum			0	
Phalaris arundinacea			0	
Carex vulpinoidea				0
Eutrochium maculatum var. maculatum			O-A	
Aegopodium podagraria				R
Geranium robertianum				R
Rubus pubescens			O-R	
Thelypteris noveboracensis			•	R
Ranunculus recurvatus				0
				-

Project No: 12-137A

Surveyor(s): RH

Representative Photographs of Vegetation Community:

Project No: 12-137A	Pr	roject Name: H	lillsburgh	Dam EA		Surveyor	·(s): RH	ıg 5; Sept 24,	2015			
Polygon Description P18	Community	y Series: SA	E	cosite: SAM			Vegetation Type: SAM_1-8 Water Lily – Bullhead Lily Mixed Shallow Aquatic					
System	Topograph	ic Feature				Domi	nant Plant Form					
Terrestrial Wetland	Lacustrine	Riverine Botte	omland [.]	Terrace Valley slope Ta	bleland Rolling upla	ind Plank	ton Submerge	d Floating-lvd.	Graminoid	Forb		
Aquatic	Cliff Talu	s Crevice	Cave A	Ivar Rockland Beach	Bar Sand dune B	luff Lichei	n Bryophyte	Deciduous	Coniferous	Mixed		
Cover	History		Comm	unity Class Beach-Bar	Sand Dune Blu	ff Cliff	Talus Alvar	Rock Barren C	Crevice-Cave	Sand		
		Cultural	Barren	Tallgrass Prairie Sa	wannah Woodland	Forest	Thicket Cultur	ral Swamp Fen	n Bog Mar	rsh Open		
Open Shrub Treed	Natural	Cultural	Water	or Shallow Water								
Stand Description:	ļ		1		Soil Analysis:							
Community Age				Basal Area (m²/ha)	Soil Drainage							
Pioneer Young N	id-Aged M	lature Old G	Growth		Very Rapid Rap	oid Well	Moderately V	Vell Imperfect	Poor	Very Poor		
Standing Snags					Soil Moisture Regir	ne						
Rare Occasional	Abundant	Dominant			Dry Fresh	Mois	Wet					
Deadfall Logs					Effective Soil Textu	ire						
Rare Occasional	Abundant	Dominant										
Health	Sensiti	vity	В	otanical Quality	Depth to Mottles / 0	Bley						
Low <u>Medium</u> Hig	n Low	Medium H	ligh L	ow Medium High	Sample: M - c	:m / G-	ст					
Slope					Depth to Groundwa	iter	metres [Depth to Bedrock		metres		
none gentle n	noderate	steep (simple	or comple	ex)	at surface less th	an 1m 🛛 m	nore than 1 m	at surface less the	an 1m mo	re than 1 m		
Vegetation Layer	Height 1	Cover ²	Dominan	t Species per Vegetation	Layer							
1 Canopy												
2 Subcanopy												
3 Understorey												

4 2 Nymphaea odorata ssp. odorata > Typha latifolia > Sagittaria latifolia Ground Layer 6 ¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4= >60%

Size Class Analysis ³	NA	NA	NA	NA
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

vidence of Disturbance:	
Vildlife / Habitat Observations:	
vidine / habitat Observations:	
comments:	

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

eyor(s):	RH	Da	te:	

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Polygon: P18 Date: May 22; Aug 5; Sept 24, 2015

Inclusion		Complex											
Diant David				Layer / Abundance Abundance Code: R=Rare, O=Occasional, A=Abundant, D=Dominant		Plant Species List		Layer / Abundance Abundance Code: R=Rare, O=Occas A=Abundant, D=Dominant					
Plant Specie	s List			1	2	3	4	Plant Species List		1	2	3	4
Trees				1	1	1	1	Ferns & Fern Allies, Herbs, Gramin	oids	1	1	1	1
								Nymphaea odorata ssp. odorata					A
								Typha latifolia					0
								Phalaris arundinacea					0
								Sagittaria latifolia					0
								Eutrochium maculatum					0
								Scirpus atrovirens					R
								Cystopteris bulbifera					R
								Potamogeton sp.					0
Shrubs an	d W	oody Vines				1							
		-											
												<u> </u>	

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Representative Photographs of Vegetation Community:

Project No: 12-137A	Pr	oject Name: Hi	illsburgh [Dam EA		S	Surveyor(s): RH	Date	: May 22; A	Aug 5; Sept	24, 2015	
Polygon Description P19	Community	/ Series: SA	Ec	osite: SAM				ation Type: S/ Lily – Bullhea		xed Shallo	w Aquatic		
System	Topograph	ic Feature					Domin	ant Plant For	m				
Terrestrial Wetland	Lacustrine	Riverine Botto	omland T	errace Valley slope	Tableland Rolling	upland	Plankto	on Submer	ged F	loating-lvd.	Gramin	oid Fo	orb
Aquatic	Cliff Talu	s Crevice (Cave Al	var Rockland Beach	Bar Sand dune	e Bluff	Lichen	Bryophy	te D	eciduous	Conifero	us M	ixed
Cover	History		Comm	unity Class Beach-B	r Sand Dune	Bluff	Cliff	Talus Alva	r Roc	k Barren	Crevice-Ca	ve	Sand
	,	Quiltured	Barren	Tallgrass Prairie	Savannah Wood	lland I	Forest	Thicket Cu	ltural S	wamp Fe	en Bog	Marsh	Open
Open Shrub Treed	Natural	Cultural	Water	Shallow Water									
Stand Description:	1		ļ		Soil Analysis:								
Community Age				Basal Area (m²/ha)	Soil Drainage								
Pioneer Young N	lid-Aged M	lature Old G	Growth		Very Rapid	Rapid	Well	Moderatel	y Well	Imperfec	t Poor	Very	Poor
Standing Snags					Soil Moisture F	Regime							
Rare Occasional	Abundant	Dominant			Dry Fre	esh	Moist	Wet					
Deadfall Logs					Effective Soil T	exture							
Rare Occasional	Abundant	Dominant											
Health	Sensiti	vity	В	otanical Quality	Depth to Mottle	es / Gley							
Low <u>Medium</u> Hig	h Low	Medium Hi	igh La	w Medium High	Sample: M -	ст	/ G-	cm					
Slope					Depth to Grour	ndwater		metres	Depth	to Bedrock	(m	etres
none gentle r	noderate	steep (simple o	or comple	x)	at surface le	ss than 1	m mo	ore than 1 m	at surfa	ice less	than 1m	more that	an 1 m
Vegetation Layer	Height 1	Cover ²	Dominant	Species per Vegetatio	n Layer								
1 Canopy													
2 Subcanopy													
3 Understorey													

4 Nymphaea odorata ssp. odorata > Typha latifolia > Sagittaria latifolia Ground Layer ¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4= >60%

Size Class Analysis ³	NA	NA	NA	NA
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

vidence of Disturbance:	
Vildlife / Habitat Observations:	
vidine / habitat Observations:	
comments:	

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

Polygon: P19

Surveyor(s):	RH

2

6

Project No: 12-137A

ABOUD & ASSOCIATES INC.

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 22; Aug 5; Sept 24, 2015

Layer / Abundance Abundance Code: R=Rare, O=Occasional, A=Abundant, D=Dominant

3

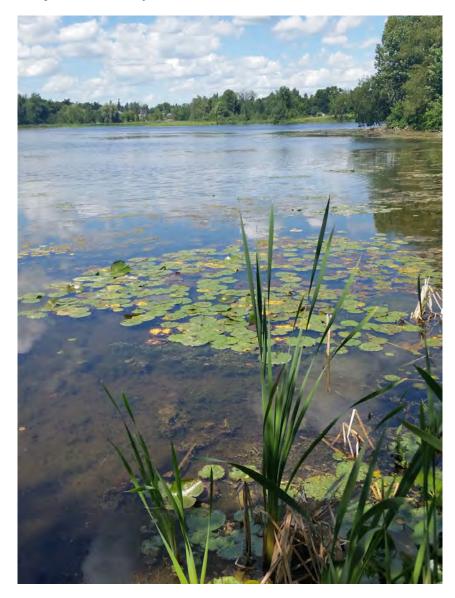
R 0 4

А 0 0

0 R 0 R R R R

2

Polygon: P19


1

	L Abunda	.ayer / A nce Code: R A=Abundan	bundanc =Rare, O=Oci t, D=Dominan	e casional, t	
Plant Species List	1	2	3	4	Plant Species List
Trees		1			Ferns & Fern Allies, Herbs, Gramino
					Nymphaea odorata ssp. odorata
					Sagittaria latifolia
					Typha latifolia
					Cystopteris bulbifera
					Phalaris arundinacea
					Carex lacustris
					Bidens frondosa
					Eutrochium maculatum
					Scirpus atrovirens
					Typha angustifolia
					Iris pseudacorus
				\vdash	lris versicolor
				<u> </u>	
Shrubs and Woody Vines					
Cornus stolonifera			0		

Project No: 12-137A

Surveyor(s): RH

Representative Photographs of Vegetation Community:

2

6

4 Ground Layer

Project No: 12-137A	Pr	oject Name : Hi	llsburgh [Dam EA	S	urveyor(s): RH	Date: May 22; Aug 5; Sept 24, 2015
Polygon Description P20	Community	v Series:		cosite: OAW pen Aquatic		Vegetation Type:	
System	Topograph	ic Feature				Dominant Plant Form	n
Terrestrial Wetland	Lacustrine	Riverine Botto	mland T	Ferrace Valley slope Ta	bleland Rolling upland	Plankton Submer	ged Floating-Ivd. Graminoid Forb
Aquatic	Cliff Talus	s Crevice C	Cave Al	lvar Rockland Beach	Bar Sand dune Bluff	Lichen Bryophy	te Deciduous Coniferous Mixed
Cover Open Shrub Treed	History Natural	Cultural	Common Barren Open V	5		Cliff Talus Alva orest Thicket Cul	r Rock Barren Crevice-Cave Sand Itural Swamp Fen Bog Marsh
Stand Description:					Soil Analysis:		
Community Age				Basal Area (m²/ha)	Soil Drainage		
Pioneer Young Mi	d-Aged M	ature Old G	rowth		Very Rapid Rapid	Well Moderatel	y Well Imperfect Poor Very Poor
Standing Snags				·	Soil Moisture Regime		
Rare Occasional	Abundant	Dominant			Dry Fresh	Moist Wet	
Deadfall Logs					Effective Soil Texture		
Rare Occasional	Abundant	Dominant					
Health	Sensitiv	vity	В	otanical Quality	Depth to Mottles / Gley		
Low Medium High	Low	Medium Hi	gh Lo	ow Medium High	Sample: M - cm /	/G-cm	
Slope	1				Depth to Groundwater	metres	Depth to Bedrock metres
none gentle m	oderate	steep (simple o	or comple	ex)	at surface less than 1r	m more than 1 m	at surface less than 1m more than 1 m
Vegetation Layer	Height ¹	Cover ²	ominant	Species per Vegetation	Layer		
1 Canopy							
2 Subcanopy							
3 Understorey							

¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4= >60%

Nymphaea odorata ssp. odorata

Size Class Analysis ³	NA	NA	NA	NA
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance:	
Wildlife / Habitat Observations:	
Comments:	
Deep open water portion of main pond.	

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

Date:	Mav	22:	Aua	5:	Sept	24.	2015

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 22; Aug 5; Sept 24, 2015

Polygon: P20

	L Abunda	ayer / Al	bundanc =Rare, O=Oco , D=Dominan	e casional,
Plant Species List	1	A=Abundant 2	, D=Dominan 3	4
Trees	•			
Shrubs and Woody Vines				
	1			
				ļ

Project No: 12-137A

137A **Project Name**: Hillsburgh Dam EA

Surveyor(s): RH

Representative Photographs of Vegetation Community:

Polygon: P21

Pi	oject No: 12-137A	Pr	oject Name: H	Hillsburgh	n Dam EA	Surveyor(s): RH Date:					
Po	blygon Description P21	Community	/ Series: SW	E	Ecosite: SWC	Vegetation Type: SWCM1-2 White Cedar – Conifer Mineral Coniferous Swamp					
S	/stem	Topograph	ic Feature			Dominant Plant Form					
Te	errestrial Wetland	Lacustrine	Riverine Bot	tomland	Terrace Valley slope Ta	ableland Rolling upland Plankton Submerged Floating-lvd. Graminoid Forb					
Aquatic Cliff Talus Crevice Cave Alvar Rockland Bea											
С	over	History		Com	munity Class Beach-Bar	Sand Dune Bluff Cliff Talus Alvar Rock Barren Crevice-Cave Sand					
	pen Shrub Treed	Natural	Cultural	Barre	n Tallgrass Prairie Sa	avannah Woodland Forest Thicket Cultural Swamp Fen Bog Marsh					
		ivaturai	Cultural	Open	Water Shallow Water						
Sta	nd Description:					Soil Analysis:					
Co	mmunity Age				Basal Area (m²/ha)	Soil Drainage					
Pio	neer Young Mi	d-Aged M	ature Old	Growth		Very Rapid Rapid Well Moderately Well Imperfect Poor Very Poor					
Sta	Inding Snags					Soil Moisture Regime					
Ra	re Occasional	Abundant	Dominant			Dry Fresh Moist Wet					
De	adfall Logs					Effective Soil Texture					
Ra	re Occasional	Abundant	Dominant			Organic (D) / Mineral (O)					
He	alth	Sensiti	vity		Botanical Quality	Depth to Mottles / Gley					
Lo۱	v Medium High	Low	Medium I	High	Low Medium High	Sample: M - cm / G - cm					
Slo	ре					Depth to Groundwater metres Depth to Bedrock metres					
nor	ne gentle m	oderate	steep (simple	e or comp	olex)	at surface less than 1m more than 1 m at surface less than 1m more than 1 m					
Ve	egetation Layer	Height ¹	Cover ²	Domina	nt Species per Vegetation	Layer					
1	Canopy	2	3	Thuja oc	cidentalis > Abies balsamea	= Picea mariana = Picea glauca					
2	Subcanopy	3	2	Thuja oc	cidentalis > Abies balsamea	= Populus balsamifera > Betula papyrifera					
3	Understorey	4	2	Abies ba	Isamea = Thuja occidentalis	s > Cornus alternifolia					
	Consumed Lawrence	,	2	0 - 141	- hustria - Oraș de a sere dibilita	An ann an an aire					

 4
 Ground Layer
 6
 2
 Caltha palustris > Onoclea sensibilis > Anemone canadensis

¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4 = >60% (1 + 10) (1

Size Class Analysis ³	А	А	А	R
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance:	
Wildlife / Habitat Observations:	
Comments: Most of the community is on private land without access. Evaluation from trail edge.	-
comments. Most of the community is on private rand without access. Evaluation non-mail edge.	

			Community Name	Code	% Coverage
Inclusion	Complex	Х	Fresh – Moist White Cedar – Hardwood Mixed forest Type	FOMM7-2	20
Inclusion	Complex				

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Polygon: P21

Date:

	Abunda	Layer / A ance Code: F	bundanc R=Rare, O=Oc It, D=Dominar	e casional,
Plant Species List	1	A=Abundar 2	it, D=Dominan	4
Trees		1		
Thuja occidentalis	D	D	Α	
Acer saccharinum	R			
Betula papyrifera	А	А	Α	
Acer negundo	R			
Picea mariana				
Prunus serotina	0	А		
Populus balsamifera	А	А	Α	
Abies balsamea	D	А	А	
Populus tremuloides		0		
Crataegus sp.	R	R		
Tilia americana		0	0	
Acer platanoides	D	A	A	
Picea glauca		···	R	
Fraxinus americana	0			
Larix laricina		0	0	
Fraxinus pennsylvanica	0	0	-	
Acer rubrum		0		
Shrubs and Woody Vines				
			0	
Lonicera tatarica			O A	
Lonicera tatarica Cornus stolonifera				
Lonicera tatarica Cornus stolonifera Vitis riparia			A	
Lonicera tatarica Cornus stolonifera Vitis riparia Ribes americanum			A O	
Lonicera tatarica Cornus stolonifera Vitis riparia Ribes americanum Prunus virginiana			A 0 0	
Lonicera tatarica Cornus stolonifera Vitis riparia Ribes americanum Prunus virginiana Ribes triste			A O O R	
Lonicera tatarica Cornus stolonifera Vitis riparia Ribes americanum Prunus virginiana Ribes triste Cornus alternifolia			A 0 0 R 0	R
Lonicera tatarica Cornus stolonifera Vitis riparia Ribes americanum Prunus virginiana Ribes triste Cornus alternifolia Aralia nudicaulis			A 0 0 R 0	R
Lonicera tatarica Cornus stolonifera Vitis riparia Ribes americanum Prunus virginiana Ribes triste Cornus alternifolia Aralia nudicaulis			A O O R O R	R
Lonicera tatarica Cornus stolonifera Vitis riparia Ribes americanum Prunus virginiana Ribes triste Cornus alternifolia Aralia nudicaulis			A O O R O R	R
Lonicera tatarica Cornus stolonifera Vitis riparia Ribes americanum Prunus virginiana Ribes triste Cornus alternifolia Aralia nudicaulis			A O O R O R	R
Lonicera tatarica Cornus stolonifera Vitis riparia Ribes americanum Prunus virginiana Ribes triste Cornus alternifolia Aralia nudicaulis			A O O R O R	R
Lonicera tatarica Cornus stolonifera Vitis riparia Ribes americanum Prunus virginiana Ribes triste Cornus alternifolia Aralia nudicaulis			A O O R O R	R
Lonicera tatarica Cornus stolonifera Vitis riparia Ribes americanum Prunus virginiana Ribes triste Cornus alternifolia Aralia nudicaulis			A O O R O R	R
Lonicera tatarica Cornus stolonifera Vitis riparia Ribes americanum Prunus virginiana Ribes triste Cornus alternifolia Aralia nudicaulis			A O O R O R	R
Lonicera tatarica Cornus stolonifera Vitis riparia Ribes americanum Prunus virginiana Ribes triste Cornus alternifolia Aralia nudicaulis			A O O R O R	R
Lonicera tatarica Cornus stolonifera Vitis riparia Ribes americanum Prunus virginiana Ribes triste Cornus alternifolia Aralia nudicaulis			A O O R O R	R
Lonicera tatarica Cornus stolonifera Vitis riparia Ribes americanum Prunus virginiana Ribes triste Cornus alternifolia Aralia nudicaulis			A O O R O R	R
Shrubs and Woody Vines Lonicera tatarica Cornus stolonifera Vitis riparia Ribes americanum Prunus virginiana Ribes triste Cornus alternifolia Aralia nudicaulis Sambucus canadensis			A O O R O R	R

		Layer / Al ance Code: R= A=Abundant,	Rare, O=Oco	casional,
Plant Species List	1	2	3	4
Ferns & Fern Allies, Herbs, Graminoids	1			
Alliaria petiolata			0	0
Taraxacum officinale			0	0
Fragaria virginiana				А
Anemone canadensis				А
Caltha palustris				D
Onoclea sensibilis				А
Maianthemum canadense				0
Viola cucullata				0
Cardamine diphylla				R
Asarum canadense				0
Tussilago farfara				А
Nasturtium microphyllum				0
Actaea rubra				O-R
Actaea pachypoda				R
Eutrochium maculatum			0	
Typha latifolia			0-R	
Asarum canadense				R
Carex intumescens			0	
Dryopteris cristata				R
Arisaema triphyllum				R
Equisetum scirpoides				R
Rumex obtusifolius				R
Geranium robertianum				0
Cystopteris bulbifera				R
Equisetum fluviatile				O-R
Cystopteris bulbifera				0
Dryopteris carthusiana				0
Equisetum fluviatile				0
Equisetum palustre				0
Cornus canadensis				0
Moss sp.				Α
Carex sp.				А

Project No: 12-137A

Surveyor(s): RH Date:

Representative Photographs of Vegetation Community:

Project No: 12-137A	Project Name: H	illsburgh Dam EA	S	Surveyor(s): RH Date: May 21; July 30; Sept 24, 20			
Polygon Description P22	Community Series: SW	Ecosite: SWT	Vegetation Type: SWTO2-6 Mixed Willow Organic Thicket Swamp Type				
System	Topographic Feature			Dominant Plant Form	I		
Terrestrial Wetland	Lacustrine Riverine Bot	tomland Terrace Valley slope Ta	ableland Rolling upland	Plankton Submerge	ed Floating-Ivd. Graminoid Forb		
Aquatic	Cliff Talus Crevice	Cave Alvar Rockland Beach	Bar Sand dune Bluff	Lichen Bryophyte	e Deciduous Coniferous Mixed		
Cover Open Shrub Treed	History Natural Cultural	Community Class Beach-Bar Barren Tallgrass Prairie Sa Open Water Shallow Water		Cliff Talus Alvar orest Thicket Cult	Rock Barren Crevice-Cave Sand ural <u>Swamp</u> Fen Bog Marsh		
Stand Description:			Soil Analysis:				
Community Age		Basal Area (m²/ha)	Soil Drainage				
Pioneer Young Mi	d-Aged Mature Old	Growth	Very Rapid Rapid	Well Moderately	Well Imperfect Poor Very Poor		
Standing Snags			Soil Moisture Regime				
Rare Occasional	Abundant Dominant		Dry Fresh	Moist Wet			
Deadfall Logs			Effective Soil Texture				
Rare Occasional	Abundant Dominant						
Health	Sensitivity	Botanical Quality	Depth to Mottles / Gley				
Low Medium High	Low Medium H	High Low <u>Medium</u> High	Sample: M - cm /	G-cm			
Slope			Depth to Groundwater	metres	Depth to Bedrock metres		
none gentle m	oderate steep (simple	e or complex)	at surface less than 1n	n more than 1 m	at surface less than 1m more than 1 m		
Vegetation Layer	Height ¹ Cover ²	Dominant Species per Vegetation	Layer				

vegetation Layer Theight Cover		COVEI	Dominant Opecies per vegetation Layer				
1 (Canopy	2	2	Picea glauca > Betula papyrifera = Populus tremuloides			
2 3	Subcanopy	3	1	Picea glauca > Thuja occidentalis = Picea mariana			
3 (Understorey	4	3	Salix sp. > Cornus stolonifera > Typha latifolia > Phalaris arundinacea			
4 (Ground Layer	6	4	Caltha palustris > Impatiens capensis > Sedge sp.			

¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4 = >60% (10) + 10\% (10) + 10\% (1

Size Class Analysis ³	0	0	0	NA
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance:	
Wildlife / Habitat Observations:	
Comments: No access. Evaluation from edge.	
5	

			Community Name	Code	% Coverage
Inclusion	Complex	Х	Mixed Shallow Water	SAM	15
Inclusion	Complex	X	Mixed Mineral Meadow Marsh	MAMM3-1	15

ABOUD & ASSOCIATES INC.

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 21; July 30; Sept 24, 2015

Polygon: P22

	Abunda	nce Code: R:	bundanc =Rare, O=Occ , D=Dominan	casional,
Plant Species List	1	2	3	4
Trees				
Picea glauca	0	А	Α	
Thuja occidentalis	0	Α	Α	
Populus balsamifera	0	Α	Α	
Betula papyrifera	0	0		
Salix alba	R	Α	D	
Prunus serotina		R	R	
Ulmus americana		R		
Picea mariana		Α		
Fraxinus pennsylvanica	R			
Populus tremuloides	0			
Shrubs and Woody Vines				
Cornus stolonifera	[Α	
Cornus alternifolia			0	
Sambucus canadensis			R	
Salix petiolaris			A	
Salix lucida			0	
Salix discolor			0	
Salix purpurea			D-A	
Lonicera sp.			R	
			IX.	

	Abunda	nce Code: R	bundanc =Rare, O=Oc ;, D=Dominan	casional,
Plant Species List	1	2	3	4
Ferns & Fern Allies, Herbs, Graminoid	ls			
Caltha palustris				А
Typha latifolia			А	А
Eutrochium maculatum			А	
Scirpus cyperinus			Α	
Phalaris arundinacea			А	
Eupatorium perfoliatum				0
Impatiens capensis			А	
Oenothera biennis			R	
Sagittaria latifolia				O-R
Scirpus atrovirens			0	
Onoclea sensibilis				0
Circaea alpina				0
Lythrum salicaria			0	
Symphyotrichum puniceum			0-R	
Bidens tripartita				0
Ranunculus aquatilis				0
Symphyotrichum novae-angliae			A-0	
Euthamia graminifolia			0	
Epilobium leptophyllum			R	
Epilobium coloratum			R	
Carex interior				R
				Epilo
Rumex sp.				R
Grass sp.			А	А
Sedge sp.			А	Α
Algae				А
		•		•

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Representative Photographs of Vegetation Community:

Project No: 12-137A	Pro	oject Name: ⊦	lillsburgh [Dam EA				Surveyo	r(s)∶RH	Date:	May 21; Ju	ily 30; Sep	t 24, 2015
Polygon Description P23	Community	Series: FO	Ec	cosite: FOM					etation Type: FC h – Moist White		ardwood N	lixed Fore	st
System	Topographi	c Feature						Dom	inant Plant For	m			
Terrestrial Wetland	Lacustrine	Riverine Bott	omland T	Ferrace Valley sl	lope Ta	bleland F	Rolling uplar	d Plan	kton Submer	ged Floa	ating-lvd.	Gramino	id Forb
Aquatic	Cliff Talus	Crevice	Cave Al	Ivar Rockland	Beach	Bar Sand	l dune Blu	ff Liche	en Bryophy	te De	ciduous	Conifero	us Mixed
Cover	History		Comm	unity Class Be	each-Bar	Sand Du	une Bluff	Cliff	Talus Alva	r Rock I	Barren C	Crevice-Ca	ve Sand
Open Shrub Treed	Natural	Cultural	Barren	Tallgrass Prai	irie Sa	ivannah	Woodland	Forest	Thicket Cu	Itural Sw	amp Fer	Bog	Marsh
Open Shiub Heeu	ivaturai	Cultural	Open V	Vater Shallow	Water								
Stand Description:	•		•			Soil Analy	/sis:						
Community Age				Basal Area (m ²	²/ha)	Soil Drain	lage						
Pioneer Young Mi	id-Aged Ma	ature Old C	Growth			Very Rapi	d Rapi	d Wel	Moderate	y Well	Imperfect	Poor	Very Poor
Standing Snags						Soil Mois	ture Regim	e					
Rare Occasional	Abundant	Dominant				Dry	Fresh	Moi	st Wet				
Deadfall Logs						Effective	Soil Textur	e					
Rare Occasional	Abundant	Dominant											
Health	Sensitiv	/ity	В	otanical Quality		Depth to	Mottles / Gl	ey					
Low Medium High	Low	Medium H	ligh Lo	ow Medium	High	Sample: N	√l- cn	n / G-	cm				
Slope						Depth to	Groundwat	er	metres	Depth to	Bedrock		metres
none gentle m	oderate	steep (simple	or comple	x)		at surface	less that	n1m r	nore than 1 m	at surface	e less tha	an 1m	more than 1 m
Vegetation Layer	Height 1	Cover ²	Dominant	t Species per Veç	getation	Layer							
1 Canopy	2	3	White bircl	h > white cedar >	black che	erry = tremb	oling aspen						
2 Subcanopy	3	3	Tremblin a	aspen = black che	rry = whit	e birch > al	t leave dog	vood					

> alt leave dogwood iopy 3 4 3 Understorey Alt leave dogwood = Ash sp. 4 Ground Layer 6 3 Yellow trout lilly = Smooth yellow violet

¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4=>60%

Size Class Analysis ³	А	А	А	R
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance:
Wildlife / Habitat Observations:
Comments: Small area of pure White Cedar Stand.

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 21; July 30; Sept 24, 2015

Polygon: P23

	L Abunda	Layer / Abundance Abundance Code: R=Rare, O=Occasional, A=Abundant, D=Dominant				
Plant Species List	1	2	3	4		
Trees						
Thuja occidentalis	D	А				
Betula papyrifera	D	0				
Populus balsamifera	А	Α				
Malus pumila		R				
Ulmus americana		0	R			
Prunus serotina	А	0	0			
Acer saccharinum	O-R		0			
Populus tremuloides	А	0	0			
Fraxinus americana		0	0			
Shrubs and Woody Vines						
Lonicera tatarica			0			
Ribes americanum			0			
Cornus alternifolia		0	Α			
Prunus virginiana			R			
Salix eriocephala			0			

	L Abunda	_ayer / Al	bundanc Rare, O=Oco , D=Dominan	e casional, t
Plant Species List	1	2	3	4
Ferns & Fern Allies, Herbs, Graminoid	ls			
Trillium erectum			R	
Smooth yellow violet				А
Yellow trout lily				0
Dog blue violet				0
Woodland strewberry				А
Dandelion				А
Sensitive fern				R
Wild leak				R
Rubus pubescens				А
Equisetum arvense				0
Agrimonia gryposepala				R
Erythronium americanum				R
Cornus canadensis				0
		1		
		<u> </u>		
		ļ		L
		ļ		<u> </u>

Project No: 12-137A

Representative Photographs of Vegetation Community:

r r EL

LC Community Description & Classi	fication	Polygon: P24
Project No: 12-137A Project Name: H	illsburgh Dam EA	Surveyor(s): RH Date: May 21; July 30; Sept 24, 2015
Polygon Description P24 Community Series: SW	Ecosite: SWD	Vegetation Type: SWDM4-5 Poplar Mineral Deciduous Swamp
System Topographic Feature		Dominant Plant Form
Terrestrial Wetland Lacustrine Riverine Bott	omland Terrace Valley slope Ta	ableland Rolling upland Plankton Submerged Floating-lvd. Graminoid Forb
Aquatic Cliff Talus Crevice	Cave Alvar Rockland Beach	Bar Sand dune Bluff Lichen Bryophyte Deciduous Coniferous Mixed
Cover History Open Shrub Treed Natural Cultural	Community Class Beach-Bar Barren Tallgrass Prairie Sa Open Water Shallow Water	Sand Dune Bluff Cliff Talus Alvar Rock Barren Crevice-Cave Sand avannah Woodland Forest Thicket Cultural Swamp Fen Bog Marsh
Stand Description:		Soil Analysis:
Community Age	Basal Area (m²/ha)	Soil Drainage
Pioneer Young <u>Mid-Aged</u> Mature Old G	Growth	Very Rapid Rapid Well Moderately Well Imperfect Poor Very Poor
Standing Snags		Soil Moisture Regime
Rare Occasional Abundant Dominant		Dry Fresh Moist Wet
Deadfall Logs		Effective Soil Texture
Rare Occasional Abundant Dominant		Mineral
lealth Sensitivity	Botanical Quality	Depth to Mottles / Gley
ow Medium High Low Medium H	ligh Low <u>Medium</u> High	Sample: M - cm / G - cm
Slope		Depth to Groundwater metres Depth to Bedrock metres
none gentle moderate steep (simple	or complex)	at surface less than 1m more than 1 m at surface less than 1m more than 1 m
Vegetation Layer Height 1 Cover 2 I	Dominant Species per Vegetation I	Layer
1 Canopy 2 3 F	Populus tremuloides > Betula papyrif	fera > Thuja occidentalis
2 Subcanopy 4 3 F	Populus tremuloides > Betula papyrif	fera > Thuja occidentalis
3 Understorey 3 3 5	Salix sp. > Cornus alternifolia > Eutro	ochium maculatum
4 Ground Layer 6 3	Onoclea sensibilis > Equisetum sp. =	e Carex sp. > Fragaria vesca

¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4= >60%

Size Class Analysis ³	А	А	0	R
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

ence of Disturbance:	
life / Habitat Observations:	
iments:	

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

.

. ----

Project No: 12-137A

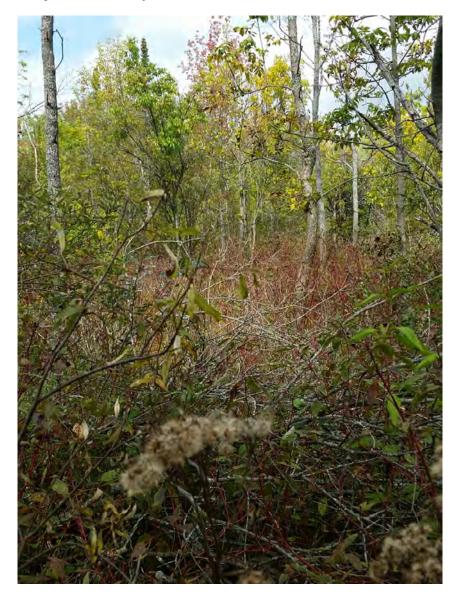
Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 21; July 30; Sept 24, 2015

Polygon: P24

	Layer / Abundance Abundance Code: R=Rare, O=Occasional, A=Abundant, D=Dominant				
Plant Species List	1	A=Abundani 2	, D=Dominar	4	
Trees		1	1		
Betula papyrifera	Α	Α			
Prunus serotina	R	0			
Acer saccharum ssp. saccharum	R	0	0		
Populus tremuloides	D	Α			
Thuja occidentalis	0	0			
Fraxinus pennsylvanica		0	0		
Picea mariana	0				
Populus balsamifera		0	0	0	
		-			
		-			
		+			
Shrubs and Woody Vines Cornus alternifolia		1	r	1	
			A		
Salix discolor			0		
Salix eriocephala			0		
Prunus virginiana			A		
Spiraea alba			0		
Cornus stolonifera			Α		
Daphne mezereum			R		
			İ	1	


	L Abunda	Layer / Abundance Abundance Code: R=Rare, O=Occasional, A=Abundant, D=Dominant					
Plant Species List	1	2	3	4			
Ferns & Fern Allies, Herbs, Graminoids							
Onoclea sensibilis				А			
Equisetum sp.				А			
Fragaria vesca				0			
Eutrochium maculatum			А				
Actaea pachypoda				0			
Carex sp.				А			
	1	l					
		İ					
	1						
	1						
	1						
	+						
	1	1	I				

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Representative Photographs of Vegetation Community:

Polygon: P25

Pr	oject No: 12-137A	Рг	roject Name:	Hillsburgh I	Dam EA		Su	rveyor(s): R			ay 21; Jul	y 30; Sept	24, 2015
P	olygon Description P25	Community	y Series: FO	Ec	osite: FOD			Vegetation			Farrat		
	P25							Fresh – Moi	st Poplar	Deciduous	Forest		
Sy	rstem	Topograph	ic Feature	•				Dominant P	lant Form				
Te	errestrial Wetland	Lacustrine	Riverine Bo	ttomland	Ferrace Valley slope Ta	ableland Rolling u	upland	Plankton	Submerge	ed Float	ing-lvd.	Graminoi	id Forb
Ac	uatic	Cliff Talu:	s Crevice	Cave A	lvar Rockland Beach	Bar Sand dune	Bluff	Lichen	Bryophyte	Decid	duous	Conifero	us Mixed
<u> </u>	over	History		Comm	unity Class Beach-Bar	Sand Dune	Bluff (Cliff Talus	Alvar	Rock Ba	irren C	revice-Cav	ve Sand
	pen Shrub Treed	Natural	Cultural	Barren	Tallgrass Prairie Sa	avannah Woodla	and Fo	orest Thick	et Culti	ural Swar	mp Fen	Bog I	Marsh
	inteed	ivaluiai	Cultural	Open V	Vater Shallow Water								
Sta	nd Description:			-		Soil Analysis:							
Co	mmunity Age				Basal Area (m²/ha)	Soil Drainage							
Pio	neer Young Mic	l-Aged M	ature Old	Growth		Very Rapid F	Rapid	Well	loderately	Well Ir	nperfect	Poor	Very Poor
Sta	nding Snags				·	Soil Moisture Re	gime						
Rai	e Occasional	Abundant	Dominant			Dry Fres	h	Moist	Wet				
De	adfall Logs					Effective Soil Te	xture						
Rai	e Occasional	Abundant	Dominant										
Неа	alth	Sensiti	vity	В	otanical Quality	Depth to Mottles	/ Gley						
Lov	v Medium High	Low	Medium	High Lo	ow Medium High	Sample: M -	cm /	G - 0	m				
Slo	ре					Depth to Ground	water		metres	Depth to B	edrock		metres
nor	ie gentle m	oderate	steep (simple	e or comple	ex)	at surface less	than 1m	more that	an 1 m	at surface	less tha	in 1m	more than 1 m
Ve	getation Layer	Height 1	Cover ²	Dominant	Species per Vegetation	Layer							
1	Canopy	2	3	Populus tr	emuloides = Acer sacchar	um ssp. saccharum	n > Thuja	occidentalis	= Fraxinus	americana			
2	Subcanopy	3	3	Populus tr	emuloides = Acer sacchar	um ssp. saccharum	ı > Fraxin	ius americana	a = Cornus	alternifolia	> Rhus ty	phina	
3	Understorey	4	3	Rubus ida	eus ssp. strigosus > Ribes	americanum = Ins	erted Viro	ginia Creeper					
4	Ground Layer	6	3	Alliaria pe	tiolate > Fragaria vesca > I	Erythronium americ	anum						

¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4 = >60% (2 + 10)% (2

Size Class Analysis ³	0	А	0	
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance:	٦
Wildlife / Habitat Observations:	
Comments:	

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

Plant Species List Trees Populus tremuloides Malus pumila Acer saccharum ssp. saccharum	t Name: Hillsburgh	Dam EA .ayer / A nce Code: R:	bundanc	e casional	Surveyor(s): RH	Date: May 21; J	luly 30; S ayer / Ab	Sept 24, pundanc	2015 e
Plant Species List	Abunda 1	nce Code: R: A=Abundant 2	=Rare, O=Oc , D=Dominar 3	tecasional, nt 4	Plant Species List	Abundan 1	ce Code: R= A=Abundant, 2	Rare, O=Oco D=Dominan 3	I ndance Ire, O=Occasional, =Dominant
rees populus tremuloides alus pumila cer saccharum ssp. saccharum arix laricina cea abies axinus pennsylvanica cer negundo unus serotina lia americana huja occidentalis pies balsamea	·	<u> </u>	<u> </u>	<u> </u>	Ferns & Fern Allies, Herbs, Grami		_	-	'
	A	0	0		Taraxacum officinale				A
Malus pumila	R				Asarum canadense				0
Acer saccharum ssp. saccharum	A	0	А		Erythronium americanum				A
Larix laricina	R	-			Viola pubescens var. pubescens				
Picea abies	0				Alliaria petiolata				
Fraxinus pennsylvanica	0	0			Equisetum arvense				
Acer negundo	0	0			Arctium lappa				
Prunus serotina	0	0			Fragaria vesca				
Tilia americana	0	0			Tiarella cordifolia				
Thuja occidentalis	A	0			Circaea canadensis				
Abies balsamea		0	0		Maianthemum racemosum				
Fraxinus americana	A	0	0						Ļ
		Ŭ	-		Grass sp.				А
C1 1 1 XX7 1 X7*									
Shrubs and Woody Vines Rubus idaeus ssp. strigosus		-		1					
Cornus alternifolia			A						
Inserted Virginia Creeper		A							
Cichorium intybus			A						
			0						
Vitis riparia			R						
Lonicera tatarian Ribes americanum			R						
		_	A						L
Rhus typhina		0	0						
									L
									1

Project No: 12-137A Project Name: Hillsburgh Dam EA Representative Photographs of Vegetation Community:

Surveyor(s): RH

•	•				
Project No: 12-137A	Pr	roject Name∶ ⊦	Hillsburgh [Dam EA	Surveyor(s): RH Date: May 21; July 30; Sept 24, 2015
Polygon Description P26	Community	/ Series: SW	Ec	osite: SWD	Vegetation Type: SWDM2-1 Black Ash Mineral Deciduous Swamp
System	Topograph	ic Feature	I		Dominant Plant Form
Terrestrial Wetland	Lacustrine	Riverine Bot	tomland 1	Terrace Valley slope	Fableland Rolling upland Plankton Submerged Floating-lvd. Graminoid Forb
Aquatic	Cliff Talus	s Crevice	Cave Al	var Rockland Beach	Bar Sand dune Bluff Lichen Bryophyte Deciduous Coniferous Mixed
Cover	Community Series: SW Ecosite: SWD Vegetation Type: SWDM2-1 Black Ash Mineral Deciduous Swamp Topographic Feature Lacustrine Riverine Bottomland Terrace Valley slope Tableland Rolling upland Cliff Talus Crevice Cave Alvar Rockland Beach Bar Sand dune Bluff Dominant Plant Form Vlatural Community Class Beach-Bar Sand dune Bluff Cliff Talus Alvar Rock Barren Crevice-Cave Sand Barren Tallgrass Prairie Savannah Woodland Forest Thicket Cultural Swamp Fen Bog Marsh Open Water Shallow Water Mid-Aged Mature Old Growth Soil Analysis: Soil Orainage Very Rapid Soil Analysis: Soil Moisture Regime Dry Abundant Dominant Dominant Effective Soil Texture Abundant Dominant Depth to Mottles / Gley				
Cover		0 11 1	Barren	Tallgrass Prairie S	avannah Woodland Forest Thicket Cultural Swamp Fen Bog Marsh
Open Shrub Treed	Natural	Cultural	Open V	Vater Shallow Water	
Stand Description:				-	Soil Analysis:
Community Age				Basal Area (m²/ha)	Soil Drainage
Pioneer Young Mic	d-Aged M	ature Old (Growth		Very Rapid Rapid Well Moderately Well Imperfect Poor Very Poor
Standing Snags				•	Soil Moisture Regime
Rare Occasional	Abundant	Dominant			Dry Fresh Moist Wet
Deadfall Logs					Effective Soil Texture
Rare Occasional	Abundant	Dominant			
Health	Sensitiv	vity	Bo	otanical Quality	Depth to Mottles / Gley
Low Medium High	Low	Medium	High Lo	w Medium High	Sample: M - cm / G - cm
Slope					Depth to Groundwater metres Depth to Bedrock metres
none gentle m	oderate	steep (simple	e or comple	ex)	at surface less than 1m more than 1m at surface less than 1m more than 1 m
Vegetation Layer	Height ¹	Cover ²	Dominant	Species per Vegetation	l Layer
1 Canopy	2	3	Fraxinus n	igra > Populus tremuloide	es > Acer saccharum ssp. saccharum
2 Subcanopy	3	2	Fraxinus n	igra > Populus tremuloide	es > Ulmus americana > Parthenocissus inserta

3	Understorey	4	2	Ribes americanum > Parthenocissus inserta > Ribes hirtellum
4	Ground Layer	6	2	Onoclea sensibilis > Impatiens capensis = Alliaria petiolate > Anemone canadensis

 4
 Ground Layer
 0
 2
 Onocida sensionins > impatients caperisis = Aniana periorate > Anientone canadomsis

 1
 Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m</td>
 2
 Cover Codes: 0 = none, 1 = 0%- 10%, 2 = 10%- 25%, 3 = 25%-60%, 4= >60%

Size Class Analysis ³	0	D	0	
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

dence of Disturbance:	
dlife / Habitat Observations:	
mments:	

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 21; July 30; Sept 24, 2015

Polygon: P26

	Abunda	Layer / Abundance Abundance Code: R-Rare, O-Occasional, A=Abundant, D=Dominant				
Plant Species List	1	2	3	4		
Trees	I	1	1	1		
Fraxinus nigra	D	Α	Α			
Acer saccharum ssp. saccharum	A	0	0			
Ulmus americana		0	0			
Populus tremuloides	А	Α				
Shrubs and Woody Vines						
Ribes americanum			А			
Prunus virginiana		0				
Parthenocissus inserta		Α	0			
Ribes hirtellum			0			
Sambucus canadensis		R				
Ribes triste			0			

	Layer / Abundance Abundance Code: R=Rare, O=Occasiona A=Abundant, D=Dominant			
Plant Species List	1	2	3	4
Ferns & Fern Allies, Herbs, Graminoids				
Onoclea sensibilis				А
Viola pubescens var. pubescens				А
Anemone canadensis				0
Impatiens capensis				А
Taraxacum officinale				0
Alliaria petiolata				А
Carex intumescens				0
Tiarella cordifolia				0
Equisetum sp.				0
Sedge sp.				А
Grass sp.				А
		•		

Project No: 12-137A

Surveyor(s): RH

Representative Photographs of Vegetation Community:

Project No: 12-137A	Pro	oject Name: Hil	llsburgh C	Dam EA		Surveyor(s):	RH	Date: Jul	y 30; Sept 2	4, 2015	
Polygon Description P27	Community	Series: Fo	Ec	osite: FOC		Vegetatio	n Type: FOO	CM6			
System	Topographi	c Feature				Dominant	Plant Form				
Terrestrial Wetland	Lacustrine	Riverine Botto	omland T	Ferrace Valley slope Ta	bleland Rolling upland	Plankton	Submerge	ed Floatin	g-lvd. Gr	aminoid	Forb
Aquatic	Cliff Talus	Crevice C	ave Al	var Rockland Beach	Bar Sand dune Bluff	Lichen	Bryophyte	e Decidu	ious Co	niferous	Mixed
Cover	History		Commu	unity Class Beach-Bar	Sand Dune Bluff	Cliff Tal	us Alvar	Rock Bar	ren Crevio	ce-Cave	Sand
		Cultural	Barren	Tallgrass Prairie Sa	vannah Woodland	Forest Thi	cket Cult	ural Swam	p Fen E	Bog Mar	sh
Open Shrub Treed	Natural	Cultural	Open Water Shallow Water								
Stand Description:					Soil Analysis:						
Community Age				Basal Area (m²/ha)	Soil Drainage						
Pioneer Young Mid	d-Aged Ma	ature Old G	rowth		Very Rapid Rapid	Well	Moderately	Well Imp	perfect F	Poor	Very Poor
Standing Snags					Soil Moisture Regime						
Rare Occasional	Abundant	Dominant			Dry Fresh	Moist	Wet				
Deadfall Logs					Effective Soil Texture						
Rare Occasional	Abundant	Dominant									
Health	Sensitiv	ity	Bo	otanical Quality	Depth to Mottles / Gley	y					
Low Medium High	Low	Medium Hig	gh Lo	w Medium High	Sample: M - cm	/ G-	cm				
Slope	•		•		Depth to Groundwater		metres	Depth to Be	drock		metres
none gentle mo	oderate	steep (simple c	or complex	x)	at surface less than	1m more t	han 1 m	at surface	less than 1r	m mor	e than 1 m
Vegetation Layer	Height ¹	Cover ² D	ominant	Species per Vegetation I	_ayer						
1 Conony	2	4 1	ariv cn	Dicon abios Dicon glauc	a Dinus strabus Thuis	accidentalic					

1	Canopy	2	4	Larix sp. = Picea abies = Picea glauca = Pinus strobus =Thuja occidentalis
2	Subcanopy			
3	Understorey			
4	Ground Layer			

¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4 = >60%

Size Class Analysis ³				
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance:	
Nildlife / Habitat Observations:	
Comments: Surveyed from a distance, from road side.	

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

ELC Community Description & Classification

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Polygon: P27 Date: July 30; Sept 24, 2015

	L Abunda	Layer / Abundance Abundance Code: R=Rare, 0=Occasional, A=Abundant, D=Dominant					
Plant Species List	1	2	3	4			
Trees							
Thuja occidentalis	А						
Pinus strobus	А						
Picea glauca	A						
Picea abies	A						
Larix sp.	А						
Shrubs and Woody Vines							
Sin ubs and woody vines				[
			1				
				ļ			
			Ì	İ			
			1				

Project No: 12-137A

Representative Photographs of Vegetation Community:

Project Name: Hillsburgh Dam EA

Project No: 12-137A	Pro	oject Name∶ ⊦	Hillsburgh D	Dam EA		Surveyor(s): RH Date: May 21; July 30; Sept 24, 2015
Polygon Description P28	Community	Series: SW	Ec	osite: SWT		Vegetation Type: SWTO2-3 Meadow Willow Organic Deciduous Thicket Swamp
System	Topographi	c Feature				Dominant Plant Form
Terrestrial Wetland	Lacustrine	Riverine Bot	tomland T	errace Valley sl	ope Ta	ableland Rolling upland Plankton Submerged Floating-Ivd. Graminoid Forb
Aquatic	Cliff Talus	Crevice	Cave Al	var Rockland	Beach	Bar Sand dune Bluff Lichen Bryophyte Deciduous Coniferous Mixed
Cover	History		Commu	unity Class Bea	ach-Bar	Sand Dune Bluff Cliff Talus Alvar Rock Barren Crevice-Cave Sand
	Natural	Cultural	Barren	Tallgrass Prai	rie Sa	avannah Woodland Forest Thicket Cultural Swamp Fen Bog Marsh
Open Shrub Treed	Naturai	Cultural	Open W	later Shallow	Water	
Stand Description:						Soil Analysis:
Community Age				Basal Area (m ²	/ha)	Soil Drainage
Pioneer Young Mic	I-Aged Ma	ature Old (Growth			Very Rapid Rapid Well Moderately Well Imperfect Poor Very Poor
Standing Snags						Soil Moisture Regime
Rare Occasional	Abundant	Dominant				Dry Fresh Moist Wet
Deadfall Logs						Effective Soil Texture
Rare Occasional	Abundant	Dominant				Orgnic
Health	Sensitiv	/ity	Bo	otanical Quality		Depth to Mottles / Gley
Low Medium High	Low	Medium H	ligh Lo	w Medium	High	Sample: M - cm / G - cm
Slope						Depth to Groundwater metres Depth to Bedrock metres
none gentle mo	oderate	steep (simple	e or comple	x)		at surface less than 1m more than 1 m at surface less than 1m more than 1 m
Vegetation Layer	Height ¹	Cover ²	Dominant	Species per Veg	etation	Layer
1 Canopy	3	2	Betula pap	yrifera > Populus	tremuloi	ides = Populus balsamifera

2	Subcanopy	4	4	Cornus stolonifera = Salix discolor = Salix petiolaris			
3	Understorey	5	3	Cornus stolonifera = Salix sp. > Rubus idaeus ssp. strigosus > Scirpus cyperinus			
4	Ground Layer	6	3	Carex lacustris > Onoclea sensibilis = Sedge sp.			
¹ Height Code: 1=>20m, 2=10m, 20m, 3=2m-10m, 4=1m-2m, 5=0, 5m-1m, 6=0, 2m-0, 5m, 7= < 0, 2m, 2 Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4 = >60%							

Height Odde . 1–22011, 2–1011-2011, 3–211-1011, 4–111-211, 3–0.511-1111, 0–0.211		$0, 2 = 10/0^{-} 23/0, 3 = 23/0^{-} 00/0$, 4- 20070

Size Class Analysis ³	D	0	0	NA
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance:	
Wildlife / Habitat Observations:	
wildlife / Habitat Observations:	
Comments: Salix petiolaris dominated community	
Comments. Saily periodians dominated community	

_		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

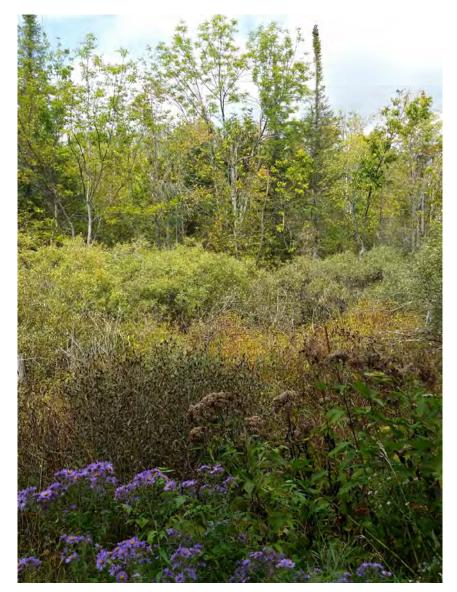
ABOUD & ASSOCIATES INC.

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 21; July 30; Sept 24, 2015


Polygon: P28

	L Abunda	Layer / Abundance Abundance Code: R=Rare, O=Occasional, A=Abundant, D=Dominant				
Plant Species List	1	2 A=ADUIIU	3	4		
Trees				1		
Populus balsamifera		A	[
Betula papyrifera		А				
Picea mariana		0	R			
Ulmus americana		0				
Populus tremuloides	0					
Fraxinus pennsylvanica		0				
Shrubs and Woody Vines Prunus serotina				T		
Cornus stolonifera		0				
		A				
Salix discolor Rubus idaeus ssp. strigosus		A				
Ribes americanum		A				
		0				
Salix lucida		R				
Spirea alba Salix petiolaris		R D-A				
Ribes triste		D-A 0		-		
Salix eriocephala		A				
Viburnum opulus		R		-		
•						
		<u> </u>	<u> </u>			
		<u> </u>	<u> </u>			
		<u> </u>	<u> </u>			

	L Abunda	.ayer / Al nce Code: R= A=Abundant	Dundanc Rare, O=Oco D=Dominan	e casional, t
Plant Species List	1	2	3	4
Ferns & Fern Allies, Herbs, Graminoids				
Rudbeckia hirta				R
Onoclea sensibilis				A-0
Typha latifolia			0	
Scirpus cyperinus			0	
Carex lacustris				Α
Euthamia graminifolia				0
Eutrochium maculatum			А	
Clematis virginiana			0	-
Impatiens capensis			А	
Bidens tripartita				R
Grass sp.				0
Sedge sp.				A
Equisetum sp.				A
				~

Project No: 12-137A

Representative Photographs of Vegetation Community:

	Project No: 12-137A	Project No: 12-137A Project Name: Hillsburgh Dam EA						urveyor(s):	RH	Date: May 2	21; July 30; Sep	ot 24, 2015
Image: Stand Reverse Stand Lacustrine Riverine Bottomland Terrace Valley slope Tableland Rolling upland Cliff Talus Crevice Cave Alvar Rockland Beach Bar Sand dune Bluff Plankton Submerged Floating-lvd. Graminoid Forb Lichen Bryophyte Deciduous Conferous Mixed Cover Open Shrub Treed History Natural Cultural Community Class Beach-Bar Sand Dune Bluff Cliff Talus Alvar Rock Barren Crevice-Cave Sand Barren Tallgrass Prairie Savannah Woodland Open Water Shallow Water Soil Analysis: Stand Description: Soil Analysis: Soil Analysis: Community Age Basal Area (m²/ha) Soil Moisture Regime Dry Fresh Moist Wet Meel Moderately Well Imperfect Poor Very Poor Very Rapid Rapid Standing Snags Rare Cocasional Abundant Dominant Effective Soil Texture Rare Occasional Abundant Dominant Effective Soil Texture Health Low Seensitivity Low Botanical Quality Low Depth to Groundwater metres at surface less than 1m more than 1m		Community	/ Series: SW	E	Ecosite: SWD							
Aquatic Cliff Talus Crevice Cave Alvar Rockland Beach Bar Sand dune Bluff Lichen Bryophyte Deciduous Confierous Mixed Cover History Natural Cultural Community Class Beach-Bar Sand Dune Bluff Cliff Talus Alvar Rock Barren Crevice-Cave Sand Open Stand Cultural Cultural Cultural Cultural Community Class Beach-Bar Sand Dune Bluff Cliff Talus Alvar Rock Barren Crevice-Cave Sand Open Natural Cultural Cultural Cultural Sand Marsh Soil Analysis: Community Age Soil Analysis: Community Age Mature Old Growth Basal Area (m²/ha) Soil Drainage Very Rapid Rapid Well Moderately Well Imperfect Poor Very Poor Standing Snags Soil Analysis: Soil Moisture Regime Draid Effective Soil Texture Effective Soil Texture Rare Occasional Abundant Dominant Botanical	System	Topograph	ic Feature					Dominan	t Plant Form			
Cover History Community Class Beach-Bar Sand Dune Bluff Cliff Talus Alvar Rock Barren Crevice-Cave Sand Open Shrub Treed Vatura Cultura Barren Tallgrass Prairie Savannah Woodland Forest Thicket Cultural Swamp Fen Bog Marsh Stand Description: Soil Analysis: Soil Analysis: Soil Drainage Very Rapid Rapid Well Moderately Well Imperfect Poor Very Poor Standing Snags Rare Occasional Abundant Dominant Dry Fresh Moist Wet Health Sensitivity Botanical Quality Depth to Mottles / Gley Sample: M - cm G - cm Slope mone gentle moderate steep (simple or complex) Low Medium High Sample: M - cm G - cm	Terrestrial Wetland	Lacustrine	Riverine Bot	tomland	Terrace Valley slope Ta	bleland Rol	ling upland	Plankton	Submergeo	Floating	-lvd. Gramin	oid Forb
Cover Open History Natural Barren Tallgrass Prairie Savannah Woodland Forest Thicket Cultural Swamp Fen Bog Marsh Stand Description: Soil Analysis: Community Age Pioneer Young Mid-Aged Mature Old Growth Basal Area (m²/ha) Soil Drainage Pioneer Young Mid-Aged Mature Old Growth Soil Moisture Regime Standing Snags Ease Soil Moisture Regime Dry Fresh Moist Wet Rare Occasional Abundant Dominant Effective Soil Texture Effective	Aquatic	Cliff Talus	s Crevice	Cave A	Alvar Rockland Beach	Bar Sand d	une Bluff	Lichen	Bryophyte	Deciduo	ous Conifer	ous Mixed
Community Age Basal Area (m²/ha) Soil Drainage Pioneer Young Mid-Aged Mature Old Growth Very Rapid Rapid Well Moderately Well Imperfect Poor Very Poor Standing Snags Rare Occasional Abundant Dominant Dry Fresh Moist Well Deadfall Logs Effective Soil Texture Effective Soil Texture Very Rapid Depth to Mottles / Gley Very Medium High Low Medium High Low Medium High Sample: M - cm G - cm Slope none gentle moderate steep (simple or complex) Well under High Moire than 1 m more than 1 m at surface less than 1m more than 1 m			Cultural	Barrer	n Tallgrass Prairie Sa		-				1	
Pioneer Young Mid-Aged Mature Old Growth Very Rapid Rapid Well Moderately Well Imperfect Poor Very Poor Standing Snags Soil Moisture Regime Dry Fresh Moist Wet Deadfall Logs Effective Soil Texture Effective Soil Texture Rare Occasional Abundant Dominant Dominant Depth to Mottles / Gley Sample: M - Cm G - Cm Health Sensitivity Botanical Quality Depth to Groundwater metres Depth to Bedrock metres Slope gentle moderate steep (simple or complex) Medium High Depth to Bedrock metres Slope at surface less than 1m more than 1 m at surface less than 1m more than 1 m	Stand Description:			-1		Soil Analysi	s:					
Standing Snags Soil Moisture Regime Rare Occasional Abundant Dominant Dry Fresh Moist Wet Deadfall Logs Effective Soil Texture Effective Soil Texture Effective Soil Texture Effective Soil Texture Nealth Sensitivity Botanical Quality Depth to Mottles / Gley Sample: M - Cm G - Cm Slope Low Medium High Low Medium High Depth to Groundwater metres Depth to Bedrock metres Slope at surface less than 1m more than 1 m at surface less than 1m more than 1 m	Community Age				Basal Area (m²/ha)	Soil Drainag	le					
Rare Occasional Abundant Dominant Dry Fresh Moist Wet Deadfall Logs Rare Occasional Abundant Dominant Effective Soil Texture Health Sensitivity Botanical Quality Depth to Mottles / Gley Sample: M - cm G - cm Slope gentle moderate steep (simple or complex) Dup Fresh Moist Wet	Pioneer Young Mi	d-Aged M	ature Old	Growth		Very Rapid	Rapid	Well	Moderately W	/ell Impe	erfect Poor	Very Poor
Deadfall Logs Rare Occasional Abundant Dominant Health Sensitivity Botanical Quality Depth to Mottles / Gley Low Medium High Low Medium High Depth to Mottles / Gley Slope Environment Depth to Groundwater metres Depth to Bedrock metres at surface less than 1m more than 1 m at surface less than 1m more than 1 m	Standing Snags				1	Soil Moistur	e Regime					
Rare Occasional Abundant Dominant Health Sensitivity Botanical Quality Depth to Mottles / Gley Low Medium High Low Medium High Depth to Mottles / Gley Slope Depth to Groundwater metres Depth to Bedrock metres none gentle moderate steep (simple or complex) Depth to Groundwater more than 1 m at surface less than 1m more than 1 m	Rare Occasional	Abundant	Dominant			Dry	Fresh	Moist	Wet			
Health Sensitivity Botanical Quality Depth to Mottles / Gley Low Medium High Low Medium High Sample: M - cm / G - cm Slope Depth to Groundwater metres at surface Depth to Bedrock metres at surface	Deadfall Logs					Effective So	il Texture					
Low Medium High Low Medium High Sample: M - cm / G - cm Slope Depth to Groundwater metres metres at surface less than 1m more than 1 m at surface less than 1m more than 1 m	Rare Occasional	Abundant	Dominant									
Slope Depth to Groundwater metres none gentle moderate steep (simple or complex)	Health	Sensitiv	vity	E	Botanical Quality	Depth to Mo	ottles / Gley					
none gentle moderate steep (simple or complex) at surface less than 1m more than 1 m at surface less than 1m more than 1 m	Low Medium High	Low	Medium H	ligh L	Low Medium High	Sample: M -	cm /	G -	cm			
	Slope	·		•		Depth to Gr	oundwater		metres C	epth to Bed	rock	metres
	none gentle m	oderate	steep (simple	or compl	lex)	at surface	less than 1n	n more	than 1 m a	t surface I	ess than 1m	more than 1 m
Vegetation Layer Height ¹ Cover ² Dominant Species per Vegetation Layer	Vegetation Layer	Height ¹	Cover ²	Dominar	nt Species per Vegetation I	_ayer						

	vegetation Layer neight oover			00701	Boinnant Opecies per Vegetation Layer
	1	1 Canopy 2 3		3	Populus tremuloides > Acer saccharum ssp. saccharum > Fraxinus pennsylvanica
2 Subcanopy 3 2 Populus tremuloides > Acer saccharum ssp. saccharum >Fraxinus pennsylvanica > Thuja occidentalis					Populus tremuloides > Acer saccharum ssp. saccharum > Fraxinus pennsylvanica > Thuja occidentalis
	3	Understorey	4	2	Acer negundo > Cornus alternifolia > Rubus idaeus ssp. strigosus > Vitis riparia
	4 Ground Layer 5 2		2	Impatiens capensis > Alliaria petiolate > Solidago canadensis	

¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4=>60%

Size Class Analysis ³	0	А	R	R
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance: Residence, driveway, lawn, planted species.

Wildlife / Habitat Observations:

Comments: Road side survey.

Complex of Poplar Mineral Deciduous Swamp and Fresh – Moist Sugar Maple Deciduous Forest. Boundary between community and surrounding communitie(s) is unclear.

			Community Name	Code	% Coverage
Inclusion	Complex	Х	Fresh – Moist Sugar Maple Deciduous Forest	FODM6	40
Inclusion	Complex				

ABOUD & ASSOCIATES INC.

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 21; July 30; Sept 24, 2015

Polygon: P29

	Layer / Abundance Abundance Code: R=Rare, O=Occasional, A=Abundant, D=Dominant				
Plant Species List	1	2	3	4	
Trees					
Acer negundo	0	0	Α		
Salix alba	0				
Populus tremuloides	D-A	А			
Fraxinus pennsylvanica	O-A	O-A			
Thuja occidentalis	0	0			
Betula papyrifera	0	R			
Acer saccharum ssp. saccharum	А	0			
Acer platanoides	0				
				1	
Shrubs and Woody Vines		1	1		
Parthenocissus inserta			0		
Cornus alternifolia			0		
Vitis riparia			0		
Rubus idaeus ssp. strigosus			0		
				1	
				1	
				1	
				1	
				1	
				+	
				1	

	L Abunda	.ayer / A	bundanc =Rare, O=Oc ; D=Dominan	e casional,
Plant Species List	1	2	3	4
Ferns & Fern Allies, Herbs, Graminoids	<u> </u>	I	<u> </u>	I
Impatiens capensis				Α
Impatiens pallida				R
Aegopodium podagraria				0
Alliaria petiolata				A
Solidago canadensis				A
Oxalis montana				0
				Ű
			İ	ĺ

Project No: 12-137A	ect No: 12-137A Project Name: Hillsburgh Dam EA						Surveyo	r(s): RH	Date: May 2	1; July 30; Sep	ot 25, 2015
Polygon Description P30	Community	Series: FO	Ec	cosite: FOD				tation Type: FO n – Moist Manito		and Deciduous	Forest
System	Topographi	c Feature					Dom	inant Plant Form	n		
Terrestrial Wetland	Lacustrine	Riverine Bo	ottomland -	Terrace Valley slop	e Tal	bleland Rolling upland	d Plank	ton Submerg	jed Floating-	lvd. Gramine	oid Forb
Aquatic	Cliff Talus	Crevice	Cave A	Ivar Rockland Be	ach E	Bar Sand dune Bluff	Liche	n Bryophyt	e Deciduo	us Conifere	ous Mixed
Cover History Community Class Beach-B						Sand Dune Bluff	Cliff	Talus Alvar	Rock Barre	n Crevice-Ca	ive Sand
Open Shrub Treed Natural Cultural Barren Tallgrass Prairie					Sav	vannah Woodland	Forest	Thicket Cul	tural Swamp	Fen Bog	Marsh
Open Water Shallow Water											
Stand Description:						Soil Analysis:					
Community Age				Basal Area (m²/ha	I)	Soil Drainage					
Pioneer Young Mic	I-Aged Ma	ature Old	Growth			Very Rapid Rapid	Well	Moderately	/ Well Impe	erfect Poor	Very Poor
Standing Snags						Soil Moisture Regime					
Rare Occasional	Abundant	Dominan	t			Dry Fresh	Mois	t Wet			
Deadfall Logs						Effective Soil Texture					
Rare Occasional	Abundant	Dominan	t			Mineral					
Health	Sensitiv	/ity	B	otanical Quality		Depth to Mottles / Gle	y				
Low Medium High	Low	Medium	High Lo	ow Medium H	ligh	Sample: M - cm	/ G-	cm			
Slope						Depth to Groundwate	r	metres	Depth to Bed	rock	metres
none gentle mo	oderate	steep (simp	le or comple	ex)		at surface less than	1m n	nore than 1 m	at surface	ess than 1m	more than 1 m
Vegetation Layer	Height ¹	Cover ²	Dominant	t Species per Vegeta	ation L	_ayer					
1 Canopy	3	3	Acer negu	ndo > Salix fagilis							
2 Subcanopy	4	2	Acer negu	ndo > Salix fagilis							

3	Understorey	5	3	Prunus virginiana > Cornus stolonifera
4	Ground Layer	6-7	4	Impatiens capensis > Alliaria petiolate > Dactylis glomerata > Solidago canadensis

¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%- 10%, 2 = 10%- 25%, 3 = 25%-60%, 4= >60%

Size Class Analysis ³	А	0	R	NA
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

Evidence of Disturbance: Garbage and trash in community and in river. Trails along river and creek.

Wildlife / Habitat Observations:

Comments: Highly disturbed, cultural origin community.

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

ABOUD & ASSOCIATES INC.

Project No: 12-137A

Project Name: Hillsburgh Dam EA

Surveyor(s): RH

Date: May 21; July 30; Sept 25, 2015

	l Abunda	nce Code: R	bundanc =Rare, O=Oc ;, D=Dominar	casional,
Plant Species List	1	2	3	4
Trees				
Ulmus americana			R	
Acer negundo	А	А		
Acer saccharum ssp. saccharum	0	0		
Pinus sylvestris	R			
Prunus serotina	0			
Salix fagilis	А	0		
Populus balsamifera	0			
Acer platanoides	0	0		
Juglans nigra	R			
Salix alba	R			
		1		
		1		
Shrubs and Woody Vines		1		
Prunus virginiana		Γ	0	
Cornus stolonifera			0	
Syringa vulgaris			0	
Rubus idaeus ssp. strigosus			A	
Vitis riparia			A	
·				
		<u> </u>		

	Layer / Abundance Abundance Code: R=Rare, 0=0ccasional, A=Abundant, D=Dominant 1 2 3 4					
Plant Species List						
Ferns & Fern Allies, Herbs, Graminoids						
Taraxacum officinale				0		
Arctium minus				0		
Hesperis matronalis				0		
Impatiens capensis				Α		
Galium asprellum				0		
Myosotis scorpioides				0		
Glechoma hederacea				0		
Alliaria petiolata				Α		
Barbarea vulgaris				0		
Echinocystis lobata				0		
Fragaria virginiana				0		
Chelidonium majus				R		
Eutrochium maculatum				R		
Solanum dulcamara				0		
Anemone canadensis				Α		
Carix stricta				0		
Dactylis glomerata				Α		
Cichorium intybus				0		
Geum aleppicum				0		
Urtica dioica ssp. gracilis				0		
Daucus carota				R		
Solidago canadensis				A-0		
Bidens tripartita				R		
Tragopogon dubius						
Viola sp.				0		

Project No: 12-137A

Representative Photographs of Vegetation Community:

Polygon: P31

Project No: 12-137A	Pr	oject Name: H	illsburgh	Dam EA	Surveyor(s): RH	Date: May 21; July 30; Sept 25, 2015
Polygon Description P31	Community	Series: MA	Ec	cosite: MAM	Vegetation Typ	e: MAMM1-1 id Mineral Meadow Marsh Type
FJI						nu mineral meadow marsh Type
System	Topographi	ic Feature			Dominant Plan	Form
Terrestrial Wetland	Lacustrine	Riverine Bott	omland	Terrace Valley slope Ta	bleland Rolling upland Plankton Su	omerged Floating-Ivd. Graminoid Forb
Aquatic	Cliff Talus	S Crevice	Cave A	lvar Rockland Beach	Bar Sand dune Bluff Lichen Bry	ophyte Deciduous Coniferous Mixed
Cover	History		Comm	unity Class Beach-Bar	Sand Dune Bluff Cliff Talus	Alvar Rock Barren Crevice-Cave Sand
Terrestrial Wetland Lacustrine Riverine Bottomland Terrace Valle Aquatic Cliff Talus Crevice Cave Alvar Rockland Cover History Natural Cultural Community Class Barren Tallgrass F Open Shrub Treed History Deatral Cultural Community Class Barren Tallgrass F Open Stand Description: Community Age Basal Area Basal Area Deatral Standing Snags Basal Area Deatfall Logs Rare Occasional Abundant Dominant Deminant Health Botanical Qualities					annah Woodland Forest Thicket	Cultural Swamp Fen Bog Marsh
Open Shiub Heed	ivalurai	Cultural	Open \	Nater Shallow Water		
Stand Description:					Soil Analysis:	
Community Age				Basal Area (m²/ha)	Soil Drainage	
Pioneer Young Mi	d-Aged Ma	ature Old C	Growth		Very Rapid Rapid Well Mode	rately Well Imperfect Poor Very Poor
Standing Snags					Soil Moisture Regime	
Rare Occasional	Abundant	Dominant			Dry Fresh Moist	Net
Deadfall Logs					Effective Soil Texture	
Rare Occasional	Abundant	Dominant			Mineral	
Health	Sensitiv	vity	В	otanical Quality	Depth to Mottles / Gley	
Low Medium High	Low	Medium H	ligh L	ow Medium High	Sample: M - cm / G - cm	
Slope					Depth to Groundwater me	tres Depth to Bedrock metres
none gentle m	oderate	steep (simple	or comple	ex)	at surface less than 1m more than 1	m at surface less than 1m more than 1 m
Vegetation Layer	Height 1	Cover ²	Dominan	t Species per Vegetation	ayer	
1 Canopy	2		Ulmus am	ericana	-	
					tornus stalanifara	
2 Subcanopy	3	2	acer negu	Indo > Ulmus americana >	ornus stoionifera	
3 Understorey	4	4	Typha ang	gustifolia > Phalaris arundi	acea = Agrostis gigantean > Symphyotrichu	m puniceum

4 Ground Layer 5 - 6 4 Impatiens capensis > Verbena hastata

¹ Height Code: 1=>20m, 2=10m-20m, 3=2m-10m, 4=1m-2m, 5=0.5m-1m, 6=0.2m-0.5m, 7= < 0.2m ² Cover Codes: 0 = none, 1 = 0%-10%, 2 = 10%-25%, 3 = 25%-60%, 4 = >60%

Size Class Analysis ³	0	0	NA	NA
³ Abundance Code: RS=Rare, O=Occasional, A=Abundant, D=Dominant	< 10 cm DBH	10 to 24 cm DBH	25 to 50 cm DBH	> 50 cm DBH

E. Marson of District server	
Evidence of Disturbance:	
Wildlife / Habitat Observations:	
Wildlie / Habitat Observations.	
Comments:	
comments.	

		Community Name	Code	% Coverage
Inclusion	Complex			
Inclusion	Complex			

Project No: 12-137A Project	ct Name: Hillsburgh	Dam EA	\ bundanc	e	Surveyor(s): RH	Date: May 21; .	July 30; aver / Al	Sept 25, oundanc	2015 :e
Plant Species List		A=Abundant	Rare, O=Oci D=Dominan	t	Plant Species List		ayer / Al ace Code: R= A=Abundant	D=Dominan	nt
	1	2	3	4		1	2	3	4
Trees		-			Ferns & Fern Allies, Herbs, Gran Typha angustifolia	ninoids			1
Ulmus americana	0	0						D	
Acer negundo		A			Agrostis gigantea			A	
					Phalaris arundinacea			A	
					Melilotus officinalis			0	
					Urtica dioica ssp. gracilis			0	0
					Impatiens capensis				D
					Alliaria petiolata			0	0
					Solanum dulcamara			0	
					Myosotis laxa				0
					Ranunculus acris			0	
					Dactylis glomerata			Α	
					Matteuccia struthiopteris			0	
					Symphyotrichum puniceum			A	
					Daucus carota				R
					Cichorium intybus				R
					Verbena hastata				0
					Rumex crispus				R
					Echinocystis lobata			0	ĸ
					Urtica dioica ssp. gracilis				
					Typha latifolia			0	
					Epilobium ciliatum			0	
								R	
Shrubs and Woody Vines			1	1	Bidens cernua				R
Cornus stolonifera		А	0						
Syringa vulgaris		R							
Cornus alternifolia		R	R						
Rubus idaeus ssp. idaeus			0						
									1

Project No: 12-137A

Representative Photographs of Vegetation Community:

													Ι
		PLANT							_			CVC	Wellington
AA^1	CVC^2	TYPE ³	COMMON NAME	SCIENTIFIC NAME	FAMILY	CC^4	CW^5	SARO ⁶	SARA ⁷	S-Rank ⁸	G-Rank ⁹	2010 ¹⁰	County ¹¹
Х		FE	Bracken Fern	Pteridium aquilinum	Dennstaedtiaceae	0	3	NL	NL	S5	G5T	4	
			Lady Fern	Athyrium filix-femina var.									
Х	Х	FE	Lady Felli	angustum	Dryopteridaceae	4	0	NL	NL	S5	G5	4	
Х	Х	FE	Bulblet Fern	Cystopteris bulbifera	Dryopteridaceae	5	-2	NL	NL	S5	G5	4	
Х	Х	FE	Spinulose Shield Fern	Dryopteris carthusiana	Dryopteridaceae	5	-2	NL	NL	S5	G5	4	
Х	Х	FE	Crested Shield-fern	Dryopteris cristata	Dryopteridaceae	7	-5	NL	NL	S5	G5	3	
Х	Х	FE	Evergreen Woodfern	Dryopteris intermedia	Dryopteridaceae	5	0	NL	NL	S5	G5	4	
Х	Х	FE	Marginal Wood-fern	Dryopteris marginalis	Dryopteridaceae	5	3	NL	NL	S5	G5	4	
Х	Х	FE	Oak Fern	Gymnocarpium dryopteris	Dryopteridaceae	7	0	NL	NL	S5	G5	3	
Х		FE	Ostrich Fern	Matteuccia struthiopteris	Dryopteridaceae	3	0	NL	NL	S5	G5	4	
Х	Х	FE	Sensitive Fern	Onoclea sensibilis	Dryopteridaceae	4	-3	NL	NL	S5	G5	4	
Х	Х	FE	Field Horsetail	Equisetum arvense	Equisetaceae	0	0	NL	NL	S5	G5	4	
Х	Х	FE	Water Horsetail	Equisetum fluviatile	Equisetaceae	7	-5	NL	NL	S5	G5	2	
Х	Х	FE	Marsh Horsetail	Equisetum palustre	Equisetaceae	10	-3	NL	NL	S5	G5	2	\checkmark
Х	Х	FE	Dwarf Scouring Rush	Equisetum scirpoides	Equisetaceae	7	-1	NL	NL	S5	G5	2	
	Х	FE	Variegated Horsetail	Equisetum variegatum	Equisetaceae	6	-3	NL	NL	S5	G5T	2	\checkmark
Х	Х	FE	Cinnamon Fern	Osmundastrum cinnamomeum	Osmundaceae	7	-3	NL	NL	S5	G5	3	
	Х	FE	Hidden Spike-moss	Selaginella eclipes	Selaginellaceae	7	-4	NL	NL	S4	G4	2	
	Х	FE	Northern Beech Fern	Phegopteris connectilis	Thelypteridaceae	8	5	NL	NL	S5	G5	2	
Х		FE	New York Fern	Thelypteris noveboracensis	Thelypteridaceae	7	-1	NL	NL	S4S5	G5	2	
Х	Х	FE	Marsh Fern	Thelypteris palustris	Thelypteridaceae	2	-4	NL	NL	S5	G5T?	4	
Х		FO	American Water-plantain	Alisma subcordatum	Alismataceae	1	-5	NL	NL	S4?	G4G5	4	
Х	Х	FO	Broadleaf Arrowhead	Sagittaria latifolia	Alismataceae	4	-5	NL	NL	S5	G5	3	
Х		FO	Goutweed	Aegopodium podagraria	Apiaceae	0	0	NL	NL	SE5	G?	5	
Х	Х	FO	Bulb-bearing Water-hemlock	Cicuta bulbifera	Apiaceae	5	-5	NL	NL	S5	G5	3	
Х	Х	FO	Wild Carrot	Daucus carota	Apiaceae	0	5	NL	NL	SE5	G?	5	
	Х	FO	American Water-pennywort	Hydrocotyle americana	Apiaceae	7	-5	NL	NL	S5	G5	2	
Х		FO	Spreading Dogbane	Apocynum androsaemifolium	Apocynaceae	3	5	NL	NL	S5	G5T?	4	
Х	Х	FO	Periwinkle	Vinca minor	Apocynaceae	0	5	NL	NL	SE5	G?	5	
Х	Х	FO	Jack-in-the-pulpit	Arisaema triphyllum	Araceae	5	-2	NL	NL	S5	G5T5	4	
	Х	FO	Wild Calla	Calla palustris	Araceae	8	-5	NL	NL	S5	G5	2	
Х	Х	FO	Wild Sarsaparilla	Aralia nudicaulis	Araliaceae	4	3	NL	NL	S5	G5	4	
	Х	FO	American Spikenard	Aralia racemosa	Araliaceae	8	3	NL	NL	S5	G5T?	2	
Х	Х	FO	Canada Wild-ginger	Asarum canadense	Aristolochiaceae	6	5	NL	NL	S5	G5	4	
Х	Х	FO	Common Milkweed	Asclepias syriaca	Asclepiadaceae	0	5	NL	NL	S5	G5	4	
Х	Х	FO	Yarrow	Achillea millefolium	Asteraceae	1	3	NL	NL	SE?	G5T?	5	
	Х	FO	White Snakeroot	Ageratina altissima	Asteraceae	4	3	NL	NL	S5	G5	4	
Х	Х	FO	Annual Ragweed	Ambrosia artemisiifolia	Asteraceae	0	3	NL	NL	S5	G5	4	
Х		FO	Great Ragweed	Ambrosia trifida	Asteraceae	0	-1	NL	NL	S5	G5	4	
	Х	FO	Pearly Everlasting	Anaphalis margaritacea	Asteraceae	3	5	NL	NL	S5	G5	3	
Х		FO	Greater Burdock	Arctium lappa	Asteraceae	0	5	NL	NL	SE5	G?	5	
Х	Х	FO	Lesser Burdock	Arctium minus	Asteraceae	0	5	NL	NL	SE5	G?T?	5	
Х	Х	FO	Nodding Beggar-ticks	Bidens cernua	Asteraceae	2	-5	NL	NL	S5	G5	4	
Х		FO	Devil's Beggar-ticks	Bidens frondosa	Asteraceae	3	-3	NL	NL	S5	G5	4	
Х	Х	FO	Beggar-ticks	Bidens tripartita	Asteraceae	4	-3	NL	NL	S5	G5	3	
Х		FO	Chicory	Cichorium intybus	Asteraceae	0	5	NL	NL	SE5	G?	5	
Х	Х	FO	Canada Thistle	Cirsium arvense	Asteraceae	0	3	NL	NL	SE5	G?	5	
	Х	FO	Bull Thistle	Cirsium vulgare	Asteraceae	0	4	NL	NL	SE5	G5	5	1

						1							Ι
		PLANT					-		-		0	CVC	Wellington
AA ¹	CVC ²	TYPE ³	COMMON NAME	SCIENTIFIC NAME	FAMILY	CC^4	CW^5	SARO ⁶	SARA ⁷	S-Rank ⁸	G-Rank ⁹	2010 ¹⁰	County ¹¹
Х	Х	FO	Annual Fleabane	Erigeron annuus	Asteraceae	0	1	NL	NL	S5	G5	4	
Х	Х	FO	Philadelphia Fleabane	Erigeron philadelphicus	Asteraceae	2	-3	NL	NL	S5	G5T?	4	
Х	Х	FO	Common Boneset	Eupatorium perfoliatum	Asteraceae	2	-4	NL	NL	S5	G5	4	
Х		FO	Large-leaf Wood-aster	Eurybia macrophylla	Asteraceae	5	5	NL	NL	S5	G5	4	
Х	Х	FO	Grass-leaved goldenrod	Euthamia graminifolia	Asteraceae	2	-2	NL	NL	S5	G5	4	
	x	FO	Spotted Joe-pye Weed	Eutrochium maculatum var. foliosum	Asteraceae			NL	NL	S5		4	
				Eutrochium maculatum var.	, lotor doo do								
x		FO	Spotted Joe-pye Weed	maculatum	Asteraceae	4	-5	NL	NL	S5	G5T5	4	
~	х	FO	Elecampane Flower	Inula helenium	Asteraceae	0	5	NL	NL	SE5	G?	5	
x	^	FO	Canada Lettuce	Lactuca canadensis	Asteraceae	3	2	NL	NL	S5	G5	4	
~	х	FO	Common Nipplewort	Lapsana communis	Asteraceae	0	5	NL	NL	SE5	G?	5	
x	X	FO	Oxeye Daisy	Leucanthemum vulgare	Asteraceae	0	5	NL	NL	SE5	G?	5	
~	X	FO	Tall Rattlesnake-root	Nabalus altissimus	Asteraceae	5	3	NL		S5	G5?	3	
	X	FO	Golden Ragwort	Packera aurea	Asteraceae	7	-3	NL		S5	G5	2	
	X	FO	Hawkweed Oxtongue	Picris hieracioides	Asteraceae	0	-5 5	NL	NL	SE5	G5T?	5	
Y	^	FO	Meadow Hawkweed	Pilosella caespitosa	Asteraceae	0	5	NL	NL	SE	0011	5	
× v	х	FO	Black-eyed Susan	Rudbeckia hirta var. hirta	Asteraceae	1	3	NL	NL	S5	G5	4	
×	X	FO	Tall Goldenrod		Asteraceae	1	3		NL	S5	G5 G5T5	4	
^	^	FU	Tall Goldenrod	Solidago altissima	Asteraceae	1	3			30	6515	4	
х	х	FO	Canada Goldenrod	Solidago canadensis var. canadensis	Asteraceae	1	3	NL	NL	S5		4	
Х	Х	FO	Broad-leaved Goldenrod	Solidago flexicaulis	Asteraceae	6	3	NL	NL	S5	G5	4	
Х	Х	FO	Roughleaf Goldenrod	Solidago rugosa var. rugosa	Asteraceae	3	-1	NL	NL	S5	G5T?	3	
Х	Х	FO	Bog Goldenrod	Solidago uliginosa	Asteraceae	9	-5	NL	NL	S5	G4G5	2	
Х	Х	FO	Field Sow-thistle	Sonchus arvensis ssp. arvensis	Asteraceae	0	1	NL	NL	SE5	G?	5	
v		FO	White Heath Aster	Symphyotrichum ericoides var.	Astorogog	4	4	NL	NL	S5	G5	4	
^		FU		ericoides	Asteraceae	4	4			30	65	4	
х	х	FO	Panicled Aster	Symphyotrichum lanceolatum ssp. lanceolatum	Asteraceae	3	-3	NL	NL	S5	G5	4	
Х	Х	FO	Calico Aster	Symphyotrichum lateriflorum	Asteraceae	2	0	NL	NL	S5		3	
Х	Х	FO	New England Aster	Symphyotrichum novae-angliae	Asteraceae	2	-3	NL	NL	S5	G5	4	
Х	Х	FO	Purple-stemmed Aster	Symphyotrichum puniceum	Asteraceae	5	-5	NL	NL	S5		4	
Х		FO	Common Tansy	Tanacetum vulgare	Asteraceae	0	5	NL	NL	SE5	G?	5	
Х	Х	FO	Brown-seed Dandelion	Taraxacum officinale	Asteraceae	0	3	NL	NL	SE5	G5	5	1
Х		FO	Meadow Goat's-beard	Tragopogon dubius	Asteraceae	0	5	NL	NL	SE5	G?	5	
Х	Х	FO	Colt's Foot	Tussilago farfara	Asteraceae	0	3	NL	NL	SE5	G?	5	
Х	Х	FO	Spotted Jewel-weed	Impatiens capensis	Balsaminaceae	4	-3	NL	NL	S5	G5	4	1
Х		FO	Pale Jewel-weed	Impatiens pallida	Balsaminaceae	7	-3	NL	NL	S5	G5	2	\checkmark
Х	Х	FO	Giant Blue Cohosh	Caulophyllum giganteum	Berberidaceae	6	5	NL	NL	S4?	G?	3	1
Х	Х	FO	May Apple	Podophyllum peltatum	Berberidaceae	5	3	NL	NL	S5	G5	4	
Х		FO	Common Viper's-bugloss	Echium vulgare	Boraginaceae	0	5	NL	NL	SE5	G?	5	1
Х	Х	FO	Small Forget-me-not	Myosotis laxa	Boraginaceae	6	-5	NL	NL	S5	G5	3	1
Х		FO	True Forget-me-not	Myosotis scorpioides	Boraginaceae	0	-5	NL	NL	SE5	G5	5	1
Х	Х	FO	Garlic Mustard	Alliaria petiolata	Brassicaceae	0	0	NL	NL	SE5	G?	5	
Х		FO	Yellow Rocket	Barbarea vulgaris	Brassicaceae	0	0	NL	NL	SE5	G?	5	
Х	Х	FO	Two-leaf Toothwort	Cardamine diphylla	Brassicaceae	7	5	NL	NL	S5	G5	3	
Х		FO	Dame's Rocket	Hesperis matronalis	Brassicaceae	0	5	NL	NL	SE5	G4G5	5	
X	х	FO	Small-leaved Watercress	Nasturtium microphyllum	Brassicaceae	0	-5	NL	NL	SE5	G?	5	1

						1							
		PLANT										CVC	Wellington
AA ¹	CVC ²	TYPE ³	COMMON NAME	SCIENTIFIC NAME	FAMILY	CC^4	CW ⁵	SARO ⁶	SARA ⁷	S-Rank ⁸	G-Rank ⁹	2010 ¹⁰	County ¹¹
Х	Х	FO	Marsh Bellflower	Campanula aparinoides	Campanulaceae	7	-5	NL	NL	S5	G5	2	
Х	Х	FO	Kalm's Lobelia	Lobelia kalmii	Campanulaceae	9	-5	NL	NL	S5	G5	2	\checkmark
			Common Mouse-ear	Cerastium fontanum									
Х		FO	Chickweed	Cerasilum Ionianum	Caryophyllaceae	0	3	NL	NL	SE5	G?	5	
Х		FO	Bouncing-bet	Saponaria officinalis	Caryophyllaceae	0	3	NL	NL	SE5	G?	5	
Х		FO	A Catchfly	Silene latifolia	Caryophyllaceae	0	5	NL	NL	SE5	G?	5	
Х		FO	Maiden's Tears	Silene vulgaris	Caryophyllaceae	0	5	NL	NL	SE5	G?	5	
Х		FO	Common Lamb's-quarters	Chenopodium album	Chenopodiaceae	0	1	NL	NL	SE5	G5	5	
Х	Х	FO	St. John's-wort	Hypericum perforatum	Clusiaceae	0	5	NL	NL	SE5	G?	5	
Х	Х	FO	Common St. John's-wort	Hypericum punctatum	Clusiaceae	5	-1	NL	NL	S5	G5	2	
	Х	FO	Marsh St. John's-wort	Triadenum fraseri	Clusiaceae	7	-5	NL	NL	S5	G4G5	2	
Х		FO	Teasel	Dipsacus fullonum	Dipsacaceae	0	3	NL	NL	SE5	G?T?	5	
	Х	FO	Roundleaf Sundew	Drosera rotundifolia	Droseraceae	7	-5	NL	NL	S5	G5	2	
Х		FO	Birds-foot Trefoil	Lotus corniculatus	Fabaceae	0	1	NL	NL	SE5	G?	5	
Х	Х	FO	Black Medic	Medicago lupulina	Fabaceae	0	1	NL	NL	SE5	G?	5	
Х	1	FO	White Sweet Clover	Melilotus albus	Fabaceae	0	3	NL	NL	SE5	G5	5	1
Х		FO	Yellow Sweetclover	Melilotus officinalis	Fabaceae	0	3	NL	NL	SE5	G?	5	
Х	Х	FO	Rabbit-foot Clover	Trifolium arvense	Fabaceae	0	5	NL	NL	SE4	G?	5	
Х		FO	Red Clover	Trifolium pratense	Fabaceae	0	2	NL	NL	SE5	G?	5	
Х	Х	FO	White Clover	Trifolium repens	Fabaceae	0	2	NL	NL	SE5	G?	5	
х	х	FO	Herb-robert	Geranium robertianum	Geraniaceae	0	5	NL	NL	SE5	G5	5	
X		FO	Eel-grass	Vallisneria americana	Hydrocharitaceae	6	-5	NL	NL	S5	G5	2	
X	Х	FO	Virginia waterleaf	Hydrophyllum virginianum	Hydrophyllaceae	6	-2	NL	NL	S5	G5	4	
X	~	FO	Yellow Iris	Iris pseudacorus	Iridaceae	0	-5	NL	NL	SE3	G?	5	
X	х	FO	Blueflag	Iris versicolor	Iridaceae	5	-5	NL	NL	S5	G5	3	
X	~	FO	Strict Blue-eyed-grass	Sisyrinchium montanum	Iridaceae	4	-1	NL	NL	S5	G5	2	
~	х	FO	Field Basil	Clinopodium vulgare	Lamiaceae	4	5	NL	NL	S5	G?	4	
x	X	FO	Ground Ivv	Glechoma hederacea	Lamiaceae	0	3	NL	NL	SE5	G?	5	
X	,,	FO	Common Mother-wort	Leonurus cardiaca	Lamiaceae	0	5	NL	NL	SE5	G?T?	5	
X	х	FO	American Bugleweed	Lycopus americanus	Lamiaceae	4	-5	NL	NL	S5	G5	3	
X	X	FO	Northern Bugleweed	Lycopus uniflorus	Lamiaceae	5	-5	NL	NL	S5	G5	4	
	X	FO	Corn Mint	Mentha canadensis	Lamiaceae	3	-3	NL	NL	S5	00	4	
	X	FO	Spearmint	Mentha spicata	Lamiaceae	0	-4	NL	NL	SE4	G?	5	
x	X	FO	Peppermint	Mentha x piperita	Lamiaceae	0	-5	NL	NL	SE4	G?	5	
X	~	FO	Catnip	Nepeta cataria	Lamiaceae	0	1	NL	NL	SE5	G?	5	
				Prunella vulgaris ssp.	20	Ť	ľ				<u> </u>	ľ	
х	x	FO	Self-heal	lanceolata	Lamiaceae	5	5	NL	NL	S5	G5	4	1
X	X	FO	Hooded Skullcap	Scutellaria galericulata	Lamiaceae	6	-5	NL		S5	G5	3	1
/ `	X	FO	Mad Dog Skullcap	Scutellaria lateriflora	Lamiaceae	5	-5	NL		S5	G5	3	
x	X	FO	Lesser Duckweed	Lemna minor	Lemnaceae	2	-5		NL	S5	G5 G5	4	1
~	X	FO	Lesser Bladderwort	Utricularia minor	Lentibulariaceae	8	-5	NL		S5	G5	2	
x		FO	Wild Leek	Allium tricoccum var. tricoccum	Liliaceae	5	2	NL	NL	S4	G5 G5	3	+
X		FO	Garden Asparagus-fern	Asparagus officinalis	Liliaceae	0	2	NL	NL	SE5	G5?	5	+
X	x	FO	Blue Bead-lilv	Clintonia borealis	Liliaceae	7	-1		NL	SE5 S5	G5 G5	3	+
~	^ X	FO	European Lily-of-the-valley	Convallaria maialis	Liliaceae	0	- I 5			SE5	G5 G5	5	+
x	X	FO	Yellow Trout-lily		Liliaceae	5	5		NL	SE5 S5	G5 G5T5	4	+
X	^	FO	Orange Daylily	Erythronium americanum Hemerocallis fulva	Liliaceae	0	5		NL	SE5	G?	4 5	+
~ ~ ~	Х	FO	Wild-lily-of-the-valley	Maianthemum canadense	Liliaceae	5	0			SE5 S5	G5	3	+

		PLANT					-		-		0	CVC	Wellington
AA ¹	CVC ²	TYPE ³	COMMON NAME	SCIENTIFIC NAME	FAMILY	CC^4	CW ⁵		SARA ⁷	S-Rank ⁸	G-Rank ⁹	2010 ¹⁰	County ¹¹
Х	Х	FO	False Solomon's-seal	Maianthemum racemosum	Liliaceae	5	3	NL	NL	S5	G5T	3	
			Starflower False Solomon's-	Maianthemum stellatum									
Х	Х	FO	seal		Liliaceae	6	1	NL	NL	S5	G5	4	
Х		FO	Commom Daffodil	Narcissus pseudonarcissus	Liliaceae	0	0	NL	NL	SE2	G?	5	
	Х	FO	Downy Solomon's-seal	Polygonatum pubescens	Liliaceae	5	5	NL	NL	S5	G5	4	
	Х	FO	Rose Twisted-stalk	Streptopus lanceolatus	Liliaceae	7	0	NL	NL	S5	G5	2	
Х	Х	FO	Red Trillium	Trillium erectum	Liliaceae	6	1	NL	NL	S5	G5	3	
X	Х	FO	White Trillium	Trillium grandiflorum	Liliaceae	5	5	NL	NL	S5	G5	4	
Х	Х	FO	Purple Loosestrife	Lythrum salicaria	Lythraceae	0	-5	NL	NL	SE5	G5	5	
X		FO	Velvet-leaf	Abutilon theophrasti	Malvaceae	0	4	NL	NL	SE5	G?	5	
X		FO	Musk Mallow	Malva moschata	Malvaceae	0	5	NL	NL	SE5	G?	5	
X		FO	Indian-pipe	Monotropa uniflora	Monotropaceae	6	3	NL	NL	S5	G5	3	
	Х	FO	Slender Naiad	Najas flexilis	Najadaceae	5	-5	NL	NL	S5	G5	2	✓
X		FO	Yellow Cowlily	Nuphar variegata	Nymphaeaceae	4	-5	NL	NL	S5	G5	2	
Х	Х	FO	White Water-lily	Nymphaea odorata ssp.	Nymphaeaceae	5	-5	NL	NL	S5?	G5	2	
	1		Tuberous White Water-lily	Nymphaea odorata ssp.									
	Х	FO		tuberosa	Nymphaeaceae	5	-5	NL	NL	SU	G5	2	
Х		FO	Fireweed	Chamerion angustifolium	Onagraceae	3	0	NL	NL	S5	G5	2	✓
X	Х	FO	Small Enchanter's Nightshade	Circaea alpina	Onagraceae	6	-3	NL	NL	S5	G5	3	
			Broad-leaved Enchanter's	Circaea canadensis									
Х	Х	FO	Nightshade	on caca canadensis	Onagraceae	3	3	NL	NL	S5	G5	4	
Х		FO	Hairy Willow-herb	Epilobium ciliatum	Onagraceae	3		NL	NL	S5	G5T?	4	
Х	Х	FO	Purple-leaf Willow-herb	Epilobium coloratum	Onagraceae	3	-5	NL	NL	S5	G5	2	
Х	Х	FO	Great-hairy Willow-herb	Epilobium hirsutum	Onagraceae	0	-4	NL	NL	SE5	G?	5	
Х	Х	FO	Linear-leaved Willow-herb	Epilobium leptophyllum	Onagraceae	7	-5	NL	NL	S5	G5	2	
Х	Х	FO	Small-flower Willow-herb	Epilobium parviflorum	Onagraceae	0	3	NL	NL	SE4	G?	5	
Х	Х	FO	Common Evening-primrose	Oenothera biennis	Onagraceae	0	3	NL	NL	S5	G5	4	
	x	FO	Small Yellow Lady's-slipper	Cypripedium parviflorum var. makasin	Orchidaceae	5	0	NL	NL	S5	G5T	2	
		-		Cypripedium parviflorum var.	-	-	-						
	х	FO	Large Yellow Lady's-slipper	pubescens	Orchidaceae	5	-1	NL	NL	S5	G5	2	
	Х	FO	Showy Lady's-slipper	Cypripedium reginae	Orchidaceae	7	-4	NL	NL	S4	G4	2	
Х	Х	FO	Eastern Helleborine	Epipactis helleborine	Orchidaceae	0	5	NL	NL	SE5	G?	5	
Х	Х	FO	Loesel's Twavblade	Liparis loeselii	Orchidaceae	5	-4	NL	NL	S4S5	G5	2	
	Х	FO	Leafy Northern Green Orchid	Platanthera aquilonis	Orchidaceae	5	-4	NL	NL	S5	G5	2	
Х	Х	FO	Hooded Ladies'-tresses	Spiranthes romanzoffiana	Orchidaceae	9	-4	NL	NL	S5	G5	2	\checkmark
Х	Х	FO	Common Wood-sorrell	Oxalis montana	Oxalidaceae	8	3	NL	NL	S5	G5	2	
Х	Х	FO	Upright Yellow Wood-sorrel	Oxalis stricta	Oxalidaceae	0	3	NL	NL	S5	G5	5	
Х	Х	FO	Greater Celadine	Chelidonium majus	Papaveraceae	0	5	NL	NL	SE5	G?	5	
Х	1	FO	Bloodroot	Sanguinaria canadensis	Papaveraceae	5	4	NL	NL	S5	G5	4	
Х	Х	FO	English Plantain	Plantago lanceolata	Plantaginaceae	0	0	NL	NL	SE5	G5	5	1
Х	Х	FO	Common Plantain	Plantago major	Plantaginaceae	0	-1	NL	NL	SE5	G5	5	
Х	1	FO	Fall Phlox	Phlox paniculata	Polemoniaceae	0	3	NL	NL	SE3	G5	5	1
	Х	FO	Water Smartweed	Persicaria amphibia	Polygonaceae	5	-5	NL	NL	S5	G5	2	
Х	Х	FO	Marshpepper Smartweed	Persicaria hydropiper	Polygonaceae	0	-5	NL	NL	SE5	G5	5	
Х	Х	FO	Lady's Thumb	Persicaria maculosa	Polygonaceae	0	-3	NL	NL	SE5	G?	5	
	Х	FO	Pennsylvania Smartweed	Persicaria pensylvanica	Polygonaceae	3	-4	NL	NL	S5	G5	2	
Х	х	FO	Curly Dock	Rumex crispus	Polygonaceae	0	-1	NL	NL	SE5	G?	5	

		PLANT				I						CVC	Wellington
AA ¹	CVC ²	TYPE ³	COMMON NAME	SCIENTIFIC NAME	FAMILY	CC^4	CW⁵	SARO ⁶	SARA ⁷	S-Rank ⁸	G-Rank ⁹	2010 ¹⁰	County ¹¹
	X	FO	Bitter Dock	Rumex obtusifolius	Polygonaceae	0	-3	NL	NL	SE5	G-Rank G5	5	County
^ V	X	FO	Water Dock		Polygonaceae	6	-5		NL	S4S5	G5 G5	2	
^	^ V	FO	Curly Pondweed	Rumex orbiculatus	Potamogetonaceae	0	-5 -5		NL	SE5	G5 G5	5	
	^ V	FO	, , , , , , , , , , , , , , , , , , ,	Potamogeton crispus	, v	0	-5 -5		NL	SE3 S5	G5 G5	2	
	^	FU	Leafy Pondweed	Potamogeton foliosus	Potamogetonaceae	4	-5			35	GS	2	
	v	FO	Berchtold's Pondweed	Potamogeton pusillus ssp.	Detemoratoreces	4	-5	NL	NL	S4S5	G?	2	
~	^	FO	Dandwood on	tenuissimus Batama anton an	Potamogetonaceae	4	-5	INL	INL	5455	G?	2	
^	Х	FO	Pondweed sp.	Potamogeton sp.	Potamogetonaceae	4	-5	NL	NL	S5	G5	4	
		FO	Sago Pondweed	Stuckenia pectinata	Potamogetonaceae	4	-5 -3				G5 G5	4	
V	X	FO	Fringed Loosestrife	Lysimachia ciliata	Primulaceae	4		NL NL	NL NL	S5	G5 G5T?	-	
Χ	Х	-	Northern Starflower	Trientalis borealis	Primulaceae	5	-1			S5		3	
	X	FO	One-side Wintergreen	Orthilia secunda	Pyrolaceae	5	-1	NL	NL	S5	G5	2	
	X	FO	Pink Wintergreen	Pyrola asarifolia	Pyrolaceae	/	-3	NL	NL	S5	G5	2	-
.,	Х	FO	Shinleaf	Pyrola elliptica	Pyrolaceae	5	5	NL	NL	S5	G5	3	
X	Х	FO	White Baneberry	Actaea pachypoda	Ranunculaceae	6	5	NL	NL	S5	G5	4	
X	Х	FO	Red Baneberry	Actaea rubra	Ranunculaceae	5	5	NL	NL	S5	G5	4	
Х	Х	FO	Canada Anemone	Anemone canadensis	Ranunculaceae	3	-3	NL	NL	S5	G5	4	
X		FO	Marsh Marigold	Caltha palustris	Ranunculaceae	5	-5	NL	NL	S5	G5	3	
Х	Х	FO	Goldthread	Coptis trifolia	Ranunculaceae	5	-3	NL	NL	S5	G5T5	3	
Х	Х	FO	Kidney-leaved Buttercup	Ranunculus abortivus	Ranunculaceae	2	-2	NL	NL	S5	G5	4	
Х	Х	FO	Tall Butter-cup	Ranunculus acris	Ranunculaceae	0	-2	NL	NL	SE5	G5	5	
Х	Х	FO	White Water Buttercup	Ranunculus aquatilis	Ranunculaceae		-5	NL	NL	S5	G5T	2	
			Bristly Buttercup	Ranunculus hispidus var.									
	Х	FO	Bristly Buttercup	caricetorum	Ranunculaceae	5	-5	NL	NL	S5	G5T5	3	
Х	Х	FO	Hooked Crowfoot	Ranunculus recurvatus	Ranunculaceae	4	-3	NL	NL	S5	G5	3	
	Х	FO	Creeping Butter-cup	Ranunculus repens	Ranunculaceae	0	-1	NL	NL	SE5	G?	5	
Х	Х	FO	Hooked Agrimony	Agrimonia gryposepala	Rosaceae	2	2	NL	NL	S5	G5	4	
Х	Х	FO	Woodland Strawberry	Fragaria vesca	Rosaceae	2	4	NL	NL	S5	G5T?	3	
Х	Х	FO	Virginia Strawberry	Fragaria virginiana	Rosaceae	2	1	NL	NL	S5	G5T?	4	
Х	Х	FO	Yellow Avens	Geum aleppicum	Rosaceae	2	-1	NL	NL	S5	G5	4	
Х		FO	White Avens	Geum canadense	Rosaceae	3	0	NL	NL	S5	G5	4	
	Х	FO	Purple Avens	Geum rivale	Rosaceae	7	-5	NL	NL	S5	G5	2	
Х	1	FO	Old-field Cinquefoil	Potentilla simplex	Rosaceae	3	4	NL	NL	S5	G5	2	
Х	Х	FO	Rough Bedstraw	Galium asprellum	Rubiaceae	6	-5	NL	NL	S5	G5	4	
Х		FO	Great Hedge Bedstraw	Galium mollugo	Rubiaceae	0	5	NL	NL	SE5	G?	5	
Х	Х	FO	Marsh Bedstraw	Galium palustre	Rubiaceae	5	-5	NL	NL	S5	G5	3	
	X	FO	Rough-fruit Corn Bedstraw	Galium tricornutum	Rubiaceae	-	-	NL	NL	SEH	G?	2	
Х	X	FO	Sweet-scent Bedstraw	Galium triflorum	Rubiaceae	4	2	NL	NL	S5	G5	4	
X	X	FO	Partridge-berry	Mitchella repens	Rubiaceae	6	2	NL	NL	S5	G5	2	1
	X	FO	American Golden-saxifrage	Chrysosplenium americanum	Saxifragaceae	8	-5	NL	NL	S5	G5	2	✓
	X	FO	Two-leaf Bishop's-cap	Mitella diphylla	Saxifragaceae	5	2	NL	NL	S5	G5	3	1
	x	FO	Naked Bishop's-cap	Mitella nuda	Saxifragaceae	6	-3	NL	NL	S5	G5	3	1
x	X	FO	Heart-leaved Foam-flower	Tiarella cordifolia	Saxifragaceae	6	1	NL		S5	G5	3	1
X	X	FO	White Turtlehead	Chelone glabra	Scrophulariaceae	7	-5	NL		S5	G5	3	+
X		FO	Butter-and-eggs	Linaria vulgaris	Scrophulariaceae	0	5		NL	SE5	G?	5	+
X		FO	Great Mullein	Verbascum thapsus	Scrophulariaceae	0	5		NL	SE5	G?	5	+
~	Х	FO	American Speedwell	Verbascum mapsus Veronica americana	Scrophulariaceae	6	-5			SE5 S5	G5	2	+
	X	FO				0	-ວ -5			SE5	G5 G5	2 5	
	^	FO	Brook-pimpernell Gypsy-weed	Veronica anagallis-aquatica Veronica officinalis	Scrophulariaceae Scrophulariaceae	U	-5 5			SE5 SE5	G5 G5	5 5	

						T		Γ					
		PLANT					_		_			CVC	Wellington
A^1	CVC^2	TYPE ³	COMMON NAME	SCIENTIFIC NAME	FAMILY	CC^4	CW^5	SARO ⁶	SARA ⁷	S-Rank ⁸	G-Rank ⁹	2010 ¹⁰	County ¹¹
(Х	FO	Green-fruited Burreed	Sparganium emersum	Sparganiaceae	6	-5	NL	NL	S5		2	
	Х	FO	Small Bur-reed	Sparganium natans	Sparganiaceae	8	-5	NL	NL	S5	G5	2	
<	Х	FO	Narrow-leaved Cattail	Typha angustifolia	Typhaceae	3	-5	NL	NL	SE5	G5	5	
(Х	FO	Broad-leaf Cattail	Typha latifolia	Typhaceae	3	-5	NL	NL	S5	G5	4	
			(Typha angustifolia X Typha	Turke u sleves									
(FO	latifolia)	Typha x glauca	Typhaceae	3	-5	NL	NL	SE5	G?	5	
	Х	FO	Springs Clearweed	Pilea fontana	Urticaceae	5	-3	NL	NL	S4	G5	2	
	1	FO	Stinging Nettle	Urtica dioica ssp. gracilis	Urticaceae	2	-1	NL	NL	S5	G5T?	4	
	Х	FO	Lopseed	Phryma leptostachya	Verbenaceae	6	5	NL	NL	S4S5	G5	5	
	Х	FO	Blue Vervain	Verbena hastata	Verbenaceae	4	-4	NL	NL	S5	G5	4	
	Х	FO	White Vervain	Verbena urticifolia	Verbenaceae	4	-1	NL	NL	S5	G5	3	
	Х	FO	Marsh Blue Violet	Viola cucullata	Violaceae	5	-5	NL	NL	S5	G4G5	2	
	Х	FO	Labrador Violet	Viola labradorica	Violaceae	3	0	NL	NL	S4S5	G5	4	
	Х	FO	Smooth White Violet	Viola macloskevi	Violaceae	6	-5	NL	NL	S5	G5T5	2	
	1			Viola pubescens var.		-	-					_	
	х	FO	Downy Yellow Violet	pubescens	Violaceae	4	3	NL	NL	S5		4	
				Viola pubescens var.			Ū						
		FO	Smooth Yellow Violet	scabriuscula	Violaceae	4	3	NL	NL	S5		4	
	х	GR	Redtop	Agrostis gigantea	Poaceae	0	0	NL	NL	SE5	G4G5	5	
	X	GR	Rough Bentgrass	Agrostis scabra	Poaceae	6	0	NL	NL	S5	G5	2	
	X	GR	Fringed Brome	Bromus ciliatus	Poaceae	6	-3	NL	NL	S5	G5	2	
	^	GR	Awnless Brome	Bromus inermis	Poaceae	0	5	NL	NL	SE5	G3 G4G5	5	-
		GR		Bromus sp.	Poaceae	0	5			JEJ	6465	5	-
	х	GR	Brome sp. Canada Blue-joint		Poaceae	4	-5	NL	NL	S5	G5	3	
	X	GR		Calamagrostis canadensis	Poaceae	4	-5 -4	NL		S5	G5 G5	3	
	^ V	GR	Slender Wood Reedgrass	Cinna latifolia	Poaceae	0	-4 3	NL		SE5	G3 G?	5 5	
	Ň	GR	Orchard Grass	Dactylis glomerata		5	-			-	G5	э 4	
	X	GR	American Mannagrass	Glyceria grandis	Poaceae Poaceae	5 0	-5 -5		NL NL	S4S5 SE4	GS G?	4 5	
		GR	Reed Meadowgrass	Glyceria maxima		3				SE4 S4S5	G5	5 4	
	X	GR	Fowl Manna-grass	Glyceria striata	Poaceae	3	-5 -5		NL NL	5455 S5	G5 G5	4	_
	^	-	Rice Cutgrass	Leersia oryzoides	Poaceae	3	-5			-	Go		_
	V	GR	Giant miscanthus	Miscanthus x giganteus	Poaceae	0	0	NL	NL	SE	0570	5	_
	X	GR	Mexican Muhly	Muhlenbergia mexicana	Poaceae	3	-3	NL	NL	S5	G5T?	2	-
	Х	GR	Reed Canary Grass	Phalaris arundinacea	Poaceae	0	-4	NL	NL	S5	G5	4	
	X	GR	Meadow Timothy	Phleum pratense	Poaceae	0	3	NL	NL	SE5	G?	5	
		0.5	European Reed	Phragmites australis ssp.						0.5	0.5	_	
	Х	GR		australis	Poaceae	0	-3	NL	NL	S5	G5	5	
	Х	GR	Canada Bluegrass	Poa compressa	Poaceae	0	2	NL	NL	SE5	G?	5	
	Х	GR	Woods Bluegrass	Poa nemoralis	Poaceae	0	0	NL	NL	SE3	G5	5	
	Х	GR	Fowl Bluegrass	Poa palustris	Poaceae	5	-4	NL	NL	S5	G5	3	
	Х	GR	Kentucky Bluegrass	Poa pratensis ssp. pratensis	Poaceae	0	1	NL	NL	S5	G?	4	
		GR	Grass sp.	Poaceae sp.	Poaceae								1
	Х	GR	Meadow Fescue	Schedonorus pratensis	Poaceae	0	4	NL	NL	SE5	G5	5	
	Х	GR	Purple Oat	Schizachne purpurascens	Poaceae	5	3	NL	NL	S5	G5T?	3	
	Х	GR	Slender Wedge Grass	Sphenopholis intermedia	Poaceae	6	0	NL	NL	S4S5	G5	3	
	Х	MO	A Moss	Fontinalis sullivantii	Fontinalaceae			NL	NL	S1	G3G5		
		MO	A Moss	Sphagnum sp.	Sphagnaceae			NL	NL				
	Х	MO	A Moss	Abietinella abietina	Thuidiaceae			NL	NL	S4S5	G4G5		
	Х	RU	Richardson Rush	Juncus alpinoarticulatus	Juncaceae	5	-5	NL	NL	S5	G5	2	

	0	PLANT					-		-			CVC	Wellington
۹A ¹	CVC ²	TYPE ³	COMMON NAME	SCIENTIFIC NAME	FAMILY	CC^4	CW^5		SARA ⁷	S-Rank ⁸	G-Rank ⁹	2010 ¹⁰	County ¹¹
	Х	RU	Jointed Rush	Juncus articulatus	Juncaceae	5	-5	NL	NL	S5	G5	4	
	Х	RU	Narrow-panicled Rush	Juncus brevicaudatus	Juncaceae	6	-5	NL	NL	S5	G5	2	
	Х	RU	Toad Rush	Juncus bufonius	Juncaceae	1	-4	NL	NL	S5	G5	3	
Κ	Х	RU	Dudley's Rush	Juncus dudleyi	Juncaceae	1	0	NL	NL	S5	G5	4	
Κ	Х	RU	Soft Rush	Juncus effusus	Juncaceae	3	-5	NL	NL	S5	G5T?	4	
	Х	RU	Knotted Rush	Juncus nodosus	Juncaceae	5	-5	NL	NL	S5	G5	4	
<	Х	RU	Path Rush	Juncus tenuis	Juncaceae	0	0	NL	NL	S5	G5	4	
	Х	SE	Black Sedge	Carex arctata	Cyperaceae	5	5	NL	NL	S5	G5?	3	
<	Х	SE	Golden-fruited Sedge	Carex aurea	Cyperaceae	4	-4	NL	NL	S5	G5	3	
<	Х	SE	Bebb's Sedge	Carex bebbii	Cyperaceae	3	-5	NL	NL	S5	G5	4	
	Х	SE	Woodland Sedge	Carex blanda	Cyperaceae	3	0	NL	NL	S5	G5?	4	
	Х	SE	Crested Sedge	Carex cristatella	Cyperaceae	3	-4	NL	NL	S5	G5	4	
	Х	SE	Softleaf Sedge	Carex disperma	Cyperaceae	8	-5	NL	NL	S5	G5	3	
<	Х	SE	Yellow Sedge	Carex flava	Cyperaceae	5	-5	NL	NL	S5	G5	3	
<	Х	SE	Graceful Sedge	Carex gracillima	Cyperaceae	4	3	NL	NL	S5	G5	4	
<	Х	SE	Porcupine Sedge	Carex hystericina	Cyperaceae	5	-5	NL	NL	S5	G5	4	
<	Х	SE	Inland Sedge	Carex interior	Cyperaceae	6	-5	NL	NL	S5	G5	3	
<	Х	SE	Bladder Sedge	Carex intumescens	Cyperaceae	6	-4	NL	NL	S5	G5	3	
<	Х	SE	Lake-bank Sedge	Carex lacustris	Cyperaceae	5	-5	NL	NL	S5	G5	4	
	Х	SE	Smooth-sheath Sedge	Carex laevivaginata	Cyperaceae	8	-5	NL	NL	S4	G5	2	
	Х	SE	Bristly-stalk Sedge	Carex leptalea	Cyperaceae	8	-5	NL	NL	S5	G5	2	
	Х	SE	Finely-nerved Sedge	Carex leptonervia	Cyperaceae	5	0	NL	NL	S4	G4	2	\checkmark
x	Х	SE	White-tinged Sedge	Carex peckii	Cyperaceae	6	5	NL	NL	S5	G4G5	3	
	х	SE	Longstalk Sedge	Carex pedunculata	Cyperaceae	5	5	NL	NL	S5	G5	4	
x	X	SE	Pennsylvania Sedge	Carex pensylvanica	Cyperaceae	5	5	NL	NL	S5	G5	4	
-	X	SE	Prairie Sedge	Carex prairea	Cyperaceae	7	-4	NL	NL	S5	G5?	2	
	X	SE	Cyperus-like Sedge	Carex pseudocyperus	Cyperaceae	6	-5	NL	NL	S5	G5	4	
<	X	SE	Retrorse Sedge	Carex retrorsa	Cyperaceae	5	-5	NL	NL	S5	G5	4	
	х	SE	Rough Sedge	Carex scabrata	Cyperaceae	8	-5	NL	NL	S5	G5	2	
x		SE	Sedge sp.	Carex sp.	Cyperaceae		-					_	
K	Х	SE	Stalk-grain Sedge	Carex stipata	Cyperaceae	3	-5	NL	NL	S5	G5	4	
<u>k</u>	X	SE	Tussock Sedge	Carex stricta	Cyperaceae	4	-5	NL	NL	S5	G5	2	
•	X	SE	Three-seed Sedge	Carex trisperma	Cyperaceae	9	-5	NL	NL	S5	G5	2	
x	X	SE	Bladder Sedge	Carex utriculata	Cyperaceae	7	-5	NL	NL	S5	G5	3	
<	X	SE	Fox Sedge	Carex vulpinoidea	Cyperaceae	3	-5	NL	NL	S5	G5	4	
•	X	SE	Bald Spikerush	Eleocharis erythropoda	Cyperaceae	4	-5	NL	NL	S5	G5	4	
<	X	SE	Green Keeled Cottongrass	Eriophorum viridicarinatum	Cyperaceae	9	-5	NL	NL	S5	G5	2	1
•	<u> </u>		¥	Schoenoplectus	5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ť	Ť					ľ –	
x	х	SE	Soft-stem Club-rush	tabernaemontani	Cyperaceae	5	-5	NL	NL	S5	G?	3	
x	X	SE	Dark-green Bulrush	Scirpus atrovirens	Cyperaceae	3	-5	NL	NL	S5	G5?	4	
x	X	SE	Common Woolly Bulrush	Scirpus arovirens	Cyperaceae	4	-5 -5	NL	NL	S5	G5	3	1
$\overline{}$	X	SE	Red-tinge Bulrush	Scirpus cyperinus Scirpus microcarpus	Cyperaceae	4	-5 -5	NL	NL	S5	G5 G5	3	1
``	X	SH	Mountain Maple	Acer spicatum	Aceraceae	6	3	NL	NL	S5	G5 G5	3	1
(^	SH	Staghorn Sumac	Rhus typhina	Aceraceae	1	5	NL	NL	S5	G5 G5	4	
\ (Х	SH	Rydberg's Poison Ivy	Toxicodendron rydbergii	Anacardiaceae	0	0		NL	S5 S5	G5 G5	4	
`	^ X	SH	Black Holly	Ilex verticillata	Aquifoliaceae	5	-4		NL	35 S5	G5 G5	4	
/	^ X	SH	European Alder		Betulaceae	5 0	-4 -2		NL	S5 SE4	G3 G?	2 5	
`	^ X	SH	European Alder Twinflower	Alnus glutinosa Linnaea borealis	Caprifoliaceae	6	-2 0		NL	SE4 S5	G? G5T?	5 2	

		PLANT										CVC	Wellington
AA ¹	CVC ²	TYPE ³	COMMON NAME	SCIENTIFIC NAME	FAMILY	CC^4	CW⁵	SARO ⁶	SARA ⁷	S-Rank ⁸	G-Rank ⁹	2010 ¹⁰	County ¹¹
<	Х	SH	American Fly-honeysuckle	Lonicera canadensis	Caprifoliaceae	6	3		NL	S5	G5	3	
(SH	Morrow Honeysuckle	Lonicera morrowii	Caprifoliaceae	0	5	NL	NL	SE3	G?	5	
	Х	SH	Swamp Fly-honeysuckle	Lonicera oblongifolia	Caprifoliaceae	8	-5	NL	NL	S4S5	G4	2	
(Х	SH	Tartarian Honeysuckle	Lonicera tatarica	Caprifoliaceae	0	3	NL	NL	SE5	G?	5	
(Х	SH	Common Elderberry	Sambucus canadensis	Caprifoliaceae	5	-2	NL	NL	S5	G5	4	
	Х	SH	Red Elderberry	Sambucus racemosa	Caprifoliaceae	3	3	NL	NL	S5		4	
	Х	SH	Nannyberry	Viburnum lentago	Caprifoliaceae	4	-1	NL	NL	S5	G5	4	
	Х	SH	European Highbush-cranberry	Viburnum opulus	Caprifoliaceae	0	-3	NL	NL	SE4	G5	5	
	Х	SH	Alternate-leaf Dogwood	Cornus alternifolia	Cornaceae	6	5	NL	NL	S5	G5	4	
	Х	SH	Bunchberry	Cornus canadensis	Cornaceae	7	0	NL	NL	S5	G5	2	
	Х	SH	Red-osier Dogwood	Cornus stolonifera	Cornaceae	2	-3	NL	NL	S5	G5	4	
	Х	SH	Autum Olive	Elaeagnus umbellata	Elaeagnaceae	0	3	NL	NL	SE3	G?	5	
	Х	SH	Creeping Snowberry	Gaultheria hispidula	Ericaceae	8	-3	NL	NL	S5	G5	2	
	Х	SH	Wild Black Currant	Ribes americanum	Grossulariaceae	4	-3	NL	NL	S5	G5	4	
	Х	SH	Prickly Gooseberry	Ribes cynosbati	Grossulariaceae	4	5	NL	NL	S5	G5	4	
	Х	SH	Smooth Gooseberry	Ribes hirtellum	Grossulariaceae	6	-3	NL	NL	S5	G5	2	\checkmark
	Х	SH	Northern Red Currant	Ribes rubrum	Grossulariaceae	0	5	NL	NL	SE5	G4G5	5	
		SH	Current sp.	Ribes sp.	Grossulariaceae								
	Х	SH	Swamp Red Currant	Ribes triste	Grossulariaceae	6	-5	NL	NL	S5	G5	3	
	Х	SH	Common Lilac	Syringa vulgaris	Oleaceae	0	5	NL	NL	SE5	G?	5	
	Х	SH	Alderleaf Buckthorn	Rhamnus alnifolia	Rhamnaceae	7	-5	NL	NL	S5	G5	2	
	Х	SH	Buckthorn	Rhamnus cathartica	Rhamnaceae	0	3	NL	NL	SE5	G?	5	
	Х	SH	Downy Serviceberry	Amelanchier arborea	Rosaceae	5	3	NL	NL	S5	G5	3	
		SH	Hawthorn sp.	Crataegus sp.	Rosaceae	1							
	Х	SH	Common Apple	Malus pumila	Rosaceae	0	5	NL	NL	SE5	G5	5	
	Х	SH	Choke Cherry	Prunus virginiana	Rosaceae	2	3	NL	NL	S5	G5T?	4	
	Х	SH	Multiflora Rose	Rosa multiflora	Rosaceae	0	3	NL	NL	SE4	G?	5	
		SH	Common Blackberry	Rubus allegheniensis	Rosaceae	2	2	NL	NL	S5	G5	4	
(Х	SH	Common Red Raspberry	Rubus idaeus ssp. idaeus	Rosaceae	1		NL	NL	SE1	G5T5	5	
	Х	SH	Wild Red Raspberry	Rubus idaeus ssp. strigosus	Rosaceae	0	-2	NL	NL	S5	G5	4	
	Х	SH	Dwarf Raspberry	Rubus pubescens	Rosaceae	4	-4	NL	NL	S5	G5	3	
	Х	SH	European Mountain-ash	Sorbus aucuparia	Rosaceae	0	5	NL	NL	SE4	G5	5	
	Х	SH	Narrow-leaved Meadow-sweet	Spiraea alba	Rosaceae	3	-4	NL	NL	S5	G5	3	
	Х	SH	Bebb's Willow	Salix bebbiana	Salicaceae	4	-4	NL	NL	S5	G5	3	
	Х	SH	Pussy Willow	Salix discolor	Salicaceae	3	-3	NL	NL	S5	G5	4	
[Х	SH	Heart-leaved Willow	Salix eriocephala	Salicaceae	4	-3	NL	NL	S5	G5	4	1
(Х	SH	Shining Willow	Salix lucida	Salicaceae	5	-4	NL	NL	S5	G5	3	
(Х	SH	Meadow Willow	Salix petiolaris	Salicaceae	3	-4	NL	NL	S5	G5	3	

	1					1							
		PLANT										CVC	Wellington
AA ¹	CVC ²	TYPE ³	COMMON NAME	SCIENTIFIC NAME	FAMILY	CC^4	CW ⁵	SARO ⁶	SARA ⁷	S-Rank ⁸	G-Rank ⁹	2010 ¹⁰	County ¹¹
Х		SH	Purple Willow	Salix purpurea	Salicaceae	0	-3	NL	NL	SE4	G5	5	
Х	Х	SH	Canadian Yew	Taxus canadensis	Taxaceae	7	3	NL	NL	S4	G5	3	
Х	Х	SH	February Daphne	Daphne mezereum	Thymelaeaceae	0	0	NL	NL	SE2	G?	5	
Х	Х	TR	Manitoba Maple	Acer negundo	Aceraceae	0	-2	NL	NL	S5	G5	5	
Х	Х	TR	Norway Maple	Acer platanoides	Aceraceae	0	5	NL	NL	SE5	G?	5	
Х	Х	TR	Red Maple	Acer rubrum	Aceraceae	4	0	NL	NL	S5	G5	4	
Х		TR	Silver Maple	Acer saccharinum	Aceraceae	5	-3	NL	NL	S5	G5	3	
v	х	TR	Sugar Maple	Acer saccharum ssp.	Approace	4	3	NL	NII	S5	G5	4	
^ V	^	TR	Energy and Manda	saccharum	Aceraceae	4	3		NL NL	S5 S4	G3 G?	4	
× v	V		Freeman's Maple	Acer x freemanii	Aceraceae	c	0				G5	4	
<u>~</u>	X	TR	Yellow Birch	Betula alleghaniensis	Betulaceae	6	2	NL	NL	S5	G5 G5		
X	Х	TR	White Birch	Betula papyrifera	Betulaceae	2	_	NL	NL	S5		4	
X	X	TR	Eastern Hop-hornbeam	Ostrya virginiana	Betulaceae	4 4	4	NL	NL	S5	G5	4 4	
X	Х	TR TR	Eastern White Cedar	Thuja occidentalis	Cupressaceae	4 6	-3	NL NL	NL NL	S5	G5 G5	4	
X	×	TR	American Beech	Fagus grandifolia	Fagaceae	v	3			S4	G5 G5	-	
X			Northern Red Oak	Quercus rubra	Fagaceae	6	3 3			S5	G5 G5	4 4	
X	V	TR	Black Walnut	Juglans nigra	Juglandaceae	5	-	NL	NL	S4		•	
X	Х	TR	White Ash	Fraxinus americana	Oleaceae	4	3 -4	NL	NL	S5	G5	4	
X	V	TR	Black Ash	Fraxinus nigra	Oleaceae	1		NL	NL	S5	G5	3	-
X	X	TR	Green Ash	Fraxinus pennsylvanica	Oleaceae	3	-3	NL	NL	S5	G5 G5	4	-
X	Х	TR	Balsam Fir	Abies balsamea	Pinaceae	5	-3 5	NL	NL	S5		3	-
X	V	TR	European Larch	Larix decidua	Pinaceae	0	5	NL	NL	SE2	G?	5	
<u>X</u>	Х	TR	Tamarack	Larix laricina	Pinaceae	/	-3	NL	NL	S5	G5	3	
X	V	TR	Norway Spruce	Picea abies	Pinaceae	v	5	NL	NL	SE3	G?	5	
X	X	TR	White Spruce	Picea glauca	Pinaceae	6	3	NL	NL	S5	G5	2	-
<u>x</u>	Х	TR	Black Spruce	Picea mariana	Pinaceae	8	-3	NL	NL	S5	G5	2	
X	X	TR	Blue Spruce	Picea pungens	Pinaceae	0	3	NL	NL	SE1	G5	5 4	-
X	Х	TR	Eastern White Pine	Pinus strobus	Pinaceae	-	3	NL	NL	S5	G5		-
X		TR	Scots Pine	Pinus sylvestris	Pinaceae	0	5	NL	NL	SE5	G?	5	
X	X	TR	Eastern Hemlock	Tsuga canadensis	Pinaceae	1	3	NL	NL	S5	G5	4	-
X	Х	TR	Wild Black Cherry	Prunus serotina	Rosaceae	3	3	NL	NL	S5	G5	4	
X	X	TR	Balsam Poplar	Populus balsamifera	Salicaceae	2	-3	NL	NL	S5	G5T?	4	-
X	X	TR	Large-tooth Aspen	Populus grandidentata	Salicaceae	5	3	NL	NL	S5	G5	3	
X	X	TR	Trembling Aspen	Populus tremuloides	Salicaceae	2	0	NL	NL	S5	G5	4	
X X	Х	TR	White Willow	Salix alba	Salicaceae	0	-3	NL	NL	SE4	G5	5	-
X	V	TR	Crack Willow	Salix fagilis	Salicaceae	0 4	0	NL	NL	SE	G5	5 4	
X	X	TR	American Basswood	Tilia americana	Tiliaceae	-	3	NL	NL	S5	G5		
X	X	TR	American Elm	Ulmus americana	Ulmaceae	3	-2	NL	NL	S5	G5?	4 4	
×	Х	VI	Wild Mock-cucumber	Echinocystis lobata	Cucurbitaceae	3 0	-2	NL NL	NL	S5 SE4	G5 G?		+
^ V	v	VI	Broad-leaf Peavine	Lathyrus latifolius	Fabaceae	v	5		NL NL	SE4 SE5	G? G?	5	+
^	X	VI	Tufted Vetch	Vicia cracca	Fabaceae	0	5	NL			-	5	
v	X	VI	Spring Vetch	Vicia sativa	Fabaceae	0	3	NL	NL	SE5	G?T?	5	
х V	Х	VI	Black Bindweed	Fallopia convolvulus	Polygonaceae	0	1	NL	NL	SE5	G?	5	+
X	X	VI	Virginia Clematis	Clematis virginiana	Ranunculaceae	3	0	NL	NL	S5	G5	4	+
V	X	VW VW	Mountain Honeysuckle	Lonicera dioica	Caprifoliaceae	5	3	NL	NL	S5 SE5	G5 G?	3	+
A V	X		Climbing Nightshade	Solanum dulcamara	Solanaceae	0	0	NL	NL			5	+
^ V	X	VW	Inserted Virginia Creeper	Parthenocissus inserta	Vitaceae	3	3	NL	NL	S5	G5	4	
×	Х	VW	Riverbank Grape	Vitis riparia	Vitaceae	0	-2	NL	NL	S5	G5	4	

1 AA: Botanical data collected by Aboud & Associates Inc. during 2014 2 CVC: Botanical data collected by Credit River Conservation from 2008 to 2009 3 Plant Types: AL = Algae; FE = Fern; FO = Forb; GR = Grass; LC = Lichen; LV = Liverwort; MO = Moss; RU = Rush; SE = Sedge; SH = Shrub; TR = Tree; VI = Herbaceous vine; VW = 4 CC: Coefficient of Conservatism reflects a species' fidelity to a specific habitat. Range from 0 to 10; 10 = very conservative, not likely in disturbed habitats, 1 = least conservative, likely 5 CW: Coefficient of Wetness reflects a species' affinity for wet soil conditions. Range from -5 to 5; -5 = obligate wetland species, 5 = obligate upland species. 6 SARO: Status under the Provincial Endangered Species Act, listed on the Species at Risk in Ontario (SARO) list. In order of severity, statuses include: EXP = Extirpated; END = 7 SARA: Status under the National Species at Risk Act (SARA), assessed by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). In order of severity, statuses 8 S-Rank: Provincial rarity rank. Range from S1 to S5; S1 = Extremely rare, S5 = Very common. NR = Unranked; U = Unrankable. 9 questionable; T = Applies to subspecies or variety; Nothing = Rank not yet obtained. CVC 2010: Species of Conservation Concern Teir Ranking. Range from 1 to 5; 1 = Species of Conservation Concern, 2 = Species of Interest, 3 = Urban Interest, 4 = Secure Species, 5 10 = Non-native & Non-native Hybrid Species. Wellington County: Significant Flora Species within Wellington County as identified by Dougan & Associates, with Sneil & Cecile, 2009. Guelph Natural Heritage Strategy. Phase 2, 11 Volume 2 (Significant Plant List for Wellington County). Guelph, Ontario.

APPENDIX 7. ANURAN CALL SURVEY Hillsburgh Dam Environmental Assessment, Natural Heritage - Existing Conditions

				SPECIES		
		o <i>= i</i>			Northern Leopard	
STATION	DATE	Gray Treefrog	Spring Peeper	Green Frog	Frog	Wood Frog
	15-Apr-15					
	28-May-15		1-3	1-2		
A	24-Jun-15	1-1		1-4		
	15-Apr-15		2-17			2-10
	28-May-15		1-2			
B1	24-Jun-15	1-2				
	15-Apr-15		1-2			
	28-May-15		1-2			
B2	24-Jun-15					
	15-Apr-15		1-4*			
	28-May-15	2-7	1-3			
C1	24-Jun-15	2-5*		1-2*		
	15-Apr-15		2-8			
	28-May-15	1-2	1-4		1-2	1-1
C2	24-Jun-15	1-1		1-2		
	15-Apr-15		3			1-3
	28-May-15	1-4	1-1	1-1		
D	24-Jun-15			1-1		
	15-Apr-15					
	28-May-15		1-1			
E	24-Jun-15					
	15-Apr-15					
	28-May-15	2-11	1-2			
F	24-Jun-15	1-6		1-1		
	15-Apr-15					
	28-May-15	2-9	1-1	1-3		
G	24-Jun-15	1-3		1-3		
	15-Apr-15					
	28-May-15	1-1				
н	24-Jun-15					

* indicates call heard outside of survey area.

Amphibian Call Level codes:

1 - # : Calls not simultaneous, number of individuals can be accurately counted

2 - # :Some calls simultaneous, number of individuals can be reliably estimated

3 :Full chorus, calls continuous and overlapping, number of individuals cannot reliably be estimated

APPENDIX 8. BREEDING BIRD SURVEY RESULTS Hillsburgh Dam Environmental Assessment, Natural Heritage - Existing Conditions

COMMON NAME	SCIENTIFIC NAME	COSARO	COSEWIC	SARA	5-RANK	G-RANK	Wellington	CVC	PC1 Decidu forest # HE	lous	PC2 OA, Coniferous Swamp # IHBE	PC3 Deciduous forest # HBE	PC4 Meadow Marsh, Mixed Swamp # IHBE	PC5 Shallow Marsh, Mixed Swamp # IHBE	PC6 Mixed Swamp, Coniferous Forest # IHBE	PC7 Woodland, Deciduous Forest # IHBE	PC8 Hillsburgh Pond and Dam # HBE	PC9 Cattail Meadow Marsh # IHBE	PC10 Creek and Riparian # IHBE	Site Totals #	Overall Highest Breeding Evidence
Great Blue Heron	Ardea herodias	0	0	0)	54	G5	>	2	0		1 X	# HBL	# 11DL	# 11DL	# 11DL	# HBL	# 11DL	# 11DL	# 11DL	π 1	Observed
Green Heron	Butorides virescens				S4B	G5		2	0		1 H	0	0	0	0	0	0	0	0		Possible
Canada Goose	Branta canadensis				S4D S5	G5	•	2	0		0	0	0	0	0	0	0	0	0 FO		Observed
Mallard	Anas platyrhynchos	-	-		S5	G5	/	4	0		0	0	0	13 P	0	0 FO	0	0	0	-	Probable
Killdeer	Charadrius vociferus	-	-		S5B.S5N	G5	v	4	0		0	0	0	0	0	0 -0	0	0	0 FO	-	Observed
		-	-		S5B,S5N		/	3	0		0	0	0	0	0	0	0	0 FO	0 FO	-	
Ring-billed Gull	Larus delawarensis	_			S5B,S4P S5	G5	v	2	0		0	0	1 S	0	0	0	0	010	1 S		Observed Possible
Mourning Dove	Zenaida macroura		_				×	4	0		2 P		0	-		0	v	Ũ			
Belted Kingfisher	Megaceryle alcyon	-	-		S4B	G5	v	3 *	0			0	-	1 H	0	0	1 H	1 H	0	-	Probable
Downy Woodpecker	Picoides pubescens	_	_		S5	G5	~	4	0		0	0	0	0	0	0	0	1 T	0		Probable
Northern Flicker	Colaptes auratus		_		S4B	G5	~	3 •			1 S	0	1 T	1 S	1 S	2 T	1 T	0 S	0		Probable
Eastern Wood-pewee	Contopus virens	SC	SC	<u> </u>	S4B	G5		1 •	1 S		1 T	1 S	0	0	0	0	0	0	0	-	Probable
Alder Flycatcher	Empidonax alnorum	-		<u> </u>	S5B	G5	~	_	0		0	0	0	1 S	0	0	0	0	0		Possible
Eastern Phoebe	Sayornis phoebe	-	<u> </u>	I	S5B	G5	+	3	0		0	0	0	0	1 S	0	0	0	0		Possible
Great Crested Flycatcher	Myiarchus crinitus				S4B	G5		3	0		0	0	1 S	1 T	0	1 S	0	0	0	-	Probable
Eastern Kingbird	Tyrannus tyrannus				S4B	G5		3	0		0	0	2 S	1 A	0	0	0	0	0	-	Probable
Tree Swallow	Tachycineta bicolor				S4B	G5		3	0		2 H	0	0	1 H	0	0	1 H	1 H	0	-	Possible
Blue Jay	Cyanocitta cristata				S5	G5		4	1 FY	(2 A	0	0	0	1 H	1 S	0	0	1 H	6	confirmed
American Crow	Corvus brachyrhynchos				S5B	G5	~	2	1 A		1 A	0	0	2 A	1	2 H	0 H	3 A	2 H	12	Probable
Black-capped Chickadee	Poecile atricapillus				S5	G5		4	1 S		1 S	2 A	0	2 S	2 T	2 S	3 FY	0	1 S	14	confirmed
Red-breasted Nuthatch	Sitta canadensis				S5	G5		3	0		0	0	0	0	1 S	0	0	0	0	1	Possible
House Wren	Troglodytes aedon				S5B	G5	~	4	0		0	0	1 A	1 S	0	0 S	0	0	1 S	3	Probable
Winter Wren	Troglodytes troglodytes				S5B	G5	~	3	0		0	0	0	0	1 S	0	0	0	0	1	Possible
American Robin	Turdus migratorius				S5B	G5		4	1 T		1 T	1 A	5 A	4 T	1 A	2 A	1 A	0	5 A	21	Probable
Gray Catbird	Dumetella carolinensis				S4B	G5	~	3	0		0	1 S	0	1 S	0	1 S	0	1 S	0	4	Possible
Cedar Waxwing	Bombycilla cedrorum				S5B	G5	~	3	0		1 H	0	3 H	2 H	0	2 H	2 H	1 H	1 H	12	Possible
European Starling	Sturnus vulgaris				SNA	G5			0		0	0	0	0	0	0	3 S	1 H	1 H	5	Possible
Warbling Vireo	Vireo gilvus				S5B	G5		5	0		0	0	1 T	1 S	0	0	1 T	1 S	0	4	Probable
Red-eyed Vireo	Vireo olivaceus				S5B	G5	~	4	1 T		1 T	1 S	1 S	2 S	0	0	0	1 S	0	7	Probable
Yellow Warbler	Dendroica petechia				S5B	G5		4	0		0	0	1 T	2 S	0	1 T	0	1 T	0	5	Probable
Chestnut-sided Warbler	Dendroica pensylvanica				S5B	G5	~	2	0		0	0	0	0	0	1 S	0	0	0		Possible
Northern Waterthrush	Seiurus noveboracensis				S5B		~	3	0		1 S	0	0	1 S	0	0	0	0	0		Possible
Common Yellowthroat	Geothlypis trichas	1	1	1	S5B	G5	~	4	õ		15	0	2 S	2 T	0	2 T	0	0	0		Probable
Northern Cardinal	Cardinalis cardinalis	1	1	1	S5	G5	~	4	0		0	0	0	1 S	1 S	0	1 S	0	0		Possible
Rose-breasted Grosbeak	Pheucticus Iudovicianus		1	1	S4B	G5		3 .	0		0	0	1 S	1 H	1 S	0	0	0	0	-	Possible
Indigo Bunting	Passerina cyanea	1	1	1	S4B	G5	+		0		1 S	0	0	0	0	1 S	0	0	0	-	Possible
Chipping Sparrow	Spizella passerina		1	1	S5B	G5	~	4	0		0	0	0	0	0	1 S	0	0	0		Possible
Song Sparrow	Melospiza melodia	1	+	1	S5B	G5		4	0		0	0	2 S	2 S	0	2 T	2 N	2 T	1 S		confirmed
Song Sparrow Swamp Sparrow	Melospiza georgiana	+	+		S5B	G5	•	4	0		1 S	0	1 S	2 S	0	2 T	0	0	0		Probable
White-throated Sparrow	Zonotrichia albicollis	+	+	 	S5B S5B	G5	+	2	0		0	0	0	2 S 1 S	0 5	0	0	0	0	-	Probable
Red-winged Blackbird		1	+	 	S5B S4	G5	_	3	0		2 A	0	4 T	4 S	05	0	6 CF	12 FY	0		confirmed
	Agelaius phoeniceus	TUE	THR		54 S4B	G5	×	4	0		2 A	0	4 1	4 S 0 S	0	0	0		0	-	
Eastern Meadowlark	Sturnella magna	THR	THR			G5 G5	*	1 1	0		0	0 1 A	v		0	0	v	0	0		Possible
Common Grackle	Quiscalus quiscula		+	├	S5B		_	4	U		-		6 FY	0		v	2 H	1 H	-	-	confirmed
Brown-headed Cowbird	Molothrus ater				S4B	G5	~	4	0		0	0	U	0	0	1 S	1 H	0	0		Possible
Baltimore Oriole	Icterus galbula	-		<u> </u>	S4B	G5		3 •	r 0		1 S	1 S	2 S	0	0	0	1 A	1 H	0	-	Probable
American Goldfinch	Carduelis tristis	1		<u> </u>	S5B	G5		4	0		1 H	0	0	1 H	0 FO	1 H	7 H	3 H	2 H	-	Possible
House Sparrow	Passer domesticus	1		1	SNA	G5		5	0		0	0	0	0	0	0	0	1 S	0	1	Possible

Legend: SARO: Species at Risk Ontario COSEWIC: Committee on the Status of Endangered wildlife in Canada SARA: Species at Risk Act ESA: Endangered Species Act END: Endangered THR: Threatened SC: special Concern NAR: Not At Risk NL: Not listed DD: Data Deficient HBE: Highest Breeding Evidence over 2 surveys PIF: Priority species in BCR13

G-Rank: G1: Extremely rare globally G1G2: Extremely rare to very rare globally G2: Very rare globally G2G3: Very rare to uncommon globally G3: Rare to uncommon globally G3G4: Rare to common globally G4: Common globally G4G5: Common to very common globally G5: Very common globally; demonstrably secure T: rank applies to a subspecies or variety

S-Rank:

S#N- Non Breeding status rank

?: Indicates uncertainty in the assigned rank

S1: Critically Imperiled—Critically imperiled in the province S2: Imperiled—Imperiled in the province S3: Vulnerable—Vulnerable in the province S4: Apparently Secure—Uncommon but not rare S5: Secure-Common, widespread, and abundant SX: Presumed extirpated SH: Possibly Extirpated (Historical) SNR: Unranked SU: Unrankable-Currently unrankable SNA: Not applicable-A conservation status rank is not applicable S#S#: Range Rank- indicates range of uncertainty about the status S#B- Breeding status rank

CVC Tiers:

1 - Species of Conservation Concern 2 - Species of Interest 3 - Species of Urban Interest 4 - Secure Species

5 - Non-native & Non-native Hybrid Species

Breeding Evidence Codes Observed

FO-flyover

S-Singing male

P-PairD-Display

V-Visiting nest

Possible

probable

D-Display

A-Agitated

Confirmed DD-Distraction display X-no breeding evidence NU-Used nest FY-Fledged young H-Suitable habitat AE-Adult entering/leaving nest FS-Adult carrying fecal sac CF-Adult carrying food NE-Nest with eggs T-Territory (2 visits) NY-Nest with young Wellington County: Significant Species

B-Broodpatch N-Nest building or excavation

APPENDIX 9. MARSH BREEDING BIRD RESULTS Hillsburgh Dam Environmental Assessment, Natural Heritage - Existing Conditions

COMMON NAME	SCIENTIFIC NAME	STATION	ROUND	BE	in/out	tally
American Redstart	Setophaga ruticilla	MBB1	2	s	in	1
American Robin	Turdus migratorius	MBB1	1	Н	in	2
Blue Jay	Cyanocitta cristata	MBB1	2	а	in	1
Common Grackle	Quiscalus quiscula	MBB1	2	h	in	1
Downy Woodpecker	Picoides pubescens	MBB1	2	t	in	1
Gray Catbird	Dumetella carolinensis	MBB1	1	S	in	1
Green Heron	Butorides virescens	MBB1	1		out	1
Mallard	Anas platyrhynchos	MBB1	2	h	in	3
Red-eyed Vireo	Vireo olivaceus	MBB1	1	s	in	1
Red-winged Blackbird	Agelaius phoeniceus	MBB1	1	P	in	8
Song Sparrow	Melospiza melodia	MBB1	1	S	in	1
Tree Swallow	Tachycineta bicolor	MBB1		fo	n/a	6
Yellow Warbler		MBB1	1	S	in	1
	Dendroica petechia		-			
American Black Duck	Anas rubripes	MBB2	2	h	in	1
Baltimore Oriole	Icterus galbula	MBB2	2		in	1
Black-and-white Warbler		MBB2	1	S	in	2
Cliff Swallow	Petrochelidon pyrrhonota	MBB2			n/a	2
Common Grackle	Quiscalus quiscula	MBB2	2		in	3
Great Crested Flycatcher	Myiarchus crinitus	MBB2	1	S	in	2
Northern Flicker	Colaptes auratus	MBB2	2	t	in	2
Red-breasted Nuthatch	Sitta canadensis	MBB2	2	s	in	1
White-throated Sparrow	Zonotrichia albicollis	MBB2	1	s	in	2
American Goldfinch	Carduelis tristis	MBB3	1	Н	in	1
American Robin	Turdus migratorius	MBB3	1	А	in	2
American Robin	Turdus migratorius	MBB3	2	fy	in	1
Baltimore Oriole	Icterus galbula	MBB3	1	H	in	1
Belted Kingfisher	Megaceryle alcyon	MBB3	2	h	in	1
Brown-headed Cowbird	Molothrus ater	MBB3	2	s	in	1
		-	2	s h	in	4
Cedar Waxwing	Bombycilla cedrorum	MBB3				
House Wren	Troglodytes aedon	MBB3	2		in	1
Northern Flicker	Colaptes auratus	MBB3	1	Т	in	1
Red-winged Blackbird	Agelaius phoeniceus	MBB3	1	A	in	4
Song Sparrow	Melospiza melodia	MBB3	2	а	in	1
Warbling Vireo	Vireo gilvus	MBB3	1	S	in	1
Alder Flycatcher	Empidonax alnorum	MBB4	2	h	in	1
American Crow	Corvus brachyrhynchos	MBB4	1	h	in	2
American Crow	Corvus brachyrhynchos	MBB4	2	h	in	1
American Goldfinch	Carduelis tristis	MBB4	1	h	in	1
American Goldfinch	Carduelis tristis	MBB4	2	h	in	2
American Robin	Turdus migratorius	MBB4	2	а	in	2
Baltimore Oriole	Icterus galbula	MBB4	1	s	in	1
Belted Kingfisher	Megaceryle alcyon	MBB4	1	h	in	1
Belted Kingfisher	Megaceryle alcyon	MBB4		h	out	1
Black-capped Chickadee		MBB4		s	in	1
Black-capped Chickadee		MBB4		s	in	3
Blue Jay	Cyanocitta cristata	MBB4		fy	in	1
Chipping Sparrow	Spizella passerina	MBB4		s		1
					in in	
Common Yellowthroat	Geothlypis trichas	MBB4	2		in	1
Downy Woodpecker	Picoides pubescens	MBB4	2		in	1
Eastern Kingbird	Tyrannus tyrannus	MBB4		а	in	1
Great Crested Flycatcher		MBB4		s	in	1
Marsh Wren	Cistothorus palustris	MBB4		s	in	1
Mourning Dove	Zenaida macroura	MBB4		fo	in	1
Northern Waterthrush	Seiurus noveboracensis	MBB4		s	in	1
Deal area al V <i>line</i> a	Vireo olivaceus	MBB4	2	s	in	1
Red-eyed Vireo				а	in	3
	Agelaius phoeniceus	MBB4		<u> </u>		
Red-eyed Vireo Red-winged Blackbird Red-winged Blackbird		MBB4 MBB4			in	1
Red-winged Blackbird Red-winged Blackbird	Agelaius phoeniceus	MBB4	2	s	in	
Red-winged Blackbird Red-winged Blackbird Rose-breasted Grosbeak	Agelaius phoeniceus Pheucticus Iudovicianus	MBB4 MBB4	2	s s	in in	1 1 1
Red-winged Blackbird Red-winged Blackbird	Agelaius phoeniceus	MBB4	2 2 2	s	in	

Breeding Evidence Codes

Observed X-no breeding evidence FO-flyover

Possible H-Suitable habitat S-Singing male

<u>Probable</u>

P-Pair T-Territory (2 visits) D-Display V-Visiting nest A-Agitated B-Broodpatch N-Nest building

Confirmed DD-Distraction display NU-Used nest FY-Fledged young AE-Adult entering/leaving nest FS-Adult carrying fecal sac CF-Adult carrying food NE-Nest with eggs NY-Nest with young

APPENDIX 10. SNAKE TRANSECT SURVEYS Hillsburgh Dam Environmental Assessment, Natural Heritage - Existing Conditions

ROUND	TRANSECT	SPECIES or FEATURE	APPROX. LENGTH	COVER	COUNT	PHOTO	NOTES	HABITAT
1	none/scoping	Candidate Hibernacula	20m* 2m	Rock birm		yes	Linear rock feature, many crevices openings	open woodland
1	none/scoping	Candidate Hibernacula	5m* 5m	Rock birm		yes	circular rock pile, overgrown with many cracks.crevices	open woodland
1	none/scoping	Common gartersnake	30cm	long grass	1	yes	sunning on trail	open gravel and meadow
2	S1	none	-	-	-	-	-	-
2	S2	none	-	-	-	-	-	-
2	S3	none	-	-	-	-	-	-
2	S4	none	-	-	-	-	-	-
2	S5	none	-	-	-	-	-	-
3	S1	none	-	-	-	-	-	-
3	S2	none	-	-	-	-	-	-
3	S3	none	-	-	-	-	-	-
3	S4	none	-	-	-	-	-	-
3	S5	none	-	-	-	-	-	-

APPENDIX 11. TURTLE BASKING SURVEY RESULTS Hillsburgh Dam Environmental Assessment, Natural Heritage - Existing Conditions

			SPECIES	
STATION	DATE	Common Snapping Turtle	Midland Painted Turtle	Unknown Turtle Species
	29-Apr-15	2	26	
	08-May-15	3	25	
Turtle Habitat 1	14-May-15	2	19	
	28-May-15	2	12	
	11-Jun-15		22	
Turtle Habitat 1 total		9	104	0
	29-Apr-15			
	08-May-15			
Turtle Habitat 2	14-May-15			
	28-May-15			
	11-Jun-15		1	
Turtle Habitat 2 Total		0	1	0
	29-Apr-15		64	
	08-May-15	2	132	
Turtle Habitat 3	14-May-15		109	
	28-May-15	3	77	
	11-Jun-15	1	63	
Turtle Habitat 3 Total		6	445	0
	29-Apr-15		2	
	08-May-15		1	1
Turtle Habitat 4	14-May-15		2	
	28-May-15			
	11-Jun-15		2	
Turtle Habitat 4 Total		0	7	1
	29-Apr-15			
	08-May-15			
Turtle Habitat 5	14-May-15			
	28-May-15			
	11-Jun-15		1	
Turtle Habitat 5 total		0	1	0

APPENDIX 12. WINTER WILDLIFE SURVEY

Hillsburgh Dam Environmental Assessment, Natural Heritage - Existing Conditions

COMMON NAME	SCIENTIFIC NAME	SARO	COSEWIC	SARA	S-Rank	G-Rank	CVC (2010)
BIRDS							
Canada Goose	Branta canadensis				S5	G5	4
American Black Duck	Anas rubripes				S4	G5	2
Bald Eagle	Haliaeetus leucocephalus	SC			S2N,S4B	G5	1
Ruffed Grouse	Bonasa umbellus				S4	G5	2
Downy Woodpecker	Picoides pubescens				S5	G5	4
Pileated Woodpecker	Dryocopus pileatus				S5	G5	2
American Crow	Corvus brachyrhynchos				S5B	G5	2
Black-capped Chickadee	Poecile atricapillus				S5	G5	4
Pine Siskin	Carduelis pinus				S4B	G5	2
MAMMALS							
Eastern Cottontail	Sylvilagus floridanus				S5	G5	4
Eastern Gray Squirrel	Sciurus carolinensis				S5	G5	4
Red Squirrel	Tamiasciurus hudsonicus				S5	G5	3
Beaver	Castor canadensis				S5	G5	3
Meadow Vole	Microtus pennsylvanicus				S5	G5	3
Coyote	Canis latrans				S5	G5	3
American Mink	Mustela vison				S4	G5	2
White-tailed Deer	Odocoileus virginianus				S5	G5	3
Red Fox (cf.)	Vulpes vulpes				S5	G5	3

Legend:

SARO: Species at Risk Ontario

COSEWIC: Committee on the status of endangered wildlife in canac 2 - Species of Interest SARA: Species at Risk Act SC: Special Concern

Global Rank:

- G1: Extremely rare globally
- G1G2: Extremely rare to very rare globally
- G2: Very rare globally
- G2G3: Very rare to uncommon globally

G3: Rare to uncommon globally

G3G4: Rare to common globally

G4: Common globally

G4G5: Common to very common globally

G5: Very common globally; demonstrably secure

CVC Tiers:

1 - Species of Conservation Concern

3 - Species of Urban Interest

- 4 Secure Species
- 5 Non-native & Non-native Hybrid Species

Provincial Rank:

- S1: Critically Imperiled—Critically imperiled in the province
- S2: Imperiled—Imperiled in the province, very few populations
- S3: Vulnerable—Vulnerable in the province, relatively few populations
- S4: Apparently Secure—Uncommon but not rare
- S5: Secure-Common, widespread, and abundant in the province
- S#B- Breeding status rank
- S#N- Non Breeding status rank

APPENDIX 13. MIGRATORY BIRD SURVEY RESULTS Hillsburgh Dam Environmental Assessment, Natural Heritage - Existing Conditions

		SARO	COSEWIC	SARA	S-Rank	G-Rank	CVC (2010)
COMMON NAME	SCIENTIFIC NAME	S∠	ö	SA		-	Ú
Great Egret	Ardea alba				S2B	G5	1
Canada Goose	Branta canadensis				S5	G5	4
Wood Duck	Aix sponsa				S5	G5	2
American Black Duck	Anas rubripes				S4	G5	2
Mallard	Anas platyrhynchos				S5	G5	4
Belted Kingfisher	Megaceryle alcyon				S4B	G5	3
Northern Flicker	Colaptes auratus				S4B	G5	3
Blue Jay	Cyanocitta cristata				S5	G5	4
American Crow	Corvus brachyrhynchos				S5B	G5	2
Black-capped Chickadee	Poecile atricapillus				S5	G5	4
Red-breasted Nuthatch	Sitta canadensis				S5	G5	3
House Wren	Troglodytes aedon				S5B	G5	4
Golden-crowned Kinglet	Regulus satrapa				S5B	G5	2
Ruby-crowned Kinglet	Regulus calendula				S4B	G5	2
American Robin	Turdus migratorius				S5B	G5	4
European Starling	Sturnus vulgaris				SNA	G5	5
Song Sparrow	Melospiza melodia				S5B	G5	4
White-throated Sparrow	Zonotrichia albicollis				S5B	G5	3
American Goldfinch	Carduelis tristis				S5B	G5	4
Black bird species (mixed flock)							

Legend:

SARO: Species at Risk Ontario G1: Extremely rare globally COSEWIC: Committee on the Status of Endangered wildlife in Canad G1G2: Extremely rare to very rare globally SARA: Species at Risk Act G2: Very rare globally ESA: Endangered Species Act END: Endangered G3: Rare to uncommon globally THR: Threatened G3G4: Rare to common globally SC: special Concern G4: Common globally NAR: Not At Risk NL: Not listed DD: Data Deficient CVC Tiers: Provincial Rank: 1 - Species of Conservation Concern

- 2 Species of Interest
- 3 Species of Urban Interest
- 4 Secure Species
- 5 Non-native & Non-native Hybrid Species

Global Rank:

G2G3: Very rare to uncommon globally

G4G5: Common to very common globally

G5: Very common globally; demonstrably secure

T: rank applies to a subspecies or variety

S1: Critically Imperiled—Critically imperiled in the province

- S2: Imperiled—Imperiled in the province, very few populations
- S3: Vulnerable—Vulnerable in the province, few populations
- S4: Apparently Secure—Uncommon but not rare

S5: Secure—Common, widespread, and abundant in the province

SX: Presumed extirpated

SH: Possibly Extirpated (Historical)

SNR: Unranked

SU: Unrankable—Currently unrankable due to lack of information SNA: Not applicable-conservation status rank is not applicable

S#S#: Range Rank—range of uncertainty about the status

S#B- Breeding status rank

S#N- Non Breeding status rank

?: Indicates uncertainty in the assigned rank

Appendix 14 Shorebird Habitat Assessment

ABOUD & ASSOCIATES INC.

Shorebird Habitat Assessment

Project: Hillsburgh Dam Project number: AA12-137A Observer(s):C.A. Ross Date: 05/08/2015

Location: <u>Hillsburgh Dam</u> Approximate Size of Census Area (X *X km): 0.5 x 0.1

Weather Conditions:

Temp (°C)	Wind*	Cloud Cover	Precipitation	Precipitation(24hrs)
17	3	19	None	none

*Beaufort Scale: 0-Calm (0 km/hr), 1-light Air (1-5km/hr), 2-Light Breeze (6-11km/hr), 3-gentle Breeze (12-19km/hr), 4-moderate Breeze (20-28km/hr), 5fresh breeze (29-38km/hr), 6-strong breeze (39-49km/hr)

1. Habitat Availability (rank by area (ha) the habitats that are available to be used):

Sand Beach		Salt Marsh		Sewage Plant
Sand Flat		Field		Mangrove
Sand & Mud Flat		Brackish Pond		Other:
Mud Flat	2	Temporary Pond		Other:
Rocky Beach		Fresh Pond Or Lake	1	Other:
Rocky Point		River		Other:

2. Site is (rank by area (ha) if more than one):

On A Bay Or Estuary	An Inland Salt Lake Or Sea	Other:
A Coastal Bay	On The Ocean Front	
A Lagoon	Principally An Inland Area	1

3. Raptors observed:

Frequently	Infrequently	Never	х
Species observed:			

4. Disturbance by Humans:

>10 per day	Х	5-10 per day	1-5 per day	
< 1 per day		Variable	unknown	

5. Rank major causes of disturbance:

People on foot	х	Vehicle Traffic	х	Pets	х
Boats		Hunting		Other	

6. Comments:

Very little mud or sand exposed, vegetated with pond lilies, cattails, No shorebirds observed during August survey.

		1	1	1	1	1	1	1	
								County	
								Ŋ	
			0				ô		
			ž			~	5	to	
		Q	Ш	≴	an	anl	2	ing 8)	
COMMON NAME	SCIENTIFIC NAME	SARO	COSEWIC	SARA	S-Rank	G-Rank	CVC (2010)	Wellington (2008)	Data(a) abaar (ad (2015)
BUTTERFLIES		S	0	S	S	0	0	50	Date(s) observed (2015)
Canadian Tiger Swallowtail	papilo canadensis		<u> </u>		ł				May 28
AMPHIBANS								✓	
American Toad	Anaxyrus americanus				S5	G5	3		Мау 8
Spring Peeper	Pseudacris crucifer				S5	G5	3		April 15, april 29, May 8
Green Frog	Lithobates clamitans				S5	G5		✓	May 28
Northern Leopard Frog	Lithobates pipiens	NAR	NAR		S5	G5	3		April 15, April 29, May 8, May 14, May 28
TURTLES			İ				İ 👘		
Snapping Turtle	Chelydra serpentina	SC	SC	SC	S3	G5T5	1	✓	April 15, May 28
Midland Painted Turtle	Chrysemys picta marginata				S5	G5T5	3	\checkmark	April 15
BIRDS									
Common Loon	Gavia immer	NAR	NAR		S5B,S5N	G5		✓	May 8
Great Blue Heron	Ardea herodias				S4	G5		\checkmark	May 28
Great Egret	Ardea alba				S2B	G5		\checkmark	May 28
Green Heron	Butorides virescens				S4B	G5	2		May 28, August 5
Trumpeter Swan	Cygnus buccinator	NAR	NAR		S4	G4	1		April 29, May 28
Canada Goose	Branta canadensis				S5	G5	4		April 15, April 29, May 8, May 14, May 28
Wood Duck	Aix sponsa				S5	G5	2		April 29, August 8
Mallard	Anas platyrhynchos				S5	G5	4		April 29, May 8, May 28. Aug. 5, Sept. 25
Ring-necked Duck	Aythya collaris				S5	G5	3	✓	April 15
Bufflehead	Bucephala albeola				S4	G5			April 15
Common Merganser Killdeer	Mergus merganser		—		S5B,S5N	G5 G5	2	✓	April 15
Spotted Sandpiper	Charadrius vociferus Actitis macularius				S5B,S5N S5	G5 G5	-	✓	
Ring-billed Gull	Larus delawarensis		<u> </u>		S5B,S4N	G5 G5		✓	August 5
Barred Owl	Strix varia				S5	G5	2		April 29
Belted Kingfisher	Megaceryle alcyon				S4B	G5	3		April 15, April 29, August 5, September 29
Downy Woodpecker	Picoides pubescens				S5	G5	4		April 15, May 8. May 28
Northern Flicker	Colaptes auratus				S4B	G5	3	✓	April 15
Alder Flycatcher	Empidonax alnorum	1			S5B	G5	Ť	✓	May 28
Eastern Phoebe	Sayornis phoebe				S5B	G5	3		April 15, May 8. May 28
Great Crested Flycatcher	Myiarchus crinitus		Ī		S4B	G5	3		May 28
Eastern Kingbird	Tyrannus tyrannus				S4B	G5	3		May 8, may 28, august 5
Tree Swallow	Tachycineta bicolor				S4B	G5	3		may 8, august 5
Blue Jay	Cyanocitta cristata				S5	G5	4		April 29, May 28
American Crow	Corvus brachyrhynchos				S5B	G5	2		April 15, May 8, May 28
Black-capped Chickadee	Poecile atricapillus				S5	G5	4		April 15, April 29, May 8, May 28
White-breasted Nuthatch	Sitta carolinensis	1			S5	G5	3	✓ _	april 15

ABOUD & ASSOCIATES INC.

		0	COSEWIC	A	S-Rank	G-Rank	CVC (2010)	Wellington County (2008)	
		SARO	8 0	SARA	Ř	μ	Ş	/ell 00	
	SCIENTIFIC NAME	S	U U	Ś	<i></i> о́	U O	Ŭ	≤ © √	Date(s) observed (2015)
House Wren	Troglodytes aedon				S5B	G5	4		May 8, may 28
Golden-crowned Kinglet	Regulus satrapa				S5B	G5	2		April 15, April 29
Ruby-crowned Kinglet	Regulus calendula			_	S4B	G5	2		April 15, April 29
Hermit Thrush	Catharus guttatus				S5B	G5	2		May 28
American Robin	Turdus migratorius				S5B	G5	4		April 15, April 29, May 8, May 28
Cedar Waxwing	Bombycilla cedrorum				S5B	G5	3		May 28
Warbling Vireo	Vireo gilvus				S5B	G5	4		May 29
Red-eyed Vireo	Vireo olivaceus				S5B	G5	4		May 30
Nashville Warbler	Vermivora ruficapilla				S5B	G5	2		May 8
Yellow Warbler	Dendroica petechia				S5B	G5	4		May 8, May 25
Yellow-rumped Warbler	Dendroica coronata				S5B	G5	2		May 8
Black-and-white Warbler	Mniotilta varia				S5B	G5	3		May 8
American Redstart	Setophaga ruticilla				S5B	G5	3	✓	May 28
Northern Waterthrush	Seiurus noveboracensis				S5B	G5	3		May 28
Common Yellowthroat	Geothlypis trichas				S5B	G5	4		May 8, May 25
Northern Cardinal	Cardinalis cardinalis				S5	G5	4	✓	April 15, April 29, May 8, May 28
Rose-breasted Grosbeak	Pheucticus Iudovicianus				S4B	G5	3		May 8
Indigo Bunting	Passerina cyanea				S4B	G5			May 28
Chipping Sparrow	Spizella passerina				S5B	G5	4	✓	April 15, May 8, May 28
Song Sparrow	Melospiza melodia				S5B	G5	4		April 15, May 8, May 28
Swamp Sparrow	Melospiza georgiana				S5B	G5	4		April 29, May 8
White-throated Sparrow	Zonotrichia albicollis				S5B	G5	3		April 29, May 8, May 28
Red-winged Blackbird	Agelaius phoeniceus				S4	G5	4		April 15, April 29, May 8, May 28
Common Grackle	Quiscalus quiscula				S5B	G5	4		April 15, April 29, May 28
Baltimore Oriole	Icterus galbula				S4B	G5	3		May 8, May 28
American Goldfinch	Carduelis tristis				S5B	G5	4		April 15, April 29, May 8
		I		Ī	1				
MAMMALS				Ī					
Eastern Chipmunk	Tamias striatus			Ī	S5	G5	3		May 8
Red Squirrel	Tamiasciurus hudsonicus		1	Ī	S5	G5	3	✓	April 15, May 8
Beaver	Castor canadensis	Ī	1	1	S5	G5	3		Apri 29, May 8, May 14
Muskrat	Ondatra zibethicus	i i	İ –	1	S5	G5	3		April 8
American Mink	Mustela vison	İ	1	t –	S4	G5	2		May 14

APPENDIX 15. INCIDENTAL WILDLIFE LIST

Hillsburgh Dam Environmental Assessment, Natural Heritage - Existing Conditions

Legend:

SARO: Species at Risk Ontario COSEWIC: Committee on the Status of Endangered wildlife in Canada SARA: Species at Risk Act ESA: Endangered Species Act END: Endangered THR: Threatened SC: special Concern NAR: Not At Risk NL: Not listed DD: Data Deficient

Wellington County:

 $\boldsymbol{\vee}$: Significant Species

PIF:

 $\sqrt{}$: Priority Species

CVC Tiers:

1 - Species of Conservation Concern

- 2 Species of Interest
- 3 Species of Urban Interest
- 4 Secure Species
- 5 Non-native & Non-native Hybrid Species

Global Rank:

G1: Extremely rare globally
G1G2: Extremely rare to very rare globally
G2: Very rare globally
G2G3: Very rare to uncommon globally
G3: Rare to uncommon globally
G3G4: Rare to common globally
G4: Common globally
G4G5: Common to very common globally
G5: Very common globally; demonstrably secure
T: rank applies to a subspecies or variety

Provincial Rank:

S1: Critically Imperiled—Critically imperiled in the province S2: Imperiled—Imperiled in the province, very few populations S3: Vulnerable—Vulnerable in the province, relatively few populations S4: Apparently Secure—Uncommon but not rare S5: Secure—Common, widespread, and abundant in the province SX: Presumed extirpated SH: Possibly Extirpated (Historical) SNR: Unranked SU: Unrankable—Currently unrankable due to lack of information SNA: Not applicable—A conservation status rank is not applicable S#S#: Range Rank— indicates range of uncertainty about the status S#B- Breeding status rank S#N- Non Breeding status rank ?: Indicates uncertainty in the assigned rank

Hillsburgh Dam Environmental Assessment, Natural Heritage – Existing Conditions

#	SIGNIFICANT WILDLIFE HABITAT (SWH)	CANDIDATE SWH CRITERIA	CRITERIA FOR SWH CONFIRMATION	SWH PROTECTED AREA	SITE ASSESSMENT DETAILS	CANDIDATE SWH	FIELD STUDIES REQUIRED/ COMPLETED	CONFIRMED SWH
SEA	SONAL CONCENTRA	ATION AREAS OF ANIMALS						
1	Waterfowl stopover and Staging Areas (terrestrial)	 Fields with Sheet water in spring (incl. agricultural) 	 Mixed species aggregations of 100 or more individuals confirms SWH 	flooded field ecosite and 100-300m radius is the SWH	No Habitat matching Criteria identified in Study Area	No	None required.	No
2	Waterfowl Stopover and Staging (Aquatic)	 Ponds, marshes, lakes, bays, coastal inlets and watercourses and reservoirs SWTP & SWMP are not SWH 	 Aggregations of 100 or more listed species for 7 days (ie. >700 waterfowl use days) confirms SWH 	Aquatic ecosite and 100m radius is the SWH	Hillsburgh pond is of sufficient size, shallow depth, and abundant aquatic vegetation.	Yes	Identified by CVC as SWH through spring surveys	Yes
3	Shorebird Migratory stopover	 Shorelines of Lakes, rivers, wetlands, beaches, bars; seasonally flooded, muddy and un-vegetated shoreline habitat 	 3 or more listed species and >1000 shorebird use days, or >100 whimbrel, confirms SWH 	Shoreline ecosite and 100m radius is the SWH	No Habitat matching Criteria identified in Study Area, >5km from any Great Lake	No	Fall migration survey completed.	No
4	Raptor Wintering Area	 Combination of upland field and woodland habitat >20ha total (includes,>15ha upland field) least disturbed sites, idle, fallow or lightly grazed field/meadow best 	 1 or more Short-eared Owl, or, at least 10 individuals and 2 listed species for a minimum of 20 days, and 3 of 5 years, confirms SWH 	Ecosite communities (field and woodland) is the SWH	No Habitat matching Criteria identified in Study Area	No	None required	No
5	Bat Hibernacula	 Caves, mine shafts, underground foundations, karsts buildings are not SWH 	 All sites with confirmed hibernating bats, confirms SWH 	Ecosite and 200m radius is the SWH	No Habitat matching Criteria identified in Study Area	No	None required	No
6	Bat Maternity Colony	 All forested ecosites, FOD, FOC, FOM, SWD, SWM, SWC with >10/ha trees (>25cm DBH) in early stages of decay (class 1-3) buildings are not SWH 	 >10 Big Brown Bats, >20 Little Brown Myotis, >5 adult female Silver-haired Bats confirms SWH 	Entire woodland or forest stand ELC ecosite containing colony is the SWH	Forested ecosites present in Study area with trees >25cm DBH.	Yes	Studies to be completed pre- construction if tree removal/damage to occur.	unknown
7	Turtle Wintering Area	 Areas with permanent water deep enough not to freeze, with mud/soft substrates 	 5 over-wintering Midland Painted Turtles, 1 or more Northern Map Turtle or Snapping Turtle confirms SWH 	Mapped ELC ecosite, or deep pool element where turtles overwinter is the SWH	5 Candidate ponds identified in study area.	Yes	Basking surveys complete	Yes
8	Reptile Hibernaculum	 Sites below the frost line; rock barren, crevice and cave, talus, alvar, rock piles, slopes, stone fences and crumbling foundations 	 Presence of hibernacula with minimum 5 individuals of 1 snake species/ individuals of 2 or more species confirms SWH Congregations of a minimum of 5 snakes of 1 species/ individuals of 2 or more snake species, near potential hibernacula on sunny warm days in spring and fall confirms SWH 	Feature hibernacula is located in, and 30m radius is the SWH	2 candidate hibernacula features identified in study are (rock piles in meadow openings-unknown depth)	yes	Snake basking transect surveys complete	No

Aboud & associates inc.

Hillsburgh Dam Environmental Assessment, Natural Heritage – Existing Conditions

"	0				Vatural Heritage – Existi					0.01/5/01/50
#	SIGNIFICANT WILDLIFE HABITAT (SWH)	CAN	IDIDATE SWH CRITERIA	CRII	ERIA FOR SWH CONFIRMATION	SWH PROTECTED AREA	SITE ASSESSMENT DETAILS	CANDIDATE SWH	FIELD STUDIES REQUIRED/ COMPLETED	CONFIRMED SWH
9	Colonially- nesting Bird Habitat (cliff/bank)	-	Eroding banks, sandy hills, borrow pits, steep slopes, sand piles, cliff faces, bridge abutments, silos, barns	-	1 or more nest sites with 8 or more Cliff Swallow or, 50 Bank Swallow and Rough-winged Swallow pairs during the breeding season.	Colony and 50m radius around peripheral nest is the SWH	No Habitat matching Criteria identified in Study Area	No	None required	No
10	Colonially- nesting Bird Habitat (Tree/shrub)	-	Live or dead standing trees in wetlands, lakes, islands and peninsulas, occasionally shrubby and emergent vegetation	-	5 or more active Great-blue Heron or other listed species nests	Edge of the colony plus minimum 300m radius, or extent of the forest ecosite, or entire island <15ha is the SWH	No Habitat matching Criteria identified in Study Area	No	None required	No
11	Colonially- nesting Bird Habitat (Ground)	-	Rocky islands or peninsulas within a lake or large river(natural or artificial)	-	>25 active nests of Herring Gull, Ring-billed Gull, >5 active nests of Common Tern, or >2 active nests of Caspian Tern. 5 or more pairs of Brewer's Blackbird. Any active nesting colony of Little Gull, Great Black-backed Gull.	Edge of colony plus min 150m radius or extent of ELC ecosite, or island <3ha is the SWH	No Habitat matching Criteria identified in Study Area	No	None required	No
12	Migratory Butterfly Stopover Area	-	At least 10ha, with undisturbed field/meadow and forest or woodland edge habitat present, within 5km of Lake Ontario.	-	Presence of Monarch use days >5000 or >3000 where there is a mix of Monarch with Painted Ladies or White Admirals	Field/meadow and forest/woodland is the SWH	No Habitat matching Criteria identified in Study Area, >5km from any Great Lake	No	Fall migration survey completed.	No
13	Land bird Migratory Stopover Area	-	Woodlots >5ha in size within 5km of lake Ontario	-	Use by >200 birds/day, with >35species, with at least 10sp recorded on 5 different survey dates.	Woodlot is the SWH	No Habitat matching Criteria identified in Study Area, >5km from any Great Lake	No	Fall migration survey completed.	No
14	Deer Yarding Areas	-	ELC communities providing Thermal cover (FOM,FOC,SWM,SWC, CUP2, CUP3, FOD3, CUT)	-	Deer yards are managed by MNRF, available through district offices and LIO.	LIO mapping	No Deer yarding areas identified on LIO Mapping	No	None required.	No
15	Deer Winter Congregation Areas	-	All forested ecosites >100ha Conifer Plantations <50ha may be used	-	Deer management is the responsibility of the MNRF Contact MNRF or LIO for known deer winter areas.	LIO mapping	No Deer Winter Congregation areas identified on LIO Mapping	No	None required.	No
RAR	E VEGETATION COM	MUN								
16	Cliffs & Talus Slopes	-	Cliff: vertical to near vertical bedrock >3m in height Talus slope: rock rubble at the base of a cliff made up of coarse rocky debris	-	Confirm any ELC Vegetation Type for Cliffs or Talus Slopes	Area of ELC sites: TAO, TAS, TAT, CLO, CLS, CLT	No Habitat matching Criteria identified in Study Area	No	None required	No
17	Sand Barren	-	Exposed, sparsely vegetated & caused by lack of moisture, fires and erosion.	-	area >0.5ha in size Confirm any ELC vegetation Type for Sand Barren Not dominated by exotic or introduced species	Area of ELC ecosite is the SWH	No Habitat matching Criteria identified in Study Area	No	None required	No

Hillsburgh Dam Environmental Assessment, Natural Heritage – Existing Conditions

#	SIGNIFICANT WILDLIFE HABITAT (SWH)	CANDIDATE SWH CRITERIA	CRITERIA FOR SWH CONFIRMATION	SWH PROTECTED AREA	SITE ASSESSMENT DETAILS	CANDIDATE SWH	FIELD STUDIES REQUIRED/ COMPLETED	CONFIRMED SWH
18	Alvar	 Level, mostly un-fractured calcareous bedrock feature, overlain by a thin veneer or soil 	 area >0.5ha in size Field Studies that identify four of the five Alvar Indicator Species Not dominated by exotic or introduced species 	Area of ELC ecosite is the SWH	No Habitat matching Criteria identified in Study Area	No	None required	No
19	Old Growth Forest	 >30ha forests with at least 10ha interior habitat and multi-layered canopy 	Dominant Tree Species >140 years old No recognizable signs forestry practices (old stumps)	Area of ELC ecosite is the SWH	No Habitat matching Criteria identified in Study Area	No	None required	No
20	Savannah	 Tall Grass Prairie Habitat with 25%-60% Tree cover Remnant sites such as Railway Right of ways are not SWH 	 No minimum size, and must be restored to a natural state. Confirm one or more savannah indicator species Not dominated by exotic or introduced species 	Area of ELC ecosite is the SWH	No Habitat matching Criteria identified in Study Area	No	None required	No
21	Tallgrass Prairie	 Ground cover dominated by prairie grasses with <25% tree cover Remnant sites such as Railway Right of ways are not SWH 	 No minimum size, and must be restored to a natural state. Confirm one or more prairie indicator species Not dominated by exotic or introduced species 	Area of ELC ecosite is the SWH	No Habitat matching Criteria identified in Study Area	No	None required	No
22	Other Rare Vegetation Communities	 All Provincially Rare S1, S2, S3 Vegetation Communities (Appendix M of SWHTG) 	 Field Studies Confirming ELC vegetation type is a rare vegetation community 	Area of ELC ecosite is the SWH	No Habitat matching Criteria identified in Study Area	No	None required	No
SPE	CIALIZED HABITAT F		•		-			
23	Waterfowl Nesting Areas	 Upland Habitat, adjacent to Wetland ELC ecosites (except SWC, SWM) Extends 120m from a wetland (>0.5ha) and any small wetlands (<0.5ha) within a cluster of at least 3 Upland area at least 120m wide 	 Presence of 3 or more nesting pairs of listed species excluding Mallards Presence of 10 or more nesting pairs including mallards Any active Black Duck nesting site 	SWH may be greater than or less than 120m from the wetland edge and must provide enough habitat for waterfowl to successfully nest	Treed communities adjacent all wetlands/ponds, may provide nesting habitat	Yes	Breeding bird surveys completed	No
24	Bald Eagle or Osprey Nesting, Foraging and Perching Habitat	 Forest communities, adjacent to riparian areas Osprey nests usually at top of tree Bald Eagle nest usually in super canopy tree in a notch within canopy 	 Studies confirm one or more active Bald Eagle or Osprey nest Alternate nests included in SWH Nests must be used annually, if found inactive, must be known inactive at least 3 years, or suspected unused for 5 years if unknown 	Active nest plus 300m for Osprey Active nest plus 400-800m for Bald Eagle	Forested Habitat adjacent Hillsburgh pond may provide nesting opportunities for Osprey	Yes	Breeding Bird Surveys completed	No

ABOUD & ASSOCIATES INC.

Hillsburgh Dam Environmental Assessment, Natural Heritage – Existing Conditions

#	SIGNIFICANT WILDLIFE HABITAT (SWH)	CANDIDATE SWH CRITERIA	CRITERIA FOR SWH CONFIRMATION	SWH PROTECTED AREA	SITE ASSESSMENT DETAILS	CANDIDATE SWH	FIELD STUDIES REQUIRED/ COMPLETED	CONFIRMED SWH
25	Woodland Raptor Nesting Habitat	 Forested communities, forested swamp communities and cultural Plantations Natural Forested/conifer plantations >30ha with >10ha interior habitat (200m buffer) 	 One or more active nest of listed species 	Nest protection radius: - Red-Shouldered Hawk, Northern Goshawk 400m - Barred Owl 200m - Broad-winged Hawk, Coopers Hawk 100m - Sharp-shinned Hawk 50	Forested habitat may provide opportunities for woodland raptor nesting	Yes	No stick nests observed during SWH or Winter Wildlife Surveys	No
26	Turtle Nesting Areas	 Exposed Mineral soil (sand or gravel) adjacent (<100m) or within shallow marsh, shallow submerged, shallow floating, bog or fen communities Located in open sunny areas, away from roads and less prone to predation Municipal and provincial road shoulders are not SWH. 	 Confirm 5 or more nesting Midland Painted Turtles, 1 or more nesting Northern Map Turtle or Snapping Turtle 	Area or sites with exposed mineral soils, plus a radius of 30-100m around the nesting area is the SWH.	No Habitat matching Criteria identified in Study Area	No	None required	No
27	Seeps and Springs	 Areas where ground water comes to the surface Any forested area within the headwaters of a stream or river system 	 Confirm site with 2 or more seeps/springs. - 	Area of ELC forest ecosite containing seep/spring is the SWH	Seeps and springs possible within forested and wetland communities	Yes	ELC complete	No seeps or springs identified
28	Amphibian Breeding Habitat (woodland)	 Breeding pools within woodlands Wetland, pond or pool >500m² within or adjacent (<120m) to a woodland. Woodlands with permanent ponds, or those with water until mid-July more likely to be used. 	 Confirm Breeding population of 1 or more listed newt/salamander species, 2 or more of the listed frog species with at least 20 individuals (adults or egg masses), 2 or more of the listed frog species with call code levels of 3. Wetland adjacent to woodlands includes travel corridor connecting features as SWH. 	Wetland area, plus 230m radius of woodland is the SWH.	Candidate habitat throughout study area, shallow ponds, woodland pools, marshes	yes	Amphibian Surveys complete	None confirmed as significant
29	Amphibian Breeding Habitat (Wetland)	 Swamp, marsh, fen, bog, open aquatic and shallow aquatic ELC communities. Typically isolated from woodlands (>120m), but includes larger wetlands with primarily aquatic species (bull frogs) that are adjacent to woodlands. Wetlands >500m2 Presence of shrubs & logs Bullfrogs require permanent water bodies and abundant emergent vegetation. 	 Confirm Breeding populations of 1 or more listed newt/salamander species, or 2 or more listed frog/toad species with at least 20 individuals (adults or egg masses), or 2 or more listed frog/toad species with a call code level of 3 Or any wetland with confirmed breeding Bullfrog. 	ELC ecosite and shoreline is the SWH Movement corridors (SWH) must be considered if this habitat is significant	No wetlands >120m from woodland habitat	No	Amphibian surveys complete	No

Hillsburgh Dam Environmental Assessment, Natural Heritage – Existing Conditions

	0		circ, Natural Incintage – Existi					
#	SIGNIFICANT WILDLIFE HABITAT (SWH)	CANDIDATE SWH CRITERIA	CRITERIA FOR SWH CONFIRMATION	SWH PROTECTED AREA	SITE ASSESSMENT DETAILS	CANDIDATE SWH	FIELD STUDIES REQUIRED/ COMPLETED	CONFIRMED SWH
30	Area-sensitive Breeding Bird Habitat	 Habitats where interior breeding birds are breeding Large mature(>60 years) forest stands or woodlots >30ha Forest and swamp ELC communities Interior habitat at least 200m from edge 	 Presence of nesting or breeding pairs of 3 or more of the listed species Any site with Cerulean Warbler or Canada Warbler is SWH 	ELC ecosite is the SWH	No interior habitat identified in study area	no	None required	No
HAB	ITATS OF SPECIES (OF CONSERVATION CONCERN CONS	SIDERED SWH					
31	Marsh Bird Breeding Habitat	 Some meadow marsh, shallows submerged, shallow floating, mixed shallow floating, fen and bog communities (see SWH Ecoregion guide for specifics) Nesting occurs in wetlands, all wetland habitat is considered with presence of shallow water with emergent aquatic vegetation Green heron at edge of water sheltered by shrubs and trees. 	 5 or more nesting pairs of Sedge Wren or Marsh Wren, 1 pair of Sandhill Crane, or breeding by any combination of 5 or more of the listed species Any Wetland with 1 or more breeding pair Black Tern, Trumpeter Swan, Green Heron or Yellow Rail 	ELC ecosite is the SWH	Candidate habitat identified in study area.	Yes	Marsh Breeding Bird Surveys complete	No
32	Open Country Bird Breeding Habitat	 Grassland area >30ha (natural & cultural fields and meadows) Grasslands not class 1 or 2 agriculture (no row crops or intensive hay or livestock pasturing) Mature hayfields or pasture at least 5 years old 	 Nesting or breeding of 2 or more of the listed species Field with 1 or more Short-eared Owls 	Contiguous ELC ecosite is the SWH	No Habitat matching Criteria identified in Study Area	No	None required	No
33	Shrub/Early Successional Bird Breeding Habitat	 Cultural thickets, savannah and woodland habitat Large field area succeeding to shrub and thicket habitat >10ha in size Patches of shrub ecosite may be complexed into larger old field ecosites for some species 	 Confirm nesting or breeding of 1 of the listed indicator species and at least 2 of the common species Habitat with Yellow-breasted Chat Or Golden-winged Warbler is SWH 	SWH is contiguous ELC ecosite field/thicket area	No Habitat matching Criteria identified in Study Area	No	None required	No

Aboud & associates inc.

Hillsburgh Dam Environmental Assessment, Natural Heritage – Existing Conditions

#	SIGNIFICANT WILDLIFE HABITAT (SWH)	CANDIDATE SWH CRITERIA	CRITERIA FOR SWH CONFIRMATION	SWH PROTECTED AREA	SITE ASSESSMENT DETAILS	CANDIDATE SWH	FIELD STUDIES REQUIRED/ COMPLETED	CONFIRMED SWH
34	Terrestrial Crayfish	 Meadow marsh, shallow marsh, swamp thicket, deciduous swamp and mixed swamp communities Cultural meadow with inclusions of meadow marsh may be used Wet edges of marshes and wet meadows should be surveyed for crayfish 	 Presence of 1 or more individuals of listed species or their chimneys in suitable habitat 	Area of ELC ecosite or Eco element area of meadow marsh or swamp within the larger ecosite area is the SWH	Candidate habitat identified in study area.	Yes	Incidental during ELC	No
35	Special Concern & Rare Wildlife Species	 All Special concern and Provincially Rare plant and animal species Where an element occurrence is identified within a 1 or 10km grid for a species listed, linking candidate habitat on the site must be completed to ELC ecosites 	 Assessment/inventory of site for identified special concern or rare species completed during time of year when species is present or easily identifiable Habitat must be easily mapped and cover an important life stage component (specific nesting habitat, foraging) 	SWH is the finest ELC scale that protects the form and function of the habitat	NHIC identified Carey's Sedge (<i>Carex careyana</i> S2) and Rugulose Grapefern (<i>Sceptridium rugulosum</i> S2) as occurring in the 1km square containing the study area.Hsbitat occurs in study area	Yes	Three season Botanical Survey	No
ANIN 36	MAL MOVEMENT CO Amphibian Movement Corridor	 Corridors may occur in all ecosites associated with water Presence of significant amphibian breeding indicates the requirement for identifying corridors Movement corridors between breeding habitat and summer habitat 	 Corridors typically include areas with native vegetation, with several layers of vegetation, unbroken by roads, waterways or waterbodies are most significant At least 15 of vegetation on both sides of the waterway or up to 200m wide of woodland habitat with gaps of <20m Shorter corridors are more significant than longer, but amphibians must be able to get to and from their summer breeding habitat 	Corridor is the SWH	No Habitat matching Criteria identified in Study Area	No	None required	No
37	Deer Movement Corridor	 May occur in all forested ecosites Determined when deer wintering habitat is confirmed as SWH 	 Corridors at least 200m wide with gaps <20m leading to wintering habitat Unbroken by roads and residential areas Shorter corridors are more significant 	Corridor is the SWH	No Habitat matching Criteria identified in Study Area	No	None required	No

ABOUD & ASSOCIATES INC.

COMMON NAME	SCIENTIFIC NAME	SARO	COSEWIC	SARA	S-RANK	BACKGROUND SOURCE	HABITAT REQUIREMENTS	SUITABLE HABITAT IN STUDY AREA	OBSERVED BY A & A
BUTTERFLIES					1			•	
Monarch	Danaus plexippus	SC	SC	SC	S2N,S4B	OBAO (2012)	Primarily found where milkweed and wildflowers exist; including abandoned farmland, along roadsides, and other open spaces (MNRF 2015).	Yes, large area of abundant milkweed occurs in the MEMM3 community	None observed during any surveys
West Virginia White	Pieris virginiensis	leaves of the two-leaved toothwort (Cardamine diphylla), which is a small,		woodlands. The larvae feed primarily on the leaves of the two-leaved toothwort (Cardamine diphylla), which is a small, spring-blooming plant of the forest floor	Yes, host plant occurs in study area, in very small numbers in the SWMCM1-2 and SWMO1-1 communities	None observed during spring vegetation surveys			
BIRDS									
Bald Eagle	Haliaeetus leucocephalus	SC	NAR		S2N,S4B	CVC (2013) ¹	Prefer deciduous and mixed-deciduous forest habitat close to large water bodies, including lakes and rivers; Nests in super canopy trees including Pine (MNRF 2015).	No, trees of sufficient size and species do not occur in study area. No suitably sized rivers or lakes in study area.	Observed during Winter Wildlife Survey
Bank Swallow	Riparia riparia	THR	THR		S4B	OBBA (2005)	Nesting occurs in a variety of natural and anthropogenic vertical banks, which often erode and change over time, including aggregate pits and the shores of large lakes and rivers	No, banks or aggregate pits of sufficient size, depth or texture, were not observed in the study area.	None observed during Breeding Bird season or incidentally
Barn Swallow	Hirundo rustica	THR	THR		S4B	OBBA (2005)	Farmland; lake/river shorelines; wooded clearings; urban populated areas; rocky cliffs; and wetlands. Nest inside or outside buildings; under bridges and in road culverts; on rock faces and in caves (MNRF 2015).	Yes, Bridges and dams in study area may provide suitable nesting habitat.	None observed during Breeding Bird season or incidentally
Bobolink	Dolichonyx oryzivorus	THR	THR		S4B	OBBA (2005)	Prefers open grasslands and hay fields. In migration and in winter uses freshwater marshes and grasslands (MNRF 2015).	No habitat of sufficient size or species composition occurs in the study area, habitat occurs outside the study area in agricultural fields	One male observed incidentally, not singing, flushed from MEMM3 community
Canada Warbler	Wilsonia canadensis	SC	THR	THR	S4B	OBBA (2005)	Prefers wet coniferous, deciduous and mixed forest types, with a dense shrub layer. Nests on the ground, on logs or hummocks, and uses dense shrub layer to conceal the nest (MNRF 2015).	Possible, areas of wet mixed coniferous occur throughout study area (SWCM3-2, SWCM1-2), no site access provided to suitable communities for further habitat suitability examination.	None observed during Breeding Bird season or incidentally
Canvasback	Aythya valisineria				S1B,S4N	CVC (2013) ¹	Canvasbacks are not known to breed in Ontario, occurring during spring and fall migration (MNRF 2015).	None	None observed incidentally

COMMON NAME	SCIENTIFIC NAME	SARO	COSEWIC	SARA	S-RANK	BACKGROUND SOURCE	HABITAT REQUIREMENTS	SUITABLE HABITAT IN STUDY AREA	OBSERVED BY A & A
Eastern Meadowlark	Sturnella magna	THR	THR		S4B	MNRF (Wellington List)	Generally prefers grassy pastures, meadows and hay fields. Nests are always on the ground and usually hidden in or under grass clumps (MNRF 2015).	No habitat of sufficient size or species composition occurs in the study area, habitat occurs outside the study area in agricultural fields	Observed singing outside study area during breeding bird surveys
Eastern Wood- pewee	Contopus virens	SC	SC		S4B	OBBA (2005)	Associated with deciduous and mixed forests. Within mature and intermediate age stands, prefers areas with little understory vegetation as well as forest clearings and edges (MNRF 2015).	Yes, Deciduous forest communities (FODM5-8) within study area provide breeding habitat for Eastern wood-pewee	Yes, at least two territories observed during Breeding Bird Surveys
Grasshopper Sparrow	Ammodramus savannarum		SC		S4B	OBBA (2005)	Prefers moderately open grasslands and prairies with patchy bare ground; avoids grasslands with extensive shrub cover (MNRF 2015).	No, grassland habitat in the study area has a high thatch cover, and abundant woody shrubs and forb cover.	None observed during Breeding Bird season or incidentally
Great Egret	Ardea alba				S2B	CVC (2013) ¹	Nests in woody vegetation, shrubs and trees; over water or on islands. Colony nester often mixed species aggregations, in lakes, ponds, marshes and estuaries (MNRF 2015).	Habitat observed is of insufficient size and low quality, no stick nests of wading birds observed in study area.	Observed incidentally during spring and fall migration period
Long-tailed Duck	Clangula hyemalis				S3B	CVC (2013) ¹	Breeds in subarctic and arctic wetlands. Nests adjacent to freshwater. Winters in coastal marine water and large freshwater lakes (MNRF 2015).	None	None observed incidentally
Wood Thrush	Hylocichla mustelina	SC	THR		S4B	OBBA (2005)	Nests in second-growth and mature deciduous and mixed forests, with saplings and well-developed understory layers. Prefers large forest mosaics, occasionally nests in small forest fragments (MNRF 2015).	Habitat observed is of insufficient size and low quality, with very low shrub cover	None observed during Breeding Bird season or incidentally
FISH			•	•	•		3 2		•
Black Redhorse	Moxostoma duquesnei	THR	THR		S2	MNRF (Wellington List)	Generally lives in moderately sized rivers and streams, with generally moderate to fast currents (MNRF 2015).	No probable habitat in the study area, not known to occur in the Credit River.	None observed within the Study Area or identified through background review.
Redside Dace	Clinostomus elongatus	ngatus END END		1D		MNRF (Wellington List)	Generally found in pools and slow-moving areas of small headwater streams with a moderate to high gradients (MNRF 2015).	Possible habitat in shaded areas of streams throughout study area.	None observed within the Study Area or identified through background review.

COMMON NAME	SCIENTIFIC NAME	SARO	COSEWIC	SARA	S-RANK	BACKGROUND SOURCE	HABITAT REQUIREMENTS	SUITABLE HABITAT IN STUDY AREA	OBSERVED BY A & A
Silver Shiner	Notropis photogenis	THR	ТН	SC	S2S3	MNRF (Wellington List)	Generally prefer moderate to large, deep, relatively clear streams with swift currents, and moderate to high gradients (MNRF 2015).	No probable habitat in the study area, not known to occur in the Credit River.	None observed within the Study Area or identified through background review.
MAMMALS				•		•	·	•	•
Eastern Small- footed Myotis	Myotis leibii	END	END	END		MNRF (Wellington list)	Overwinter in caves and mines that remain above 0 Maternity Roost primarily under loose rocks on exposed rock outcrops, crevices and cliffs, and occasionally in buildings, under bridges and highway overpasses and under tree bark (MNRF 2015).	Possible habitat in study area, FODM5-8 and FODM6 communities includes trees of sufficient size	None observed, no studies completed
Little Brown Myotis	Myotis lucifugus	END	END	END	S4	OMA (1994)	Overwinter in caves and mines that remain above 0 Maternal Roosts Often associated with buildings (attics, barns etc.). Occasionally found in trees (25-44 cm dbh) (MNRF 2015).	Possible habitat in study area, FODM5-8 and FODM6 communities includes trees of sufficient size	bats observed flying towards pond during evening bat banding observation conducted by MNRF
Northern Myotis	Myotis septentrionalis	END	END	END		MNRF (Wellington list)	Overwinter in caves and mines that remain above 0 Maternal Roosts: Often associated with cavities of large diameter trees (25-44 cm dbh). Occasionally found in structures (attics, barns etc.) (MNRF 2015).	Possible habitat in study area, FODM5-8 and FODM6 communities includes trees of sufficient size	None observed, no studies completed
MUSSELS									
Rainbow Mussel	Villosa iris	THR	END	END	S2S3	MNRF (Wellington List)	Abundant in shallow, well- oxygenated reaches of small- to medium-sized rivers and sometimes lakes, on substrates of cobble, gravel, sand and occasionally mud (MNRF 2015).	Possible habitat within streams throughout study area. Not known to occur in the Credit River Watershed.	None observed within the Study Area or identified through background review.
Wavy-rayed lampmussel	Lampsilis fasciola	THR	SC	SC	S1	MNRF (Wellington List)	Generally inhabit clear rivers and streams of a variety of sizes, where the water flow is steady and the substrate is stable (MNRF 2015).	Possible habitat within streams throughout study area. Not known to occur in the Credit River Watershed.	None observed within the Study Area or identified through background review.

COMMON NAME	SCIENTIFIC NAME	SARO	COSEWIC	SARA	S-RANK	BACKGROUND SOURCE	HABITAT REQUIREMENTS	SUITABLE HABITAT IN STUDY AREA	OBSERVED BY A & A
REPTILES		•	•		•				
Snapping Turtle	Chelydra serpentina	SC	SC	SC	S3	ORAA (2014) Generally found in shallow waters with so mud and leaf litter. Nesting occurs on gravely or sandy areas along streams. Snapping Turtles often use man-made structures for nest sites, including roads (especially gravel shoulders), dams and aggregate pits (MNRF 2015). MNRF Found in freshwater lakes, permanent or		All ponds in study area provide ideal habitat for snapping turtle, including MASO1-1, SAS1, and SAM1-8 communities	Yes, observed during turtle surveys, and incidentally.
Blanding's Turtle	Emydonidea blandingii	THR	THR	THR	S3	(Wellington List)	Found in freshwater lakes, permanent or temporary pools, slow-flowing streams, marshes and swamps. Preference for shallow water that is rich in nutrients, organic soil and dense vegetation (MNRF 2015).	Ponds, wetlands and streams in study area may provide habitat for Blanding's turtle.	None observed within study area during turtle surveys or incidentally.
Milksnake	Lampropeltis triangulum	SC	SC	SC	S3	MNRF (Wellington List)	Found in rural areas, frequently reported in and around buildings, especially old structures. Proximity to water, basking and nesting sites, and overwintering habitat is required (MNRF 2015).	May occur along farm field edges, and near older buildings in study area. Building foundations may provide overwintering habitat.	None observed within study area during snake surveys or incidentally.
Eastern Ribbonsnake	Thamnophis sauritus	SC	SC	SC	S3	MNRF (Wellington List)	Found along the edges of shallow ponds, streams, marshes, swamps, or bogs bordered by dense vegetation that provides cover (MNRF 2015).	Meadow marshes, and edges of ponds and streams may provide habitat,	None observed within study area during snake surveys or incidentally.
VASCULAR PLA	NTS								mondomany.
American Chestnut	Castanea dentata	END	END	END	S2	MNRF (Wellington List)	Deciduous forest communities; this tree prefers arid forests with acid and sandy soils (MNRF 2015).	Deciduous forests of FODM5-8 and FOCM6 provide potential habitat for American Chestnut.	None observed during Botanical Survey.
American Ginseng	Panax quinquefolius	END	END	END	S2	MNRF (Wellington List)	Rich, moist, undisturbed and relatively mature deciduous woods in areas of neutral soil (such as over limestone or marble bedrock) (MNRF 2015).	Deciduous forests of FODM5-8 provide potential habitat for American Ginseng.	None observed during Botanical Survey.
Butternut	Juglans cinerea	END	END	END	S3?	MNRF (Wellington List)	Rich, moist, and well-drained soils often found along streams. May also occur on well-drained gravel sites, especially those made up of limestone. Seldom found on dry, rocky and sterile soils. In Ontario, the Butternut generally grows alone or in small groups in deciduous forests as well as in hedgerows (MNRF 2015).	Habitat present along mineral soil edge of stream communities SWMO3-3 and FODM7- 7, as well as within communities SWDM2-1 and FODM8-1.	None observed during Botanical Survey.

COMMON NAME	SCIENTIFIC NAME	SARO	COSEWIC	SARA	S-RANK	BACKGROUND SOURCE	HABITAT REQUIREMENTS	SUITABLE HABITAT IN STUDY AREA	OBSERVED BY A & A
Hill's Pondweed	Potamogeton hillii	SC	SC		S2	MNRF (Wellington List)	Generally grows in clear, cold ponds and slow- moving streams where the water is alkaline (MNRF 2015).	All ponds in study area provide possible habitat, including SAS1, and SAM1-8, although temperature are likely too warm.	None observed during Botanical Survey.
Carey's Sedge	Carex careyana				S2	NHIC	Grows in dry to moist rich deciduous upland forests (NatureServe 2015).	Deciduous forests of FODM5-8 and FOCM6 provide potential habitat.	None observed during Botanical Survey.
Rugulose Grapefern	Sceptridium rugulosum				S2	NHIC	Grows in sandy to silty soil in open fields, young successional forests or at the edge of forests (Wagner and Wagner 1982).	The edge of deciduous forests of FODM5-8 and FOCM6 provide potential habitat.	None observed during Botanical Survey.

1-observed outside the breeding season

References:

MNRF, 2015. Wellington County Upper Tier Species at Risk. Ministry of Natural Resources and Forestry. Provided February, 2015.

- Mccrimmon, Jr., Donald A., John C. Ogden and G. Thomas Bancroft. 2011. Great Egret (*Ardeaalba*), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/570
- NatureServe, 2015. Carex careyana Torr. Ex Dewey. NatureServe Explore. An Online Encyclopedia of Life. Available at: http://explorer.natureserve.org/servlet/NatureServe?searchName=CAREX+CAREYANA
- Vickery, Peter D. 1996. Grasshopper Sparrow (*Ammodramus savannarum*), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online: <u>http://bna.birds.cornell.edu/bna/species/239</u>
- Robertson, Gregory J. and Jean-Pierre L. Savard. 2002. Long-tailed Duck (*Clangula hyemalis*), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online: <u>http://bna.birds.cornell.edu/bna/species/651</u>
- Wagner, W. H. and F. S. Wagner. 1982. Botrychium rugulosum (Ophioglossaceae), a newly recognized species of evergreen grapefern in the Great Lakes Area of North America. Contributions from the University of Michigan Herbarium.

APPENDIX 18. AQUATIC HABITAT ASSESMENT Hillsburgh Dam Environmental Assessment, Natural Heritage - Existing Conditions

F ' O ''		DESCRIPTION
Fish Community Classification ¹ :	Cold Water	The stream reach runs through a White Cedar Conifer Mineral Coniferous
		Swamp and has a natural meander pattern with areas of flat water, gentle runs, and small riffles. The substrate is mostly sand with a lesser component of fines
Mean Channel Width ² (m):	2m	and small amounts of gravel, cobble, and boulders. The instream cover consists
		of aquatic vegetation and woody debris, but is predominantly open. The stream
Mean Channel Depth ³ (m):	0.7m	bank is mostly stable and vegetated, with some minor areas of undercut bank o
Mean Channel Depth (III).	0.711	bare soil. Small fish of approximately 7cm were seen within this stream segmen
		on two occasions, species unknown. Minor log jams were observed.
Mean Water Depth ⁴ (m):	0.4m	FISH SPECIES
Stream Shading %:	90%	Brook Trout, Central Mudminnow, White Sucker, Creek Chub, Brook Sticklebac Mottled Sculpin, Slimy Sculpin,
EGMENT 2		DESCRIPTION
Fish Community		The stream reach runs through a Mixed Willow Organic Thicket Swamp Type in
Classification ¹ :	Cold Water	a braided flow pattern, with a poorly defined channel throughout much of the
Classification .		segment length. The substrate is mostly fines (silt and organic) with minor
		components of sand, gravel, cobble and boulders. The flow pattern is flat with
Mean Channel Width ² (m):	Variable	areas of deeper pools. In stream cover is high, consisting of emergent
		vegetation, submergent vegetation, woody debris and algae. There are minor
		areas of channel hardening at the outflow into the Hillsburgh Pond. There are
		also potential barriers to fish passage at the outflow into the Hillsburgh Pond.
Mean Channel Depth ³ (m):	Variable	Barriers consist of a presumed fish gate that is likely intended to keep common
		carp out of the upstream reach, log jams and poor culvert design could also
		make passage difficult for non-jumping fish.
Mean Water Depth ⁴ (m):	0.5m	FISH SPECIES
		Cyprinid sp., Rock Bass, Large Mouth Bass, Brook Trout, Slimy Sculpin, Centra
Stream Shading %:	60%	Mudminnow, White Sucker, Creek Chub, Brook Stickleback, Bluntnose Minnow
		Pumpkinseed, Round Goby,
EGMENT 3		DESCRIPTION
Fish Community	Warm Water	This segment is the open water community of the Hillsburgh Pond. The Pond is
Classification ¹ :	Walli Waler	fed by two upstream tributaries and flows out at the Hillsburgh dam, under the
Mean Channel Width ² (m):	Open Water	Station Street bridge. The substrate composition of the pond is unknown. A
	•	 variety of emergent, submergent and floating plants are present within the
Mean Channel Depth ³ (m):	Unknown	segment, particularly around the edges of the pond.
Mean Water Depth ⁴ (m):	Unknown	FISH SPECIES
Stream Shading %:	Unknown 5%	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby.
Stream Shading %:		FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION
Stream Shading %: EGMENT 4 Fish Community	5%	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous
Stream Shading %:		FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the
Stream Shading %: EGMENT 4 Fish Community Classification ¹ :	5% Cold Water	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a
Stream Shading %: EGMENT 4 Fish Community	5%	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrate
Stream Shading %: EGMENT 4 Fish Community Classification ¹ :	5% Cold Water	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrate is a mixture of primarily sand, cobble and boulders, with a lesser component of
Stream Shading %: EGMENT 4 Fish Community Classification ¹ :	5% Cold Water	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substratis a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover
Stream Shading %: EGMENT 4 Fish Community Classification ¹ :	5% Cold Water	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substratis a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank
Stream Shading %: EGMENT 4 Fish Community Classification ¹ : Mean Channel Width ² (m):	5% Cold Water	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrat is a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank is mostly stable and vegetated, with some areas of erosion evident. A single 8cd
Stream Shading %: EGMENT 4 Fish Community Classification ¹ :	5% Cold Water 2.5m	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrat is a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank is mostly stable and vegetated, with some areas of erosion evident. A single 8cc fish of unknown species was observed in the segment. There are numerous
Stream Shading %: EGMENT 4 Fish Community Classification ¹ : Mean Channel Width ² (m):	5% Cold Water 2.5m	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrat is a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank is mostly stable and vegetated, with some areas of erosion evident. A single 8ct fish of unknown species was observed in the segment. There are numerous culverts and stream crossings within the segment, but none appear to be barrie
Stream Shading %: EGMENT 4 Fish Community Classification ¹ : Mean Channel Width ² (m): Mean Channel Depth ³ (m):	5% Cold Water 2.5m 0.75m	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrat is a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank is mostly stable and vegetated, with some areas of erosion evident. A single 8ct fish of unknown species was observed in the segment. There are numerous culverts and stream crossings within the segment, but none appear to be barrie to fish passage. CVC has confirmed spawning Brook Trout within this segment
Stream Shading %: EGMENT 4 Fish Community Classification ¹ : Mean Channel Width ² (m):	5% Cold Water 2.5m	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrate is a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank is mostly stable and vegetated, with some areas of erosion evident. A single 8ct fish of unknown species was observed in the segment. There are numerous culverts and stream crossings within the segment, but none appear to be barrie to fish passage. CVC has confirmed spawning Brook Trout within this segment FISH SPECIES
Stream Shading %: EGMENT 4 Fish Community Classification ¹ : Mean Channel Width ² (m): Mean Channel Depth ³ (m): Mean Water Depth ⁴ (m):	5% Cold Water 2.5m 0.75m 0.4m	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrate is a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank is mostly stable and vegetated, with some areas of erosion evident. A single 8cr fish of unknown species was observed in the segment. There are numerous culverts and stream crossings within the segment, but none appear to be barrie to fish passage. CVC has confirmed spawning Brook Trout within this segment FISH SPECIES Brook Trout, Brown Trout, Creek Chub, White Sucker, Eastern Blacknose Dace
Stream Shading %: EGMENT 4 Fish Community Classification ¹ : Mean Channel Width ² (m): Mean Channel Depth ³ (m):	5% Cold Water 2.5m 0.75m	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrate is a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank is mostly stable and vegetated, with some areas of erosion evident. A single 8cr fish of unknown species was observed in the segment. There are numerous culverts and stream crossings within the segment, but none appear to be barrie to fish passage. CVC has confirmed spawning Brook Trout within this segment FISH SPECIES Brook Trout, Brown Trout, Creek Chub, White Sucker, Eastern Blacknose Dace, Bluntnose Minnow, Brook Stickleback, Central Mudminnow, Longnose Dace,
Stream Shading %: EGMENT 4 Fish Community Classification ¹ : Mean Channel Width ² (m): Mean Channel Depth ³ (m): Mean Water Depth ⁴ (m):	5% Cold Water 2.5m 0.75m 0.4m	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrate is a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank is mostly stable and vegetated, with some areas of erosion evident. A single 8cr fish of unknown species was observed in the segment. There are numerous culverts and stream crossings within the segment, but none appear to be barrier to fish passage. CVC has confirmed spawning Brook Trout within this segment FISH SPECIES Brook Trout, Brown Trout, Creek Chub, White Sucker, Eastern Blacknose Dace
Stream Shading %: EGMENT 4 Fish Community Classification ¹ : Mean Channel Width ² (m): Mean Channel Depth ³ (m): Mean Water Depth ⁴ (m): Stream Shading %: EGMENT 5 Fish Community	5% Cold Water 2.5m 0.75m 0.4m 80%	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrat is a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank is mostly stable and vegetated, with some areas of erosion evident. A single 8cd fish of unknown species was observed in the segment. There are numerous culverts and stream crossings within the segment, but none appear to be barrie to fish passage. CVC has confirmed spawning Brook Trout within this segment FISH SPECIES Brook Trout, Brown Trout, Creek Chub, White Sucker, Eastern Blacknose Dace, Rock Bass, Round Goby. DESCRIPTION
Stream Shading %: EGMENT 4 Fish Community Classification ¹ : Mean Channel Width ² (m): Mean Channel Depth ³ (m): Mean Water Depth ⁴ (m): Stream Shading %: EGMENT 5	5% Cold Water 2.5m 0.75m 0.4m	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrate is a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank is mostly stable and vegetated, with some areas of erosion evident. A single 8cr fish of unknown species was observed in the segment. There are numerous culverts and stream crossings within the segment, but none appear to be barrie to fish passage. CVC has confirmed spawning Brook Trout within this segment FISH SPECIES Brook Trout, Brown Trout, Creek Chub, White Sucker, Eastern Blacknose Dace, Rock Bass, Round Goby. DESCRIPTION
Stream Shading %: EGMENT 4 Fish Community Classification ¹ : Mean Channel Width ² (m): Mean Channel Depth ³ (m): Mean Water Depth ⁴ (m): Stream Shading %: EGMENT 5 Fish Community Classification ¹ :	5% Cold Water 2.5m 0.75m 0.4m 80% Warm Water	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrat is a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank is mostly stable and vegetated, with some areas of erosion evident. A single 8cd fish of unknown species was observed in the segment. There are numerous culverts and stream crossings within the segment, but none appear to be barrie to fish passage. CVC has confirmed spawning Brook Trout within this segment FISH SPECIES Brook Trout, Brown Trout, Creek Chub, White Sucker, Eastern Blacknose Dace, Rock Bass, Round Goby. DESCRIPTION
Stream Shading %: EGMENT 4 Fish Community Classification ¹ : Mean Channel Width ² (m): Mean Channel Depth ³ (m): Mean Water Depth ⁴ (m): Stream Shading %: EGMENT 5 Fish Community	5% Cold Water 2.5m 0.75m 0.4m 80%	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrat is a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank is mostly stable and vegetated, with some areas of erosion evident. A single 8ct fish of unknown species was observed in the segment. There are numerous culverts and stream crossings within the segment, but none appear to be barrie to fish passage. CVC has confirmed spawning Brook Trout within this segment DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION This is a small segment between the Hillsburgh Pond and the Ainsworth Pond, including the Station Street bridge and outflow structure from the Hillsburgh Pond. The segment is 30% channelized with a concrete wall and a sloped concrete pad as substrate. The flow pattern in the segment consists of a 1m fall
Stream Shading %: EGMENT 4 Fish Community Classification ¹ : Mean Channel Width ² (m): Mean Channel Depth ³ (m): Mean Water Depth ⁴ (m): Stream Shading %: EGMENT 5 Fish Community Classification ¹ :	5% Cold Water 2.5m 0.75m 0.4m 80% Warm Water	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrate is a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank is mostly stable and vegetated, with some areas of erosion evident. A single 8cr fish of unknown species was observed in the segment. There are numerous culverts and stream crossings within the segment, but none appear to be barrier to fish passage. CVC has confirmed spawning Brook Trout within this segment DESCRIPTION DESCRIPTION This is a small segment between the Hillsburgh Pond and the Ainsworth Pond, including the Station Street bridge and outflow structure from the Hillsburgh Pond. The segment is 30% channelized with a concrete wall and a sloped concrete pad as substrate. The flow pattern in the segment consists of a 1m fall
Stream Shading %: EGMENT 4 Fish Community Classification ¹ : Mean Channel Width ² (m): Mean Channel Depth ³ (m): Mean Water Depth ⁴ (m): Stream Shading %: EGMENT 5 Fish Community Classification ¹ : Mean Channel Width ² (m):	5% Cold Water 2.5m 0.75m 0.4m 80% Warm Water	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrate is a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank is mostly stable and vegetated, with some areas of erosion evident. A single 8cr fish of unknown species was observed in the segment. There are numerous culverts and stream crossings within the segment, but none appear to be barrier to fish passage. CVC has confirmed spawning Brook Trout within this segment FISH SPECIES Brook Trout, Brown Trout, Creek Chub, White Sucker, Eastern Blacknose Dace, Rock Bass, Round Goby. DESCRIPTION This is a small segment between the Hillsburgh Pond and the Ainsworth Pond, including the Station Street bridge and outflow structure from the Hillsburgh Pond. The segment is 30% channelized with a concrete wall and a sloped concrete pad as substrate. The flow pattern in the segment consists of a 1m fall from the Hillsburgh Pond and two smaller 0.3m falls, as well as gravel, cobble
Stream Shading %: EGMENT 4 Fish Community Classification ¹ : Mean Channel Width ² (m): Mean Channel Depth ³ (m): Mean Water Depth ⁴ (m): Stream Shading %: EGMENT 5 Fish Community Classification ¹ :	5% Cold Water 2.5m 0.75m 0.4m 80% Warm Water	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrati is a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank is mostly stable and vegetated, with some areas of erosion evident. A single 8cr fish of unknown species was observed in the segment. There are numerous culverts and stream crossings within the segment, but none appear to be barrie to fish passage. CVC has confirmed spawning Brook Trout within this segment FISH SPECIES Brook Trout, Brown Trout, Creek Chub, White Sucker, Eastern Blacknose Dace, Rock Bass, Round Goby. DESCRIPTION This is a small segment between the Hillsburgh Pond and the Ainsworth Pond, including the Station Street bridge and outflow structure from the Hillsburgh Pond. The segment is 30% channelized with a concrete wall and a sloped concrete pad as substrate. The flow pattern in the segment consists of a 1m fall from the Hillsburgh Pond and two smaller 0.3m falls, as well as a series of riffles and runs. The substrate is primarily the concrete slab, as well as gravel, cobble and boulder further downstream. MNRF records have recorded trout spawning
Stream Shading %: EGMENT 4 Fish Community Classification ¹ : Mean Channel Width ² (m): Mean Channel Depth ³ (m): Mean Water Depth ⁴ (m): Stream Shading %: EGMENT 5 Fish Community Classification ¹ : Mean Channel Width ² (m):	5% Cold Water 2.5m 0.75m 0.4m 80% Warm Water 3.5m	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrate is a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank is mostly stable and vegetated, with some areas of erosion evident. A single 8ct fish of unknown species was observed in the segment. There are numerous culverts and stream crossings within the segment, but none appear to be barrie to fish passage. CVC has confirmed spawning Brook Trout within this segment FISH SPECIES Brook Trout, Brown Trout, Creek Chub, White Sucker, Eastern Blacknose Dace, Rock Bass, Round Goby. DESCRIPTION This is a small segment between the Hillsburgh Pond and the Ainsworth Pond, including the Station Street bridge and outflow structure from the Hillsburgh Pond. The segment is 30% channelized with a concrete wall and a sloped concrete pad as substrate. The flow pattern in the segment consists of a 1m fall from the Hillsburgh Pond and two smaller 0.3m falls, as well as a series of riffles and runs. The substrate is primarily the concrete slab, as well as gravel, cobble and boulder further downstream. MNRF records have recorded trout spawning redds and spawning Brown Trout within this location. The outflow structure from
Stream Shading %: EGMENT 4 Fish Community Classification ¹ : Mean Channel Width ² (m): Mean Channel Depth ³ (m): Mean Water Depth ⁴ (m): Stream Shading %: EGMENT 5 Fish Community Classification ¹ : Mean Channel Width ² (m): Mean Channel Depth ³ (m):	5% Cold Water 2.5m 0.75m 0.4m 80% Warm Water 3.5m 0.45m	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrati is a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank is mostly stable and vegetated, with some areas of erosion evident. A single 8cr fish of unknown species was observed in the segment. There are numerous culverts and stream crossings within the segment, but none appear to be barrie to fish passage. CVC has confirmed spawning Brook Trout within this segment FISH SPECIES Brook Trout, Brown Trout, Creek Chub, White Sucker, Eastern Blacknose Dace, Rock Bass, Round Goby. DESCRIPTION This is a small segment between the Hillsburgh Pond and the Ainsworth Pond, including the Station Street bridge and outflow structure from the Hillsburgh Pond. The segment is 30% channelized with a concrete wall and a sloped concrete pad as substrate. The flow pattern in the segment consists of a 1m fall from the Hillsburgh Pond and two smaller 0.3m falls, as well as a series of riffles and runs. The substrate is primarily the concrete slab, as well as gravel, cobble and boulder further downstream. MNRF records have recorded trout spawning
Stream Shading %: EGMENT 4 Fish Community Classification ¹ : Mean Channel Width ² (m): Mean Channel Depth ³ (m): Mean Water Depth ⁴ (m): Stream Shading %: EGMENT 5 Fish Community Classification ¹ : Mean Channel Width ² (m):	5% Cold Water 2.5m 0.75m 0.4m 80% Warm Water 3.5m	FISH SPECIES Rock Bass, Large Mouth Bass, Bluntnose Minnow, Pumpkinseed, Round Goby. DESCRIPTION Segment 4 runs through a Fresh-Moist Manitoba Maple Lowland Deciduous Forest, within the Downtown area of Hillsburgh. The flow pattern within the segment is mostly flat, with areas of pools riffles and runs. The channel has a gentle meander with some channelization and channel hardening. The substrate is a mixture of primarily sand, cobble and boulders, with a lesser component of fines and gravel, and may provide trout spawning habitat. In stream cover consists of 20% woody debris 10% aquatic vegetation and 70% open. The bank is mostly stable and vegetated, with some areas of erosion evident. A single 8cr fish of unknown species was observed in the segment. There are numerous culverts and stream crossings within the segment, but none appear to be barrier to fish passage. CVC has confirmed spawning Brook Trout within this segment FISH SPECIES Brook Trout, Brown Trout, Creek Chub, White Sucker, Eastern Blacknose Dace, Rock Bass, Round Goby. DESCRIPTION This is a small segment between the Hillsburgh Pond and the Ainsworth Pond, including the Station Street bridge and outflow structure from the Hillsburgh Pond. The segment is 30% channelized with a concrete wall and a sloped concrete pad as substrate. The flow pattern in the segment consists of a 1m fall from the Hillsburgh Pond and two smaller 0.3m falls, as well as gravel, cobble and boulder further downstream. MNRF records have recorded trout spawning redds and spawning Brown Trout within this location. The outflow structure from

APPENDIX 18. AQUATIC HABITAT ASSESMENT

Hillsburgh Dam Environmental Assessment, N	Natural Heritage - Existing Conditions
--	--

EGMENT 6		DESCRIPTION
Fish Community	Warm Water	This segment is the shallow open water community of the Ainsworth Pond. The
Classification ¹ :		substrate of the community is unknown; aquatic cover includes emergent
Mean Channel Width ² (m):	Open Water	vegetation, floating vegetation, submergent vegetation and woody debris. The
Mean Channel Depth ³ (m):	Unknown	banks around the pond appear stable.
Mean Water Depth⁴ (m):	Unknown	FISH SPECIES
Stream Shading %:	15%	Bluntnose Minnow, Brook Trout, Creek Chub, Eastern Blacknose Dace, Largemouth Bass, Rock Bass, White Sucker.
EGMENT 7		DESCRIPTION
Fish Community	Cold Water	This segment consists of the two outflows from the Ainsworth Pond, which
Classification ¹ : Mean Channel Width ² (m):	2.5m	reconnect in the downstream portion of the segment. The main outfall from the pond consists of a series of two 0.6m fall and represents a complete barrier to fish passage. The second outfall appears to be temporary in nature and is constructed or reinforced by sandbags and plastic lining. This outfall consists of
Mean Channel Depth ³ (m):	0.5m	a series of smaller drops of 0.2m or less and may be passable by jumping fish under certain water levels. The flow pattern below the outfalls consist of pools, riffles and runs and the channel morphology is a gentle meander with straight sections. Substrate is a mixture of sand, gravel, cobble and boulders and may
Mean Water Depth ⁴ (m):	0.35m	represent possible spawning habitat for trout. FISH SPECIES
Mean Water Depth (m).	0.3011	Banded Killifish, Brook Trout, Common Shiner, Creek Chub, Central
Stream Shading %:	65%	Mudminnow, Eastern Blacknose Dace, Golden Shiner, Largemouth Bass, Pumpkinseed, Rock Bass, Round Goby, White Sucker.
EGMENT 8		DESCRIPTION
Fish Community		This segment runs along the edge of a Tamarack White Cedar Treed Fen. The
Classification ¹ :	Cold Water	segment has a gentle meander with minor amounts of in-stream cover consisting
Mean Channel Width ² (m):	2m	of emergent plants, submergent plants and woody debris. Substrate is a mixture
Mean Channel Depth ³ (m):	0.5m	of sand, gravel, cobble and boulders and may represent possible spawning habitat for trout.
Mean Water Depth ⁴ (m):	0.3m	FISH SPECIES
Stream Shading %:	40%	Bluntnose Minnow, Brook Trout, Central Mudminnow, Common Shiner, Creek Chub, Eastern Blacknose Dace, Golden Shiner, Largemouth Bass, Pumpkinseed, Rock Bass, Round Goby, White Sucker.
EGMENT 9		DESCRIPTION
Fish Community	o	This segment is a wide stream section leading to the Rudd Pond. The channel
Classification ¹ :	Cold Water	morphology is meandering with a flow pattern of riffles and runs upstream, and
Mean Channel Width ² (m):	4m	flat in the downstream portion. There is a high coverage of submergent vegetation consisting of watercress and <i>Vallisneria americana</i> . Substrate is a
Mean Channel Depth ³ (m):	0.7m	mixture of sand, gravel, cobble and boulders in the upstream portion, transitioning to mostly sand and fines in the downstream portion.
Mean Water Depth⁴ (m):	0.5m	FISH SPECIES
Stream Shading %:	60%	Central Mudminnow, Common Shiner, Creek Chub, Rock Bass.
EGMENT 10		DESCRIPTION
Fish Community	Cold Water	This segment is the shallow open water community of the Rudd Pond. Substrate
Classification ¹ :	-	of the community is unknown; aquatic cover includes emergent vegetation,
Mean Channel Width ² (m):	Open Water	floating vegetation, submergent vegetation and woody debris. The banks around
Mean Channel Depth ^o (m):	Unknown	the pond appear stable.
Mean Water Depth ⁴ (m):	Unknown	FISH SPECIES
Stream Shading %:	5%	Bluntnose Minnow, Largemouth Bass, Pumpkinseed, Rock Bass, White Sucker.
EGMENT 11		DESCRIPTION
Fish Community Classification ¹ :	Cold Water	This segment consists of the outflows from the Rudd Pond, and the downstream watercourse to Wellington Rd. 22. The outfall from the pond consists of a series
Mean Channel Width ² (m):	2.5m	of two 0.30m falls and a sloped section of concrete slab. This outfall likely represents a complete barrier to fish passage, although jumping fish may be able
Mean Channel Depth ³ (m):	0.8m	to pass under certain water level. The flow pattern below the outfalls consists of pools, riffles and runs and the channel morphology is a gentle meander with straight sections. Substrate is a mixture of sand, gravel, cobble and boulders and may represent possible spawning habitat for trout.
Mean Water Depth ⁴ (m):	0.4m	FISH SPECIES
	0111	

APPENDIX 18. AQUATIC HABITAT ASSESMENT

SEGMENT 12		DESCRIPTION						
Fish Community	Cold Water	This segment is primarily outside the study area, upstream on the southwest						
Classification ¹ :		tributary. The section of the watercourse is ephemeral, drying during periods of						
Mean Channel Width ² (m):	1.5m	the summer. The channel morphology is straight with stable vegetated banks.						
Mean Channel Depth ³ (m):	0.25m							
Mean Water Depth ⁴ (m):	Dry	FISH SPECIES						
Stream Shading %:	75%	- No Records						
SEGMENT 13		DESCRIPTION						
Fish Community Classification ¹ :	Cold Water	This segment is outside the study area, upstream on the northeast tributary. The section is mostly within a large forested area. The substrate is a mixture of fines,						
Mean Channel Width ² (m):	2.5m	sand, and gravel with minor components of cobble and boulder and may						
Mean Channel Depth ³ (m):	0.75m	represent possible spawning habitat for trout.						
Mean Water Depth ⁴ (m):	0.45m	FISH SPECIES						
Stream Shading %:	90%	Banded Killifish, Bluntnose Minnow, Brook Stickleback, Brook Trout, Central Mudminnow, Creek Chub, Eastern Blacknose Dace, Fathead Minnow, Longnose Dace, Northern Redbelly Dace, Pumpkinseed, White Sucker.						
SEGMENT 14		DESCRIPTION						
Fish Community	Cold Water	This segment is outside the study area, downstream of the main tributary. The						
Classification ¹ :	Cold Water	section is mostly within a large forested area, leading to a dammed pond. The						
Mean Channel Width ² (m):	2.5m	substrate is a mixture of sand, gravel, cobble and boulder and may represent possible spawning habitat for trout. The banks are vegetated and stable. The						
Mean Channel Depth ³ (m):	0.75m	culvert crossing at Wellington 22 has a concrete slab bottom and would allow fish passage under normal levels.						
Mean Water Depth ⁴ (m):	0.4m	FISH SPECIES						
Stream Shading %:	80%	Rock Bass, White Sucker						
SEGMENT 15		DESCRIPTION						
Fish Community Classification ¹ :	Unknown	This segment is outside the study area, upstream on the northeast tributary. The section is mostly within a large forested area. The substrate is a mixture of fines,						
Mean Channel Width ² (m):	Unknown	sand, and gravel with minor components of cobble and boulder and may						
Mean Channel Depth ³ (m):	Unknown	represent possible spawning habitat for trout.						
Mean Water Depth ⁴ (m):	Unknown	FISH SPECIES						
Stream Shading %:	70%	Unknown						
SEGMENT 16		DESCRIPTION						
Fish Community Classification ¹ :	Unknown	This segment is within the study area, but on private property and was inaccessible for direct observations. Alignment of the segment was						
Mean Channel Width ² (m):	Unknown	orthophotography interpreted and may not be accurate. The water temperature is likely coldwater based on the general location within the wetland and known						
		groundwater upwelling in the area. No fish sampling records are available for the						
Mean Channel Depth ³ (m):	Unknown	segment.						
Mean Channel Depth ³ (m): Mean Water Depth ⁴ (m): Stream Shading %:	Unknown Unknown							

- 2. Mean Channel width measured as the width of the wetted bank.
- 3. Mean Channel Depth is the depth of the channel from the low point to the top of the wetted bank.
- 4. Mean Water Depth is the depth of the water at the time of observation (October 19^{th,} 2015).
- 5. Fish Species is compiled from data provided by MNRF and CVC.

^{1.} Fish Community Classification based on Erin Service and Settlement Master Plan: Phase 1 - Environmental Component (Erin SSMP 2011).

	CVC			1	U					1.	ç
	(most recent				COSEWIC		¥	¥	PIF (BCR 13)	0) Tier	Wellington County (2008)
	observation			8	В	₹	lan	Rar	Ľ.	55	unt 008
SOURCE	indicated)	COMMON NAME	SCIENTIFIC NAME	SARO	8	SARA	S-Rank	G-Rank	BC PIF	CVC Tie (2010)	Col (20
	,	INSECTS AT RISK			Ť			Ŭ	<u> </u>	Ť	
OBAO (2012)		Monarch	Danaus plexippus	SC	SC	SC	S2N,S4B	G4T3			
							,				
		AMPHIBANS									
		American Toad	Anaxyrus americanus				S5	G5		3	
ORAA (2009)	I (2003)	Gray Treefrog	Hyla versicolor				S5	G5			
ORAA (1994)		Spring Peeper	Pseudacris crucifer				S5	G5		3	
ORAA (1990)		Green Frog	Lithobates clamitans				S5	G5		3	
	I (2008)	Northern Leopard Frog	Lithobates pipiens	NAR	NAR		S5	G5		3	_
		SNAKES AND LIZARDS									
ORAA (1999)		Eastern Gartersnake	Thamnophis sirtalis sirtalis				S5	G5T5		4	
		TURTLES									_
ORAA (2014)		Snapping Turtle	Chelydra serpentina	SC	SC	SC	S3	G5T5		1	✓
ORAA (2013)	l (2014)	Midland Painted Turtle	Chrysemys picta marginata				S5	G5T5		3	
					_				_		
		BIRDS									
	FM (2012)	Pied-billed Grebe	Podilymbus podiceps				S4B,S4N	G5		2	✓
	FM (2012)	Double-crested Cormorant	Phalacrocorax auritus	NAR	NAR		S5B	G5		2	√
OBBA (2005)		Great Blue Heron	Ardea herodias		_		S4	G5		3	✓
	I (2014)	Great Egret	Ardea alba				S2B	G5		1	√
OBBA (2005)		Green Heron	Butorides virescens				S4B	G5		2	✓
	SWH (2011)	Tundra Swan	Cygnus columbianus				S4	G5		1	
		Trumpeter Swan	Cygnus buccinator	NAR	NAR		S4	G4		1	\checkmark
OBBA (2005)		Canada Goose	Branta canadensis				S5	G5		4	
OBBA (2005)		Wood Duck	Aix sponsa				S5	G5		2	~
OBBA (2005)		Green-winged Teal	Anas crecca		_		S4	G5		2	✓
0000	FM (2012)	American Black Duck	Anas rubripes		_		S4	G5	_	2	✓
OBBA (2005)		Mallard	Anas platyrhynchos	_	_		S5	G5	_	4	
	FM (2012)	Blue-winged Teal	Anas discors		_		S4	G5	_	2	✓
	FM (2012)	Gadwall	Anas strepera	-	_		S4	G5	_	2	√
	SM (2012)	Canvasback	Aythya valisineria	_	_		S1B,S4N	G5	_	1	✓
	SM (2012)	Ring-necked Duck	Aythya collaris	_	_		S5	G5	_	3	✓
	SWH (2011)	Long-tailed Duck	Clangula hyemalis	-	_		S3B	G5	_	1	
	SWH (2011)	Bufflehead	Bucephala albeola	_	_		S4	G5	_		
	FM (2012)	Hooded Merganser	Lophodytes cucullatus	-	_		S5B,S5N	G5	_	2	\checkmark
	FM (2012)	Common Merganser	Mergus merganser	_	_		S5B,S5N	G5	_	2	
0000	FM (2012)	Red-breasted Merganser	Mergus serrator		_		S4B,S5N	G5	_	2	√
OBBA (2005)		Turkey Vulture	Cathartes aura				S5B	G5	_	3	✓ ✓
	SWH (2011)	Osprey	Pandion haliaetus				S5B	G5		2	•
0000		Bald Eagle	Haliaeetus leucocephalus	SC	NAR		S2N,S4B	G5	✓	1	√
	SWH (2011)	Northern Harrier	Circus cyaneus	NAR	NAR		S4B	G5	✓	2	√
OBBA (2005)		Sharp-shinned Hawk	Accipiter striatus	NAR		_	S5	G5	_	3	✓
	SWH (2011)	Cooper's Hawk	Accipiter cooperii	NAR	NAR		S4	G5		2	✓
OBBA (2005)		Northern Goshawk	Accipiter gentilis	NAR	NAR		S4	G5T5		2	\checkmark

	CVC				<u>∪</u>					L_	Wellington County (2008)
	(most recent				COSEWIC		ž	논	PIF (BCR 13)	Tier 0)	⊛ ty gto
	observation			SARO	S	RA	S-Rank	Zai		CVC Tie (2010)	unt 208
SOURCE	indicated)	COMMON NAME	SCIENTIFIC NAME	SA	8	SARA		G-Rank	BC BC	CVC .	S C K
OBBA (2005)		Broad-winged Hawk	Buteo platypterus				S5B	G5		2	\checkmark
OBBA (2005)		Red-tailed Hawk	Buteo jamaicensis	NAR	NAR		S5	G5		4	
OBBA (2005)		American Kestrel	Falco sparverius				S4	G5	\checkmark	3	\checkmark
OBBA (2005)	NB (2009)	Ruffed Grouse	Bonasa umbellus				S4	G5		2	
OBBA (2005)	BB (2009)	Wild Turkey	Meleagris gallopavo				S5	G5		3	
OBBA (2005)		Virginia Rail	Rallus limicola				S5B	G5		2	
	BB (2009)	Semipalmated Plover	Charadrius semipalmatus				S4B,S4N	G5		4	
OBBA (2005)		Killdeer	Charadrius vociferus				S5B,S5N	G5		3	
	SM (2012)	Greater Yellowlegs	Tringa melanoleuca				S4B,S4N	G5		4	
	SM (2012)	Lesser Yellowlegs	Tringa flavipes				S4B,S4N	G5		4	
	BB (2009)	Solitary Sandpiper	Tringa solitaria				S4B	G5			
OBBA (2005)	I (2013)	Spotted Sandpiper	Actitis macularius				S5	G5		3	
	SWH (2011)	Least Sandpiper	Calidris minutilla				S4B,S5N	G5		4	
OBBA (2005)		Wilson's Snipe	Gallinago delicata				S5B	G5		2	
OBBA (2005)		American Woodcock	Scolopax minor				S4B	G5		2	
	I (2012)	Ring-billed Gull	Larus delawarensis				S5B,S4N	G5		2	✓
	SM (2012)	Herring Gull	Larus argentatus				S5B,S5N	G5		2	√
OBBA (2005)	1	Rock Pigeon	Columba livia				SNA	G5		5	
OBBA (2005)	BB (2009)	Mourning Dove	Zenaida macroura				S5	G5		4	
OBBA (2005)	1	Black-billed Cuckoo	Coccyzus erythropthalmus				S5B	G5	√	2	\checkmark
OBBA (2005)		Yellow-billed Cuckoo	Coccyzus americanus				S4B	G5		2	√
OBBA (2005)		Eastern Screech-Owl	Megascops asio	NAR	NAR		S4	G5		3	
OBBA (2005)		Great Horned Owl	Bubo virginianus				S4	G5		3	
OBBA (2005)		Long-eared Owl	Asio otus				S4	G5		2	\checkmark
OBBA (2005)		Ruby-throated Hummingbird	Archilochus colubris				S5B	G5		3	
OBBA (2005)		Belted Kingfisher	Megaceryle alcyon				S4B	G5	✓	3	
OBBA (2005)		Yellow-bellied Sapsucker	Sphyrapicus varius				S5B	G5		2	\checkmark
OBBA (2005)		Downy Woodpecker	Picoides pubescens	_			S5	G5		4	,
OBBA (2005)		Hairy Woodpecker	Picoides villosus	_			S5	G5		3	\checkmark
OBBA (2005)		Northern Flicker	Colaptes auratus				S4B	G5	✓	3	
OBBA (2005)	BB (2009)	Pileated Woodpecker	Dryocopus pileatus				S5	G5		2	√
OBBA (2005)		Eastern Wood-pewee	Contopus virens	SC	SC		S4B	G5	✓	1	\checkmark
OBBA (2005)	BB (2009)	Alder Flycatcher	Empidonax alnorum				S5B	G5			
OBBA (2005)		Willow Flycatcher	Empidonax traillii	_			S5B	G5	✓	3	\checkmark
OBBA (2005)	DD (0000)	Least Flycatcher	Empidonax minimus	_	_		S4B	G5	-	3	v
OBBA (2005)		Eastern Phoebe	Sayornis phoebe	-	-		S5B	G5		3	
OBBA (2005)	· /	Great Crested Flycatcher	Myiarchus crinitus	_	_		S4B	G5	√	3	\checkmark
OBBA (2005) OBBA (2005)	BB (2009)	Eastern Kingbird	Tyrannus tyrannus	-	-		S4B	G5	~	3	v
		Horned Lark	Eremophila alpestris		-	_	S5B	G5		3	
	PR (2000)	Purple Martin	Progne subis				S4B	G5	+	2	
OBBA (2005)		Tree Swallow	Tachycineta bicolor		+		S4B	G5	+	3	
OBBA (2005)	BB (2009)	Northern Rough-winged Swallow	Stelgidopteryx serripennis	TUD	TUD		S4B	G5		3	
OBBA (2005)		Bank Swallow	Riparia riparia	THR	THR		S4B	G5	ľ –	2	\checkmark
OBBA (2005)		Cliff Swallow	Petrochelidon pyrrhonota	TUD	TUD	_	S4B	G5	+	3	✓ ✓
OBBA (2005)	PR (2000)	Barn Swallow	Hirundo rustica	THR	THR		S4B	G5	+	1	×
OBBA (2005)	DB (2009)	Blue Jay	Cyanocitta cristata	1			S5	G5		4	

	CVC				COSEWIC				3)	L.	Wellington County (2008)
	(most recent			0	S Ш	⊲	ž	G-Rank	에F BCR 13)	CVC Tier (2010)	8) ngt
	observation			SARO	SC	SARA	S-Rank	Ra	шÜ	0,5	elli our
SOURCE	indicated)	COMMON NAME	SCIENTIFIC NAME	S/	ŭ	S/S		ڻ ا	PIF (BC	<u>5</u> ©	S O ⊙
OBBA (2005)	BB (2009)	American Crow	Corvus brachyrhynchos				S5B	G5		2	
OBBA (2005)		Common Raven	Corvus corax				S5	G5			\checkmark
OBBA (2005)		Black-capped Chickadee	Poecile atricapillus				S5	G5		4	
OBBA (2005)		Red-breasted Nuthatch	Sitta canadensis				S5	G5		3	\checkmark
OBBA (2005)	BB (2009)	White-breasted Nuthatch	Sitta carolinensis				S5	G5		3	
OBBA (2005)		Brown Creeper	Certhia americana				S5B	G5		2	\checkmark
OBBA (2005)	BB (2009)	House Wren	Troglodytes aedon				S5B	G5		4	
OBBA (2005)		Winter Wren	Troglodytes troglodytes				S5B	G5		3	\checkmark
OBBA (2005)		Sedge Wren	Cistothorus platensis	NAR	NAR		S4B	G5		2	\checkmark
OBBA (2005)		Marsh Wren	Cistothorus palustris				S4B	G5		2	\checkmark
OBBA (2005)		Golden-crowned Kinglet	Regulus satrapa				S5B	G5		2	\checkmark
	I (2012)	Ruby-crowned Kinglet	Regulus calendula				S4B	G5		2	\checkmark
OBBA (2005)		Eastern Bluebird	Sialia sialis	NAR	NAR		S5B	G5		3	
OBBA (2005)		Veery	Catharus fuscescens				S4B	G5		3	\checkmark
OBBA (2005)		Wood Thrush	Hylocichla mustelina	SC	THR		S4B	G5	\checkmark	1	
OBBA (2005)	BB (2009)	American Robin	Turdus migratorius				S5B	G5		4	
OBBA (2005)	BB (2009)	Gray Catbird	Dumetella carolinensis				S4B	G5		3	
OBBA (2005)		Brown Thrasher	Toxostoma rufum				S4B	G5	\checkmark	2	\checkmark
OBBA (2005)		Cedar Waxwing	Bombycilla cedrorum				S5B	G5		3	
OBBA (2005)	BB (2009)	European Starling	Sturnus vulgaris				SNA	G5		5	
	BB (2009)	Blue-headed Vireo	Vireo solitarius				S5B	G5		2	\checkmark
OBBA (2005)	BB (2009)	Warbling Vireo	Vireo gilvus				S5B	G5		4	
OBBA (2005)	BB (2009)	Red-eyed Vireo	Vireo olivaceus				S5B	G5		4	
OBBA (2005)	BB (2009)	Nashville Warbler	Vermivora ruficapilla				S5B	G5		2	
OBBA (2005)	BB (2009)	Yellow Warbler	Dendroica petechia				S5B	G5		4	
OBBA (2005)		Chestnut-sided Warbler	Dendroica pensylvanica				S5B	G5		2	
OBBA (2005)		Magnolia Warbler	Dendroica magnolia				S5B	G5		2	\checkmark
OBBA (2005)		Yellow-rumped Warbler	Dendroica coronata				S5B	G5		2	
OBBA (2005)	BB (2009)	Black-throated Green Warbler	Dendroica virens				S5B	G5		2	\checkmark
OBBA (2005)	BB (2009)	Pine Warbler	Dendroica pinus				S5B	G5		3	\checkmark
OBBA (2005)		Black-and-white Warbler	Mniotilta varia				S5B	G5		3	\checkmark
OBBA (2005)	BB (2009)	American Redstart	Setophaga ruticilla				S5B	G5		3	\checkmark
OBBA (2005)		Ovenbird	Seiurus aurocapilla				S4B	G5		3	\checkmark
OBBA (2005)	BB (2009)	Northern Waterthrush	Seiurus noveboracensis				S5B	G5		3	
OBBA (2005)		Mourning Warbler	Oporornis philadelphia				S4B	G5		3	
OBBA (2005)	BB (2009)	Common Yellowthroat	Geothlypis trichas				S5B	G5		4	
OBBA (2005)		Canada Warbler	Wilsonia canadensis	SC	THR	THR	S4B	G5		1	\checkmark
OBBA (2005)		Scarlet Tanager	Piranga olivacea				S4B	G5		3	\checkmark
OBBA (2005)	BB (2009)	Northern Cardinal	Cardinalis cardinalis				S5	G5		4	\checkmark
OBBA (2005)		Rose-breasted Grosbeak	Pheucticus ludovicianus				S4B	G5	\checkmark	3	\checkmark
OBBA (2005)	BB (2009)	Indigo Bunting	Passerina cyanea				S4B	G5			
OBBA (2005)		Eastern Towhee	Pipilo erythrophthalmus				S4B	G5	\checkmark	3	\checkmark
OBBA (2005)	BB (2009)	Chipping Sparrow	Spizella passerina				S5B	G5		4	
OBBA (2005)	BB (2009)	Field Sparrow	Spizella pusilla				S4B	G5	\checkmark		\checkmark
OBBA (2005)		Vesper Sparrow	Pooecetes gramineus				S4B	G5	\checkmark	2	\checkmark
OBBA (2005)		Savannah Sparrow	Passerculus sandwichensis				S4B	G5	\checkmark	4	\checkmark

	CVC			1	U	1			1	1	c
	(most recent				COSEWIC		~	×	3)	CVC Tier (2010)	Wellington County (2008)
	observation			SARO	Ш	≴	S-Rank	G-Rank	PIF (BCR 13)	CVC Tie (2010)	ling 08
SOURCE	indicated)	COMMON NAME	SCIENTIFIC NAME	ΑF	ő	SARA	Ř	ц Ц	BC BC	5 8	Vel 20
OBBA (2005)	mulcaleu)	Grasshopper Sparrow	Ammodramus savannarum	٥ ٥	SC	<i>м</i>	ഗ S4B	G5TU		1	$\sim 0 \sim$
OBBA (2003) OBBA (2005)	BB (2000)	Song Sparrow	Melospiza melodia		30		S4B S5B	G5		4	· ·
OBBA (2003) OBBA (2005)		Swamp Sparrow	Melospiza georgiana		-		S5B S5B	G5 G5	-	4	
OBBA (2005) OBBA (2005)		White-throated Sparrow	1 0 0	_			-	G5 G5			
UBBA (2005)			Zonotrichia albicollis				S5B S5B	G5 G5		3	√
	SWH (2011)	Dark-eyed Junco	Junco hyemalis	TUD	TUD		S5B S4B	G5 G5	v	2	V V
OBBA (2005)	DD (2000)	Bobolink Ded winged Blackhind	Dolichonyx oryzivorus	THR	THR				v	1	·
OBBA (2005)	BB (2009)	Red-winged Blackbird	Agelaius phoeniceus		TUD		S4	G5	√	4	
OBBA (2005)		Eastern Meadowlark	Sturnella magna		THR		S4B	G5	✓	1	✓
OBBA (2005)		Common Grackle	Quiscalus quiscula				S5B	G5		4	
OBBA (2005)		Brown-headed Cowbird	Molothrus ater				S4B	G5		4	í.
OBBA (2005)		Baltimore Oriole	Icterus galbula				S4B	G5	✓	3	✓
OBBA (2005)		Purple Finch	Carpodacus purpureus				S4B	G5		2	
OBBA (2005)	BB (2009)	House Finch	Carpodacus mexicanus				SNA	G5		5	
OBBA (2005)		Pine Siskin	Carduelis pinus				S4B	G5		2	
OBBA (2005)		American Goldfinch	Carduelis tristis				S5B	G5		4	
OBBA (2005)	BB (2009)	House Sparrow	Passer domesticus				SNA	G5		5	
		MAMMALS		_							
OMA (1994)		Virginia Opossum	Didelphis virginiana		-		S4	G5		4	
OMA (1994) OMA (1994)		Star-nosed Mole	Condvlura cristata		-		S4 S5	G5 G5		2	
OMA (1994) OMA (1994)		Little Brown Myotis		END	END	END	S4	G3G4		2	
OMA (1994) OMA (1994)		Big Brown Bat	Myotis lucifugus	END		END	S4 S5	G5 G5		3	
			Eptesicus fuscus	-				G5 G4		-	
OMA (1994)		Hoary Bat	Lasiurus cinereus	-			S4 S5	G4 G5		3	
OMA (1994)		Eastern Cottontail	Sylvilagus floridanus	_							
OMA (1994)		Snowshoe Hare	Lepus americanus			_	S5	G5		2	
OMA (1994)	1 (0000)	European Hare	Lepus europaeus		-		SNA	G5		5	-
OMA (1994)	l (2009)	Eastern Chipmunk	Tamias striatus				S5	G5		3	
OMA (1994)		Woodchuck	Marmota monax				S5	G5		3	
OMA (1994)	1 (0000)	Eastern Gray Squirrel	Sciurus carolinensis				S5	G5		4	
	I (2002)	Red Squirrel	Tamiasciurus hudsonicus				S5	G5		3	
OMA (1994)	l (2014)	Beaver	Castor canadensis				S5	G5		3	
OMA (1994)		Meadow Vole	Microtus pennsylvanicus				S5	G5		3	
OMA (1994)		Muskrat	Ondatra zibethicus				S5	G5		3	
OMA (1994)		Norway Rat	Rattus norvegicus				SNA	G5		5	
	l (2003)	Porcupine	Erethizon dorsatum				S5	G5		2	
OMA (1994)		Coyote	Canis latrans				S5	G5		3	
OMA (1994)		Red Fox	Vulpes vulpes				S5	G5		3	
OMA (1994)		Northern Raccoon	Procyon lotor				S5	G5		4	
OMA (1994)		Ermine	Mustela erminea				S5	G5		2	
OMA (1994)		Long-tailed Weasel	Mustela frenata				S4	G5		3	✓
OMA (1994)	l (2012)	American Mink	Mustela vison				S4	G5		2	
OMA (1994)	I (2009)	Striped Skunk	Mephitis mephitis				S5	G5		4	
OMA (1994)	I (2008)	White-tailed Deer	Odocoileus virginianus				S5	G5		3	

APPENDIX 19. BACKGROUND WILDLIFE LIST

Hillsburgh Dam Environmental Assessment, Natural Heritage - Existing Conditions

Legend:

SARO: Species at Risk Ontario COSEWIC: Committee on the Status of Endangered wildlife in Canada SARA: Species at Risk Act ESA: Endangered Species Act END: Endangered THR: Threatened SC: special Concern NAR: Not At Risk NL: Not listed DD: Data Deficient I: Incidental Observation BB: Breeding Bird Survey Observation-Breeding Evidence noted NB: Breeding Bird Survey Observation-No Breeding evidence noted SWH: Significant Wildlife Habitat survey FM: Fall migration Survey SM: Spring Migration Survey

Source codes

OBAO: Ontario butterfly Atlas Online ORAA: Ontario Reptile and Amphibian Atlas OMA: Ontario Mammal Atlas OBBA: Ontario Breeding Bird Atlas CVC: Credit Valley Conservation Data, provided 2014

CVC Tiers:

Species of Conservation Concern
 Species of Interest

- 3 Species of Urban Interest
- 4 Secure Species
- 5 Non-native & Non-native Hybrid Species

Global Rank:

G1: Extremely rare globally
G1G2: Extremely rare to very rare globally
G2G3: Very rare globally
G2G3: Very rare to uncommon globally
G3: Rare to uncommon globally
G3G4: Rare to common globally
G4G5: Common to very common globally
G5: Very common globally; demonstrably secure
T: rank applies to a subspecies or variety

Provincial Rank:

S1: Critically Imperiled—Critically imperiled in the province
S2: Imperiled—Imperiled in the province, very few populations
S3: Vulnerable—Vulnerable in the province, relatively few populations
S4: Apparently Secure—Uncommon but not rare
S5: Secure—Common, widespread, and abundant in the province
SX: Presumed extirpated
SH: Possibly Extirpated (Historical)
SNR: Unranked
SU: Unrankable—Currently unrankable due to lack of information
SNA: Not applicable—A conservation status rank is not applicable
S#S#: Range Rank— indicates range of uncertainty about the status
S#B- Breeding status rank
S#N- Non Breeding status rank
?: Indicates uncertainty in the assigned rank

Wellington County:

✓ Significant Species

PIF:

✓ Priority Species

APPENDIX 20. FISH COLLECTION RECORDS (Provided by CVC and MNRF) Hillsburgh Dam Environmental Assessment, Natural Heritage - Existing Conditions

CVC	MNRF	COMMON NAME	SCIENTIFIC NAME	COSARO	COSEWIC	SARA	S-Rank	G-Rank	CVC (2010)
√		Slimy Sculpin	Cottus cognatus				S5	G5	2
√		Banded Killifish	Fundulus diaphanus				S5	G5	2
✓	✓	Brook Trout	Salvelinus fontinalis				S5	G5	2
~		Golden Shiner	Notemigonus crysoleucas				S5	G5	3
\checkmark		Central Mudminnow	Umbra limi				S5	G5	3
\checkmark	✓	Rock Bass	Ambloplites rupestris				S5	G5	4
✓	√	White Sucker	Catostomus commersonii				S5	G5	4
✓		Brook Stickleback	Culaea inconstans				S5	G5	4
✓	√	Pumpkinseed	Lepomis gibbosus				S5	G5	4
✓	✓	Common Shiner	Luxilus cornutus				S5	G5	4
✓	√	Largemouth Bass	Micropterus salmoides				S5	G5	4
\checkmark	√	Bluntnose Minnow	Pimephales notatus				S5	G5	4
\checkmark	✓	Eastern Blacknose Dace	Rhinichthys atratulus				S5	G5	4
~		Creek Chub	Semotilus atromaculatus				S5	G5	4
✓	✓	Round Goby	Neogobius melanostomus				SNA	G5	5
\checkmark	√	Brown Trout	Salmo trutta				SNA	G5	5

Data Sourse:

CVC: Data collected within the study area between 1954 and 2013; method of collection unknown.

MNRF: Data collected within the study area between 2013 and 2014; Data collected through electrofishing, drift nets, minnow traps and incidental observations.

Legend:

COSARO: Committee on Species at Risk Ontario

COSEWIC: Committee on the Status of Endangered Wildlife in Canada

- SARA: Species at Risk Act
- ESA: Endangered Species Act
- END: Endangered
- THR: Threatened
- SC: special Concern
- NAR: Not At Risk
- NL: Not listed
- DD: Data Deficient

G-Rank:

- G1: Extremely rare globally
- G1G2: Extremely rare to very rare globally
- G2: Very rare globally
- G2G3: Very rare to uncommon globally
- G3: Rare to uncommon globally
- G3G4: Rare to common globally
- G4: Common globally
- G4G5: Common to very common globally
- T: rank applies to a subspecies or variety

- CVC Tiers: 1 - Species of Conservation Concern 2 - Species of Interest
- 3 Species of Urban Interest
- 4 Secure Species
- 5 Non-native & Non-native Hybrid Species
- S-Rank:
- S1: Critically Imperiled—Critically imperiled in the province
- S2: Imperiled—Imperiled in the province, very few populations
- S3: Vulnerable—Vulnerable in the province, few populations
- S4: Apparently Secure—Uncommon but not rare
- S5: Secure-Common, widespread, and abundant in the province
- SX: Presumed extirpated
- SH: Possibly Extirpated (Historical)
- SNR: Unranked
- G5: Very common globally; demonstrably secure SU: Unrankable—Currently unrankable due to lack of information SNA: Not applicable-conservation status rank is not applicable
 - S#S#: Range Rank-range of uncertainty about the status S#B- Breeding status rank
 - S#N- Non Breeding status rank
 - ?: Indicates uncertainty in the assigned rank

Appendix 21 Curriculum Vitae

ABOUD & ASSOCIATES INC.

Aboud & Associate Inc. - Project staff.

Steven Aboud: Principal. Senior EcologistRyan Hamelin: Terrestrial and Wetland EcologistCheryl-Anne Ross: Wildlife Ecologist

Matt Iles: Biologist (No longer with Aboud & Associates Inc.)

Steven Aboud

B.Sc. (Botany) Principal . Senior Ecologist . ISA Certified Arborist

BIO

Steven has thirty five years of public and private sector experience in the disciplines of arboriculture and ecology. His considerable experience includes testifying as an expert witness before the Ontario Municipal Board, expert testimony on legal matters related to trees, urban forestry policy development and assessment of natural heritage features across southern Ontario. Steven is the author of several publications and documents related to woodland restoration, schoolyard naturalization and the status of rare tree species. He continues to lead a team of skilled and creative individuals developing practical and cost-effective solutions to urban forestry, ecology and landscape design issues using natural systems models.

RELEVANT PROJECT EXPERIENCE

URBAN FORESTRY

- · Heritage (Bronte) White Oak Monitoring (Oakville)
- Downtown Brampton Street Tree Inventory (Brampton)
- Milton Urban Area Public Lands Tree Inventory (Milton)
- Whitby Tree Inventory Asset Management Project (Whitby)
- Allan Gardens Revitalization (Toronto)
- Graham Arboretum Renewal Master Plan (London)
- Aurthur Street Sanitary EA (Guelph)
- Gordon/Woolwich Streets (Guelph)
- · Watson Parkway (Guelph)
- · James Mountain Road (Hamilton)
- Red Hill Valley Parkway (Hamilton)
- · Glen Abby Golf Club (Oakville)
- Lambton Golf Club (Toronto)
- Wrigley Canada Headquarters (Toronto)
- · Canadian National Institute for the Blind Headquarters (Toronto)
- Parc Downsview Park (Toronto)
- Sanofi-Pasteur Pharmaceuticals Connaught Campus (Toronto)

EXPERT & WRITTEN TESTIMONY AND PEER REVIEW

- · Residential Development OMB Hearings (Hamilton . Pickering . Toronto)
- Woodland Policy OMB (London)
- Hurontario Street Expropriation (Caledon)
- Tree Failure Assessment/Testimony (London . Stoney Creek)
- · Street Tree Planting Deficiencies Review (Guelph)
- Township of Centre Wellington Tree Policy (Centre Wellington)
- Natural Environment Level 1 and 2 Report Reviews (Centre Wellington)
- Environmental Impact Study Report Reviews (Centre Wellington)

EDUCATION

1978 Bachelor of Science (Botany) University of Guelph

PROFESSIONAL AFFILIATIONS

International Society of Arboriculture Society for Ecological Restoration Tallgrass Ontario Ontario Urban Forest Council

PROFESSIONAL CERTIFICATIONS

ISA Certified Arborist ON-0323A International Society of Arboriculture

Butternut Health Assessor No. 497 Ontario Ministry of Natural Resources

ISA Tree Risk Assessment Qualified International Society of Arboriculture

Ontario Wetland Evaluator (OWES) Ontario Ministry of Natural Resources

PROFESSIONAL EXPERIENCE

University of Guelph - The Arboretum Coordinator of Interpretive Programs

1991-1996 The Seed to Seed (Guelph) . *Proprietor*

1978-1991

University of Guelph - The Arboretum Manager of Tree and Shrub Collections and Plant Data

PROFESSIONAL DEVELOPMENT

.

2012

IML Resistograph Technical Workshop Town of Oakville

2012 Tree Planting BMP's and Changes to Development Manual Workshop *City of Kitchener*

> 2012 Ottawa Heritage Tree Workshop *Ontario Urban Forest Counci*l

2011 Erosion and Sediment Control Workshop

Toronto and Region Conservation Authority

2011 Soils and Urban Trees Conference Toronto Botanical Gardens

2007 Structural Soil and Care, Selection and Management of Urban Street Trees *Cornell University & City of Ithaca*

> 2004 Statistics Intergrating Estimation Method of Tree Risk Assessment Arbormaster Training Canada

TEACHING

Certified Arborist Program . Instructor International Society of Arboriculture

19

Resource Management Field Camp Sessional Lecturer . University of Guelph

Ecosystem Restoration Post Graduate Program . Guest Lecturer Niagara College

1995-1996 A Life Zone Approach to Schoolyard Naturalization Series Workshops *University of Guelph*

1978-1996 Natural Interpretation Workshops University of Guelph

COMMUNITY SERVICE

1990-1991 Trees For Guelph

ECOLGICAL RESTORATION

- Creditview Crossing Community Woodlot Management Plans (Brampton)
- · Jefferson Forest Community Edge Management Plans (Richmond Hill)
- Wrigley Canada Ravine Stewardship Plan (Toronto)
- Private Residential Stewardship Plans (Toronto)
- The Rosewood Condominium Stewardship Plan (Toronto)
- · Environment Canada Downsview Campus Naturalization Master Plan (Toronto)
- · Health Canada Campus Naturalization Master Plan (Toronto)
- Canada Centre for Inland Waters Campus Naturalization Master Plan (Burlington)
- Wellington Terrace Wetland Enhancement (Elora)
- · A.M. Cunningham Public School Naturalization (Hamilton)
- · Victory Public School Naturalization (Milton)
- Thornhill Woods Community Woodlot Edge Management Plans (Vaughan)
- Thornhill Ravines Community Valley Features Edge Management Plan (Vaughan)
- Upper Thornhill Estates Community Natural Systems Edge Management Plans (Vaughan)
- Vellore Village Woodlot Edge Management Plans (Vaughan)

ENVIRONMENTAL STUDIES

- · Jefferson Forest Community EIS (Richmond Hill)
- · Community Planning Area Subwatershed Study (Centre Wellington)
- Wetland Boundary Delineation (Erin)
- Sunset Hills Estates EIS (Woolwich)
- Valley Road Estates EIS (Guelph)
- Bird Landing EIS (Guelph)
- · River Systems Assessment Study (Guelph)
- Sawmill Valley EIS (Mississauga)
- Blue Heron Ridge EIS (Cambridge)
- Mount Pleasant GO Station EA (Brampton)
- ASECO Intergrated Systems EIS (Oakville)
- Functional Servicing Development Area Study (King)
- · King City East Buffer Strategy (King)
- MTRCA Woody Plant Selection Guidelines (Greater Toronto Bio-Region)
- · West Humber River Naturalization Plan (Toronto)
- · Highway 407 ETR (Toronto)
- E.T. Seton Park Naturalization Plan (Toronto)
- Brampton Sports Parks (Brampton)
- Brampton Vegetation Assessment (Brampton)

PUBLICATIONS

- Aboud, S. W. and H. Kock. 1994 (1996 Rev. ed.) A life zone approach to school yard naturalization: the Carolilian life zone. University of Guelph. Guelph, Ontario. 86 pp.
- Waldron, G.E., S. W. Aboud, J. D. Ambrose and G.A. Meyers. 1987. Shumard Oak (Quercus shumardii) in Canada. Can. Field Naturalist 101: 532 538.
- Ambrose, J.D. and S. W. Aboud. 1985. Status report on Castanea dentata. COSEWIC, Ottawa.
- Ambrose, J.D. and S. W. Aboud. 1983. Status report on Magnolia acuminata. COSEWIC, Ottawa.
- Ambrose, J.D. and S. W. Aboud. 1982a. Status report on Fraxinus quadrangulata COSEWIC, Ottawa
- Ambrose, J.D. and S. W. Aboud. 1982b. Status report on Ptelea trifoliata. COSEWIC, Ottawa.

Ryan Hamelin

M.Sc., B.Sc.(Env) Terrestrial and Wetland Ecologist

BIO

Ryan is an experienced ecologist with a diverse background in the public and private sectors. He has a proven track record of liaising with government agencies, engineers, landowners, and contractors to manage and complete multifaceted, complex projects. Ryan's strong project management and field ecology skills are successfully applied to wetland restoration, wetland evaluations, vegetation surveys, habitat surveys and water quality monitoring projects across southern Ontario.

SELECTED PROJECT EXPERIENCE

ECOLOGICAL RESTORATION

- Rondeau Wetland Restoration and Watershed Buffer Program (Chatham-Kent)
 *with Ontario Ministry of Natural Resources
- Carolinian Forest Tree Planting Project (Chatham-Kent)
 *with Ontario Ministry of Natural Resources

ENVIRONMENTAL STUDIES

- Rondeau Vegetation Monitoring Surveys (Chatham-Kent)
 *with Ontario Ministry of Natural Resources
- Near Shore Fish Habitat Evaluation (Simcoe County) *with Severn Sound Environmental Association
- Loon Surveys (Killarney) *with Ontario Ministry of Natural Resources
- Fish Habitat/Population Electrofishing surveys (Toronto Harour) *with Toronto and Region Conservation Authority
- Benthic Biomonitroing Surveys (Simcoe County)
 *with Severn Sound Environmental Association
- Ladysmith Wetland Evaluation (Lambton County)
 *with Ontario Ministry of Natural Resources

WATER QUALITY MONITORING

- Talbot Tract Water Quality Monitoring (Chatham-Kent) *with Ontario Ministry of Natural Resources
- Environ Property Water Quality Monitoring (St. Williams) *with Ontario Ministry of Natural Resources
- Provincial Water Quality Monitoring Network (Simcoe County) *with Severn Sound Environmental Association
- Provincial Ground Water Monitoring Network (Simcoe County)
 *with Severn Sound Environmental Association

EDUCATION

2012 M.Sc. Integrative Biology University of Guelph 2008 B.Sc. Environmental Science University of Guelph

PROFESSIONAL EXPERIENCE

2014-present Aboud & Associates Terrestrial and Wetland Ecologist

2013-2014 Ontario Ministry of Natural Resources *Coastal Wetland Biologist*

2013 Toronto & Region Conservation Authority Environmental Field Labourer

2006-2010 Severn Sound Environmental Association Environmental Technician

PROFESSIONAL CERTIFICATIONS 2013

Wetland Evaluation Training Course Ontario Ministry of Natural Resources

2013 Ecological Land Classification Training Course (ELC) Ontario Ministry of Natural Resources

PROFESSIONAL DEVELOPMENT

- 2014 Great Lakes Wetland Day
- · 2013 Wetland Graminoid Identification Workshop (Royal Botanical Gardens)
- · 2013 Ontario Fish Identification Workshop (Royal Ontario Museaum)
- 2013 Introduction to the Canadian Environmental Assessment Act (Canadian Environmental Assessment Agency)
- · 2012 Water Management & Wetland Restoration Training Course (OMNR)

EDUCATION

2007 B.Sc. Natural Resource Management University of Northern British Columbia 2004

Fish and Wildlife Technologist Diploma Sir Sanford Fleming College

PROFESSIONAL EXPERIENCE

2011-2014 Stantec Terrestrial Ecologist 2008.2010 Natural Resources Solutions Inc. Terrestrial and Wetland Ecologist 2006 Earl Rowe Provincial Park Natural Heritage Educator 2004 Ministry of Natural Resources Field Ecologist

2003 Wye Marsh Wildlife Centre *Outdoor Education/Naturalist*

PROFESSIONAL CERTIFICATIONS

Ecological Land Classification (ELC) Ontario Ministry of Natural Resources

ISA Certified Arborist International Society of Arboriculture

Cheryl-Anne Ross

Fish and Wildlife Technologist Dip., B.Sc. Wildlife Ecologist

BIO

Cheryl-Anne Ross has a comprehensive understanding of the natural environment and the tools that are used to evaluate it. Cheryl-Anne completed her Undergraduate degree in NREM-Wildlife and Fisheries Biology at the University of Northern British Columbia, has a Technical Diploma in Fish and Wildlife Technology from Sir Sandford Fleming College and a decade of experience in the public and private sectors. In addition to working as a Natural Heritage Educator at provincial parks, her professional experience includes working on residential and industrial development and renewable energy projects throughout Ontario. Cheryl-Anne conducts a broad range of natural heritage inventory and assessments including botanical inventories, ELC, species at risk reports, environmental assessments, environmental impact statements, and monitoring for wildlife (avian, herptiles and mammals) and wildlife habitat.

SELECTED PROJECT EXPERIENCE

OIL AND GAS DEVELOPMENT

- TransCanada Energy East Pipeline (Ontario) *with Stantec
- Payne Sarnia Pipeline (Sarnia) *with Stantec
- Natural Gas Development Project (Burlington.Oakville) *with Stantec
- Brantford Kirkwall Pipeline (Kirkwall) *with Stantec
- NOVA Genesis Pipeline Extension (Corunna) *with Stantec

RENEWABLE ENERGY

- Amherst Island Wind Farm (Amherst Island) *with Stantec
- Cedar Point Wind Farm (Forest) *with Stantec
- Bow Lake Wind Farm (Montreal River Harbour) *with Stanted
- Niagara Region Wind Centre (Niagara Region) *with Stantec

INDUSTRIAL DEVELOPMENT

- · Dundalk Industrial Park Municipal Class Environmental Assessment (Southgate)
- Erin Pit Extension (Orangeville) *with Stantec
- Industrial Development Project (Milton) *with Stantec
- NOVA 2020 Plant Expansion (Corunna) *with Stantec

RESIDENTIAL DEVELOPMENT

· Westside, Vista Hills, Clair Creek Meadows Developments (Waterloo) *with Stantec

MUNICIPAL INFRASTRUCTURE

· Hillsburgh Dam Municipal Class Environmental Assessment (Erin)

COMMUNITY SERVICE

2009 Ontario Streams *Spawning Survey* 2009 Ontario Public Interest Research Group *Tree Planter* 2004 Florida Panther National Wildlife Refuge *Invasive Plant Species Control*

ENVIRONMENTAL IMPACT STUDIES . WILDLIFE STUDIES

- Sunset Hills Estates Wildlife Studies (Maryhill)
- Martin Street School Environmental Impact Study (Milton)
- · Wellington Street Improvements Active Bird Nest Inventory (Guelph)
- · Listowel Environmental Impact Study (North Perth)
- Private Property Severance, Environmental Impact Study (Puslinch)
- Block 18 Woodlot Active Bird Nest Inventory (Vaughan)
- Elora Development Active Bird Nest Inventory (Centre Wellington)
- Rockwood Commercial Development Amphibian Habitat Assessment (Guelph/Eramosa)

Matthew lles

M.Sc., B.Sc. Biologist

BIO

Matthew is a well-rounded biologist with diverse experiences studying aquatic and terrestrial ecosystems in Europe, South America and Ontario. He has demonstrated an ability to design and implement research projects, in addition to working closely with indigenous communities, volunteers, landowners and other vested stakeholders, on conservation and ecology projects. An avid field ornithologist, Matthew has held positions and volunteered with the Canadian Wildlife Service, Bird Studies Canada and Long Point Bird Observatory.

SELECTED PROJECT EXPERIENCE

ORNITHOLOGY

- Nanaksar Gurdwara Gursikh Temple Breeding Bird Survey (Brampton)
- Caledon Structure (Bridge/Culvert) Program Nest Searches (Caledon)
- Bird Landing, breeding bird monitoring and protection measures (Guelph)
- · Caledon East Reservoir Nest Searches (Caledon)
- Courtice Road Breeding Bird Survey (Clarington)
- Stone Road Reconstruction Nest Search (Guelph)
- · Britannia Rd. Woodlot, forest bird breeding survey (Halton Region)
- French's Bridge Rehabilitation Nest Search (Puslinch)
- Perth County Rd. 313 Bridge, nesting swallow inventory (Perth County)
- Private Property Severance, 87 acre breeding bird survey (Bowmanville)
- Waterfowl capture, observation and study (Prince Edward County, Toronto, Hamilton, Wolfe Island, Lake St. Clair) *with Long Point Waterfowl and Canadian Wildlife Service
- Population counts and behavioral observations (Manitoulin Island) *with Long Point Waterfowl
- Golden-winged Warbler (SAR Thr.) capture, blood sampling, territory assessments (Elgin County) *with Bird Studies Canada
- Eastern Whip-poor-will (SAR Thr.) point count surveys (Elgin County) *with Bird Studies Canada
- Migration monitoring, including capture, banding, daily census (Kanata, Long Point) *with Innis Point Bird Observatory and Long Point Bird Observatory
- · Grey Jay nest searching (Algonquin Provincial Park) *with University of Guelph
- · Breeding ecology of Tree Swallows (Long Point) *with Long Point Bird Observatory/University of Guelph
- Inventorying rainforest birds (Ecuador) *with Global Vision International
- Hen Harrier nest searching (Isle of Man, UK) *with The Environmental Partnership

M.Sc. of Restoration Ecology of Terrestrial and Aquatic Environment University of Liverpool 2006 B.Sc. Zoology (with honours) University of Liverpool

EDUCATION

2007

PROFESSIONAL EXPERIENCE

2012 Long Point Waterfowl *Research Technician*

2012 Bird Studies Canada *Research Technician*

2012 Innis Point Bird Observatory *Bander-in-charge*

2008-2009 Global Vision International, Rainforest Conservation and Community Development Expedition *Field Staff and Biologist*

> 2007-2008 The Environment Partnership *Ecologist*

COMMUNITY SERVICE

2011-2012 Canadian Wildlife Service Waterfowl Research Technician

2012 Norris Lab University of Guelph Avian Technician

2012 Carleton University Entomology Lab Technician

2011-2012 Long Point Bird Observatory Avian Biologist

2010 Halton Region Conservation Authority *Casual Volunteer* 2009

Nazca Institute for Marine Research Marine Biologist

ENVIRONMENTAL IMPACT STUDIES (EIS)

- Sunset Hills Estates, Anuran call survey and Breeding bird survey, GIS, report (Maryhill)
- Lakeshore Boulevard West Development Natural Heritage Impact Study (Toronto)
- Hill Street Bridge Environmental Impact Study (Woolwich)
- Wellington Terrace Service Road Environmental Impact Statement (Centre Wellington)
- Private Property Severance, Anuran Call Survey, breeding bird survey, GIS, report (Puslinch)
- Woodlawn Road Development Environmental Impact Study (Guelph)
- Brock Road Development Environmental Impact Study (Puslinch)
- · Longyards Community Trail Impact Study (Vaughan)
- Gordon Street Development Natural Heritage Peer Review (Guelph)

BOTANY, STEWARDSHIP, HERPETOLOGY, MAMMALS

- Eden Park Butternut Restoration Monitoring Program (Hamilton)
- Woodlawn Road Development Environmental Impact Study (Guelph)
- Elmira Road Industrial Expansion Vegetation Inventory (Guelph)
- 11th Concession Road Development Vegetation Inventory (Hamilton)
- Habitat and vegetation assessments for Golden-winged Warbler and Blue-winged Warbler (Elgin County, Norfolk County) *with Bird Studies Canada
- Habitat stewardship and restoration, including tree sapling planting and invasive species control *with Long Point Bird Observatory
- Reptile and Amphibian Inventory (Ecuador) *with Global Vision International
- Surveying and stewardship for protected amphibian species, including great-crested newt (UK) *with The Environmental Partnership
- Surveying protected mammal species, including bats and water vole (UK)
 *with The Environmental Partnership

ENTOMOLOGY

- Dung beetle and benthic invertebrate communities in fragmented rainforest habitats (Ecuador) *with Global Vision International
- Butterfly Inventory (Ecuador) *with Global Vision International
- Effect of species-rich grassland translocation on invertebrate communities, with particular reference to Carabid beetles (Manchester, UK) *M.Sc. Research, University of Liverpool

MARINE BIOLOGY

- Willoughby Road Bridge Fish Rescue (Caledon)
- Arkell Dam Fish Rescue (Guelph)
- Artisanal lobster fisheries and by-catch (Ecuador) *with Nazca Institute for Marine Research
- Colonization of man-made substrates by an invasive barnacle species (Liverpool, UK) *with University of Liverpool
- Transition rates in sessile inter-tidal organisms (Liverpool, UK) *with University of Liverpool

PUBLICATIONS

Bracewell SA, Spencer M, Marrs RH, Iles M, Robinson LA (2012). Cleft, Crevice, or the Inner Thigh: 'Another Place' for the Establishment of the Invasive Barnacle Austrominius modestus (Darwin, 1854). PLoS ONE 7(11)

- Urban Forestry
- Ecological Restoration
- Landscape Architecture
- Environmental Studies
- Expert Opinion

591 Woolwich Street . Guelph . Ontario . N1H 3Y5 . T:519.822.6839 . F:519.822.4052 . info@aboudtng.com . www.aboudtng.com

APPENDIX C-5

Stage 1 Archaeological Assessment

Stage 1 Archaeological Assessment (Background Study and Property Inspection)

Hillsburgh Dam Bridge Municipal Class Environmental Assessment Study Part of Lot 24, Concession 7, Former Township of Erin Town of Erin, County of Wellington, Ontario

ORIGINAL

Prepared for:

Triton Engineering Services Limited 105 Queen Street West, Unit 14 Fergus, Ontario, N1M 1S6 Tel: 519-843-3920 Fax: 519-843-1943 http://www.tritoneng.on.ca

Archaeological Licence P392 (Paul David Ritchie) MTCS PIF P392-0117-2014 ASI File 14EA-189

November 3, 2014

Stage 1 Archaeological Assessment (Background Study and Property Inspection)

Hillsburgh Dam Bridge Municipal Class Environmental Assessment Study Part of Lot 24, Concession 7, Former Township of Erin Town of Erin, County of Wellington, Ontario

EXECUTIVE SUMMARY

Archaeological Services Inc (ASI) was contracted by Triton Engineering Services Limited on behalf of the Town of Erin to conduct a Stage 1 Archaeological Assessment (Background Study and Property Inspection) as part of the Hillsburgh Dam Bridge Municipal Class Environmental Assessment in the Town of Erin, Ontario. The dam bridge is located on Station Street in the Community of Hillsburgh, Town of Erin. The structure was constructed in 1917 and is in need of updating.

The Stage 1 background study determined that no previously registered archaeological sites are located within one kilometre of the study area. A review of the geography and history of the study area suggested that the study area has potential for the identification of Aboriginal and Euro-Canadian archaeological resources, depending on the degree to which soils have been disturbed.

The Stage 1 property inspection determined that the majority of the study area has been disturbed by previous dam construction and grading within the right-of-way (ROW). Small parts of the study area were documented to possess archaeological potential.

In light of these results, ASI makes the following recommendations:

- 1. Archaeological potential exists in small parts of the study area. These lands require Stage 2 archaeological assessment by test-pit survey at five metre intervals prior to any proposed disturbance;
- 2. A large part of the study area has been documented to have been disturbed by the previous dam construction and grading within the ROW. These areas do not have archaeological potential and do not require further archaeological assessment; and,
- 3. Should the proposed work extend beyond the current study area, then further Stage 1 assessment must be conducted to determine the archaeological potential of the surrounding lands.

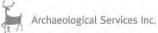
ARCHAEOLOGICAL SERVICES INC. ENVIRONMENTAL ASSESSMENT DIVISION

PROJECT PERSONNEL

Senior Project Manager:	Dr. Andrew Riddle, PhD [MTCS license P347] Senior Archaeologist, Manager, EA West Environmental Assessment Division
Project Coordinator:	Sarah Jagelewski, Hon. BA [MTCS license R405] <i>Staff Archaeologist, Assistant Manager</i> <i>Environmental Assessment Division</i>
Project Manager (licensee):	Paul David Ritchie, MA [MTCS licence P392] <i>Staff Archaeologist</i>
Field Director:	Paul David Ritchie
Field Advisor:	Peter Carruthers, MA [MTCS licence P163] <i>Senior Associate</i>
Report Preparation:	Paul David Ritchie
Graphics:	Blake Williams, MLitt [MTCS licence P383] Geomatics Specialist, Staff Archaeologist
	Paul David Ritchie
Report Reviewer:	Andrew Riddle
	Robert Pihl, MA, CAHP [MTCS licence PO57] Partner and Senior Archaeologist, Manager, Environmental Assessment Division

TABLE OF CONTENTS

	IVE SUMMARYi	
PROJEC	T PERSONNELii	
1.0	PROJECT CONTEXT1	
1.1	Development Context1	
1.2	Historical Context1	
1.2	2.1 Aboriginal Land Use and Settlement2	
1.2	2.2 Historic Euro-Canadian Land Use: Township Survey and Settlement	
1.2	2.3 Historic Map Review	,
1.2	2.4 Summary of Historical Context 5	
1.3		j
1.3	3.1 Current Land Use and Field Conditions	j
1.3	3.2 Geography6	,
1.3	3.3 Previous Árchaeological Research7	
1.3	3.4 Summary of Archaeological Context7	,
2.0	FIELD METHODS (PROPERTY INSPECTION)	5
3.0	ANALYSIS AND CONCLUSIONS	;
3.1	Analysis of Archaeological Potential	;
3.2	Analysis of Property Inspection Results	;
3.3	Conclusions)
4.0	RECOMMENDATIONS)
5.0	ADVICE ON COMPLIANCE WITH LEGISLATION)
6.0	WORKS CITED	
7.0	MAPS	
8.0	IMAGES	


LIST OF TABLES

LIST OF FIGURES

Figure 1: Hillsburgh Dam Bridge Stage 1 Study Area Location	15
Figure 2: Hillsburgh Dam Bridge Stage 1 Study Area (Approximate Location) overlaid on 1881 map of the	
Township of Erin	16
Figure 3: Hillsburgh Dam Bridge Stage 1 Study Area – Surficial Geology	17
Figure 4: Hillsburgh Dam Bridge Stage 1 Study Area – Soil Drainage	18
Figure 5: Hillsburgh Dam Bridge Stage 1 Study Area – Property Inspection Results	19

LIST OF PLATES

Plate 1: View southwest of study area. ROW is disturbed with exception of lands to the northwest of view.	
Disturbed ROW has no potential. Lands with potential require test-pit survey at five metre	
intervals	.20
Plate 2: View SSE of study area. ROW is disturbed from dam construction. No potential.	.20
Plate 3: View northwest of dam spillway. Area is disturbed. No potential	.20
Plate 4: View NNE of study area. Area is disturbed by dam construction and ROW grading. No potential	.20
Plate 5: View north of study area. ROW is disturbed. No potential	21

1.0 **PROJECT CONTEXT**

Archaeological Services Inc (ASI) was contracted by Triton Engineering Services Limited on behalf of the Town of Erin to conduct a Stage 1 Archaeological Assessment (Background Study and Property Inspection) as part of the Hillsburgh Dam Bridge Municipal Class Environmental Assessment in the Town of Erin, Ontario. The dam bridge is located on Station Street in the Community of Hillsburgh, Town of Erin (Figure 1). The structure was constructed in 1917 and is in need of updating.

The 2011 *Standards and Guidelines for Consultant Archaeologists* (S & G), Section 1, administered by the Ministry of Tourism, Culture and Sport (MTCS) discusses the objectives of a Stage 1 archaeological assessment as follows:

- To provide information about the geography, history, previous archaeological fieldwork and current land condition of the study area;
- To evaluate in detail the archaeological potential of the study area which can be used, if necessary, to support recommendations for Stage 2 archaeological assessment for all or parts of the property; and,
- To recommend appropriate strategies for Stage 2 archaeological assessment, if necessary.

This report describes the Stage 1 archaeological assessment that was conducted for this project and is organized as follows: Section 1.0 summarizes the background study that was conducted to provide the archaeological and historical context for the project study area; Section 2.0 addresses the field methods used for the property inspection that was undertaken to document its general environment, current land use history and conditions of the study area; Section 3.0 analyses the characteristics of the project study area and evaluates its archaeological potential; Section 4.0 provides recommendations for the next assessment steps; and the remaining sections contain other report information that is required by the S & G, e.g., advice on compliance with legislation, works cited, mapping and photo-documentation.

1.1 Development Context

All activities carried out during this assessment were completed in accordance with the *Environmental Assessment Act*, the Municipal Engineers' Association document *Municipal Class Environmental Assessment* (2000, as amended in 2007 and 2011), the *Ontario Heritage Act* and the S & G.

Authorization to carry out the activities necessary to complete this Stage 1 archaeological assessment was granted to ASI by Triton Engineering Services Limited on August 19, 2014.

1.2 Historical Context

The purpose of this section, according to the S & G, Section 7.5.7, Standard 1, is to describe the past and present land use and the settlement history and any other relevant historical information gathered through the Stage 1 background research. First, a summary is presented of the current understanding of the Aboriginal land use of the study area. This is followed by a review of the historical Euro-Canadian settlement history.

1.2.1 Aboriginal Land Use and Settlement

Southern Ontario has been occupied by human populations since the retreat of the Laurentide glacier, approximately 13,000 before present (BP) (Ferris 2013: 13). Populations at this time would have been highly mobile, inhabiting a boreal-parkland similar to the modern sub-arctic. By approximately 10,000 BP, the environment had progressively warmed (Edwards and Fritz 1988) and populations now occupied less extensive territories (Ellis and Deller 1990: 62-63).

Between approximately 10,000-5,500 BP, the Great Lakes basins experienced low-water levels and many sites which would have been located on those former shorelines were then submerged. This period produces the earliest evidence of heavy wood working tools and is indicative of greater investment of labour in felling trees for fuel, to build shelter, or to produce tools and is ultimately indicative of prolonged seasonal residency at sites. By approximately 8,000 BP, evidence exists for polished stone implements and worked native copper. The latter's source from the north shore of Lake Superior is evidence of extensive exchange networks. Between approximately 4,500-3,000 BP, there is evidence for investment of labour into social infrastructure and the establishment of band territories (Ellis *et al.* 1990; Ellis *et al.* 2009; *cf.* Brown 1995: 13).

Between 3,000-2,500 BP, populations continued with residential mobility harvesting seasonally available resources, including spawning fish. Exchange and interaction networks broaden at this time (Spence *et al.* 1990: 136, 138) and by approximately 2,000 BP, evidence exists for macro-band camps, focusing on the seasonal harvesting of resources (Spence *et al.* 1990: 155, 164). It is also during this period that maize was first introduced into southern Ontario, though it would have only supplemented people's diet (Birch and Williamson 2013: 13-15). Bands likely retreated to interior camps during the winter.

From approximately 1,000 BP until approximately 300 BP, lifeways became more similar to that described in early historical documents. Populations in the study area would have been Iroquoian speaking though full expression of Iroquoian culture is not recognised archaeologically until the fourteenth century AD. During the Early Iroquoian phase (AD 1000-AD 1300), the communal site is replaced by the village focussed on horticulture. Seasonal disintegration of the community for the exploitation of a wider territory and more varied resource base was still practised (Williamson 1990: 317). By the second quarter of the first millennium BP, during the Middle Iroquoian phase (AD 1300-AD 1450), this episodic community disintegration was no longer practised and populations now communally occupied sites throughout the year (Dodd *et al.* 1990: 343). In the Late Iroquoian phase (AD 1450-AD 1649) this process continued with the coalescence of these small villages into larger communities (Birch and Williamson 2013). Through this process, the socio-political organization of the Aboriginal Nations, as described historically by the French and English explorers who first visited southern Ontario, was developed.

The Credit River watershed was used intensively by Woodland period populations and this is demonstrated in the archaeological record for the area. These sites include those from more recent ancestral Huron-Wendat settlements dating from at least the beginning of the fourteenth century (Antrex site – ASI 2010) until the mid-sixteenth century (Emerson Springs site – Hawkins 2004; Wallace site – Crawford 2003). By the turn of the seventeenth century the north shore of Lake Ontario was devoid of permanent settlement and the Credit River and Etobicoke-Mimico Creeks populations are believed to have relocated to join either the Huron-Wendat Nation or perhaps more likely the Tionontaté (Petun) Nation (Birch and Williamson 2013).

By 1600, the Five Nations Iroquois, in particular the Seneca, were the principle group using the central north shore of Lake Ontario, in particular for hunting, fishing, and for participation in the fur trade. One of the main settlements was located near the mouth of the Rouge River, one of the two branches of the Toronto Carrying Place, which was the route that linked Lake Ontario to the upper Great Lakes through Lake Simcoe. The Huron-Wendat and Petun were eventually dispersed by the Five Nations Iroquois in 1649 at which point the Seneca mainly took over control of the region (Heidenreich 1990: 489; Ramsden 1990).

Compared to settlements of the New York Iroquois, the "Iroquois du Nord" occupation of the landscape was less intensive. Only seven villages are identified by the early historic cartographers on the north shore of Lake Ontario and they are documented as considerably smaller than those in New York State. The populations were agriculturalists, growing maize, pumpkins and squash. These settlements also played the important alternate role of serving as stopovers and bases for New York Iroquois travelling to the north shore of Lake Ontario for the annual beaver hunt (Konrad 1974).

Beginning in the mid-late seventeenth century, the Mississaugas began to replace the Seneca as the controlling Aboriginal group along the north shore of Lake Ontario since the Iroquois confederacy had overstretched their territory between the 1650s and 1670s (Williamson 2008). The Iroquois could not hold the region and agreed to form an alliance with the Mississauga peoples and share hunting territories with them (Williamson 2008). The Mississaugas traded with both the British and the French in order to have wider access to European materials at better prices, and acted as trade intermediaries between the British and tribes in the north. By 1805, the lands from Burlington Bay to the Etobicoke River north of Eglinton Avenue were known as the 'Mississauga Tract' (Boulton 1805: 48; Heritage Mississauga 2012: 18). The Mississaugas were also granted one mile (approximately 1.6 kilometres) on either side of the Credit River, Twelve Mile Creek and Sixteen Mile Creek. In 1818, the remainder of the Mississauga Tract was acquired by the Crown excluding the lands tracts flanking the Credit River, Twelve Mile Creek and Sixteen Mile Creek. In 1818, the remainder of the Mississauga Tract was acquired by the Crown excluding the lands tracts flanking the Credit River, Twelve Mile Creek and Sixteen Mile Creek. In 1820, the remainder of Mississauga land was surrendered except approximately 81 hectares (ha) along the Credit River (Heritage Mississauga 2012: 18).

1.2.2 Historic Euro-Canadian Land Use: Township Survey and Settlement

The first Europeans to arrive in the area were transient merchants and traders from France and England, who followed Aboriginal pathways and set up trading posts at strategic locations along the well-traveled river routes. All of these occupations occurred at sites that afforded both natural landfalls for Great Lakes traffic and convenient access, by means of the various waterways and overland trails, into the hinterlands. Early transportation routes followed existing Aboriginal trails, both along the lakeshore and adjacent to various creeks and rivers (ASI 2006).

Historically, the study area is located in the Former Township of Erin, County of Wellington in part of Lot 24, Concession 7.

The S & G stipulates that areas of early Euro-Canadian settlement (pioneer homesteads, isolated cabins, farmstead complexes), early wharf or dock complexes, pioneer churches and early cemeteries, are considered to have archaeological potential. Early historical transportation routes (trails, passes, roads, railways, portage routes), properties listed on a municipal register or designated under the *Ontario Heritage Act* or a federal, provincial, or municipal historic landmark or site are also considered to have archaeological potential.

For the Euro-Canadian period, the majority of early nineteenth century farmsteads (i.e., those which are arguably the most potentially significant resources and whose locations are rarely recorded on nineteenth century maps) are likely to be located in proximity to water. The development of the network of concession roads and railroads through the course of the nineteenth century frequently influenced the siting of farmsteads and businesses. Accordingly, undisturbed lands within 100 metres of an early settlement road are also considered to have potential for the presence of Euro-Canadian archaeological sites.

Erin Township.

The land within Erin Township was acquired by the British from the Mississaugas in 1818. The first township survey was undertaken in 1819, and the first legal settlers occupied their land holdings in the following year. The township was first named after a poetic name for Ireland, *Ierne*, mentioned by the Greek geographer Strabo. Erin was initially settled by the children of Loyalists, soldiers who had served during the War of 1812, and by immigrants from England, Scotland and Ireland (Armstrong 1985: 143; Erin Centennial Committee 1967; McMillan 1974; Rayburn 1997: 113; Smith 1846: 55-56).

Hillsburgh

This post office village was situated on the Grand River on part Lots 22 to 25 Concessions 7 and 8, Erin Township. The village was founded in the 1840s, when a tavern and sawmill were constructed by Hiram and Nazareth Hill. It became a post office village in 1851. Registered plans of subdivision for this village date from 1857-1862. It contained two grist mills, a woollen factory, a foundry and tannery. The village also contained four churches, four stores, three hotels, and a telegraph office. It was a station on the Canadan Pacific Railway, and the population was approximately 400 in 1873 (Crossby 1873: 145; Rayburn 1997: 158; Scott 1997: 102; Winearls 1991: 697)

Credit Valley Railway

The Credit Valley Railway was constructed in between 1877 and 1879. The project was backed by George Laidlaw and was intended to connect Toronto with Orangeville via Streetsville. Construction began in 1874, and over several subsequent years several branches were added to the proposed line. The first section of track from Parkdale (Toronto) to Milton was opened in 1877. The line was completed in 1881 but nearly bankrupted the company. In 1883, the line was taken over by the Canadian Pacific Railway (Heritage Mississauga 2009).

1.2.3 Historic Map Review

The 1881 *Illustrated Historical Atlas of Waterloo & Wellington Counties, Ontario* was reviewed to determine the potential for the presence of historic archaeological resources within the study area during the nineteenth century (Figure 2). It should be noted, however, that not all features of interest were mapped systematically in the Ontario series of historical atlases, given that they were financed by subscription, and subscribers were given preference with regard to the level of detail provided on the

maps. Moreover, not every feature of interest would have been within the scope of the atlases. Details of nineteenth century property owners are provided in Table 1.

Table 1: Nineteenth-century property owner(s) and historical features(s)					
	1881 Illustrated Historical Atlas of the Waterloo & Wellington Counties, Ontario				
Lot #	Concession #	Property Owner	Historical Feature(s)		
24	7	Gooderham & Worts			

The historic mapping also indicates that the study area is located in proximity to the historic village of Hillsburgh and was historically owned by Gooderham and Worts.

1.2.4 Summary of Historical Context

The background research determined that the study area has been occupied by Aboriginal peoples for millennia. The study area is located within the traditional territory of the ancestral Huron-Wendat and was subsequently utilised by the Five Nations Iroquois during the mid-late seventeenth century and then by Mississauga peoples until 1818.

The background research and historic mapping also demonstrates that the study area is situated within the Former Township of Erin and is in proximity to the historic village of Hillsburgh. The parcel of the study area was historically owned by Gooderham and Worts.

1.3 Archaeological Context

This section provides background research pertaining to previous archaeological fieldwork conducted within and in the vicinity of the study area, its environmental characteristics (including drainage, soils or surficial geology and topography, etc.), and current land use and field conditions. Three sources of information were consulted to provide information about previous archaeological research in the study area; the site record forms for registered sites housed at the MTCS; published and unpublished documentary sources; and the files of ASI.

1.3.1 Current Land Use and Field Conditions

The study area is predominantly existing right-of-way (ROW) however part of the dam structure extends beyond ROW property. The study area is situated upon a dam bridge between two ponds, and is located adjacent to the southwest of the historic village of Hillsburgh which is predominantly residences. The surrounding landscape of the study area is rural.

1.3.2 Geography

In addition to the known archaeological sites and historic features, the state of the natural environment is an important indicator of archaeological potential. Accordingly, a description of the study area geography, physiography and soils is provided below.

The S & G, Section 1.3.1, stipulates that primary water sources (lakes, rivers, streams, creeks, etc.), secondary water sources (intermittent streams and creeks, springs, marshes, swamps, etc.), ancient water sources (glacial lake shorelines indicated by the presence of raised sand or gravel beach ridges, relic river or stream channels indicated by clear dip or swale in the topography, shorelines of drained lakes or marshes, cobble beaches, etc.), as well as accessible or inaccessible shorelines (high bluffs, swamp or marsh fields by the edge of a lake, sandbars stretching into marsh, etc.) are characteristics that indicate archaeological potential.

Water has been identified as the major determinant of site selection and the presence of potable water is the single most important resource necessary for any extended human occupation or settlement. Since water sources have remained relatively stable in Ontario since 5,000 BP (Karrow and Warner 1990: Figure 2.16), proximity to water can be regarded as a useful index for the evaluation of archaeological site potential. Indeed, distance from water has been one of the most commonly used variables for predictive modeling of site location.

The S & G, Section 1.3.1, lists other geographic characteristics that can indicate archaeological potential including: elevated topography (eskers, drumlins, large knolls, plateaux), pockets of well-drained sandy soil, especially near areas of heavy soil or rocky ground, distinctive land formations that might have been special or spiritual places, such as waterfalls, rock outcrops, caverns, mounds, and promontories and their bases. Physical indicators of use may be present, such as burials, structures, offerings, rock paintings or carvings. Resource areas, including; food or medicinal plants (migratory routes, spawning areas) are also considered characteristics that indicate archaeological potential.

The study area is situated within the Hillsburgh Sandhills physiographic region of southern Ontario within a former spillway (Chapman and Putnam 1984). The Hillsburgh sandhills are a natural boundary on the southeastern flank of the Dundalk till plain and covers an area of approximately 16,576 hectares. This region was the first land exposed by the recession of the Laurentide glacier. The region has an elevation of between 427-488 metres above sea level and is characterised by rough topography, sandy materials and a flat-bottomed swampy valley intersection the moraine. Fine sand is the prevalent soil type (Chapman and Putnam 1984: 135-136).

Spillways are the former glacial meltwater channels. They are often found in association with moraines but in opposition are entrenched rather than elevated landforms. They are often, though not always, occupied by stream courses, the fact of which raises the debate of their glacial origin. Spillways are typically broad troughs floored wholly or in part by gravel beds and are typically vegetated by cedar swamps in the lowest beds (Chapman and Putnam 1984: 15).

Soils within the study area include Caledon fine sandy loam (Dept. of Agriculture 1962). Caledon fine sandy loam is a well-drained soil developed on gravelly material but are stonefree. This soil occurs on undulating topography with long smooth slopes. The soil profile has been documented to have very dark grayish brown (10YR 3/2) fine sandy loam Ah horizon with fine crumb structure, very friable consistency, stonefree at a depth of between 0-8 centimetres. This horizon overlies a yellowish brown

(10YR 5/4) fine sandy loam Ae1 horizon with weak fine subangular blocky texture, very friable and stone free at a depth of between 8-38 centimetres. This overlies a light yellowish brown (10YR 6/4) fine loamy sand Ae2 horizon with singe grain texture, loose, stonefree at a depth of between 38-66 centimetres. This overlies a dark yellowish brown (10YR 4/4) fine sandy loam Bt horizon with medium subangular blocky texture, friable at a depth of between 66-89 centimetres. This overlies a pale brown (10YR 6/3) gravel IIC horizon, single grain, loose texture, calcareous at a depth of 89+ centimeters (Hoffman *et al.* 1963: 36, 53).

Surficial geology information is presented in Figure 3. Soil drainage information for the study area is incomplete, however the available information is presented in Figure 4. The study area is underlain by areas of gravel. The study area includes areas of well-drained soil.

The study area is intersected by a tributary of the Credit River. The Credit River is approximately 90 kilometres long and its watershed features both Carolinian and Deciduous forests (CVCA n.d.). The watershed drains approximately 1000 square kilometres (CVCA 2006). The Credit River's headwaters originate at the Niagara Escarpment. The river transits the South Slope and Peel Plain physiographic regions until meeting its confluence with Lake Ontario at Port Credit in the Iroquois Plain physiographic region.

1.3.3 Previous Archaeological Research

In Ontario, information concerning archaeological sites is stored in the Ontario Archaeological Sites Database (OASD) maintained by the MTCS. This database contains archaeological sites registered within the Borden system. Under the Borden system, Canada has been divided into grid blocks based on latitude and longitude. A Borden block is approximately 13 kilometres east to west, and approximately 18.5 kilometres north to south. Each Borden block is referenced by a four-letter designator, and sites within a block are numbered sequentially as they are found. The study area under review is located in Borden block *AkHa*.

According to the OASD (MTCS 2014), no previously registered archaeological site is located within one kilometre of the study area.

According to the background research, no previous archaeological assessment has been conducted within 50 metres of the study area.

1.3.4 Summary of Archaeological Context

The study area is located in proximity to the historic village of Hillsburgh. A review of geography indicates that the study area includes a tributary of the Credit River and contains well-drained sandy soil. All these criteria indicate that the study area possesses potential for the recovery of Aboriginal and Euro-Canadian archaeological resources, depending on the degree to which the natural topography and soils in the study area have been disturbed by historic and modern development.

2.0 FIELD METHODS (PROPERTY INSPECTION)

The Stage 1 property inspection was conducted by Paul David Ritchie (P392) and Peter Carruthers (P163), both of ASI, on October 23, 2014, in order to gain first-hand knowledge of the geography, topography, and current conditions and to evaluate and map archaeological potential of the study area. It was a visual inspection only and did not include excavation or collection of archaeological resources.

Weather conditions for the inspection were clear skies with a temperature of approximately 17 degrees Celsius and were deemed acceptable. Previously identified features of archaeological potential were examined, additional features of archaeological potential not visible on mapping were identified and documented as well as any features that could affect assessment strategies. Field observations are compiled onto the maps of the study area in Section 7.0 (Figure 5), and associated photography is presented in Section 8.0 (Plates 1-5).

3.0 ANALYSIS AND CONCLUSIONS

The historical and archaeological contexts were analyzed to help determine the archaeological potential of the study area. A summary of the archaeological potential of the study area is presented in Section 3.1 of this report, and an evaluation of the property inspection results is presented in Section 3.2.

3.1 Analysis of Archaeological Potential

The S & G, Section 1.3.1, lists characteristics that indicate where archaeological resources are most likely to be found, and archaeological potential is confirmed when one or more features of archaeological potential are present. Accordingly, the study area meets the following criteria used for determining archaeological potential:

- Water source: primary, secondary, or past water source (e.g. tributary of Credit River; spillway);
- Well-drained sandy soil (e.g. Caledon fine sandy loam); and,
- Historic settlement (e.g. village of Hillsburgh)

These criteria characterize the study area as having potential for the identification of Aboriginal and Euro-Canadian archaeological resources, depending on the degree of disturbance.

3.2 Analysis of Property Inspection Results

A majority of the study area has been previously disturbed by construction of the existing dam as well as grading associated with the ROW (Figure 5: areas marked in yellow). To the north and south of the dam along the edges of the ROW property, lands were identified that possess archaeological potential (Figure 5: areas marked in green). These lands will require Stage 2 archaeological assessment by test-pit survey prior to any proposed disturbance.

3.3 Conclusions

The Stage 1 background study determined that no previously registered archaeological sites are located within one kilometre of the study area. A review of the geography and history of the study area suggested that the study area has potential for the identification of Aboriginal and Euro-Canadian archaeological resources, depending on the degree to which soils have been disturbed.

The Stage 1 property inspection determined that the majority of the study area has been disturbed by previous dam construction and grading within the ROW. Small parts of the study area were documented to possess archaeological potential.

4.0 **RECOMMENDATIONS**

In light of the results of this assessment, ASI makes the following recommendations:

- 1. Archaeological potential exists in small parts of the study area (Figure 5: areas marked in green). These lands require Stage 2 archaeological assessment by test-pit survey at five metre intervals prior to any proposed disturbance;
- 2. A large part of the study area has been documented to have been disturbed by the previous dam construction and grading within the ROW (Figure 5: areas marked in yellow). These areas do not have archaeological potential and do not require further archaeological assessment; and,
- 3. Should the proposed work extend beyond the current study area then further Stage 1 assessment must be conducted to determine the archaeological potential of the surrounding lands.

Notwithstanding the results and recommendations presented in this study, ASI notes that no archaeological assessment, no matter how thorough or carefully completed, can necessarily predict, account for, or identify every form of isolated or deeply buried archaeological deposit. In the event that archaeological remains are found during subsequent construction activities, the consultant archaeologist, approval authority, and the Cultural Programs Unit of the MTCS should be immediately notified.

5.0 ADVICE ON COMPLIANCE WITH LEGISLATION

ASI advises compliance with the following legislation:

• This report is submitted to the Minister of Tourism, Culture and Sport as a condition of licensing in accordance with Part VI of the *Ontario Heritage Act*, R.S.O. 1990, c 0.18. The report is reviewed to ensure that it complies with the standards and guidelines that are issued by the Minister, and that the archaeological fieldwork and report recommendations ensure the conservation, protection and preservation of the cultural heritage of Ontario. When all matters relating to archaeological sites within the project area of a development proposal have been addressed to the satisfaction of the MTCS, a letter will be issued by the ministry stating that there are no further concerns with regard to alterations to archaeological sites by the proposed development;

- It is an offence under Sections 48 and 69 of the *Ontario Heritage Act* for any party other than a licensed archaeologist to make any alteration to a known archaeological site or to remove any artifact or other physical evidence of past human use or activity from the site, until such time as a licensed archaeologist has completed archaeological fieldwork on the site, submitted a report to the Minister stating that the site has no further cultural heritage value or interest, and the report has been filed in the Ontario Public Register of Archaeology Reports referred to in Section 65.1 of the *Ontario Heritage Act*.
- Should previously undocumented archaeological resources be discovered, they may be a new archaeological site and therefore subject to Section 48 (1) of the *Ontario Heritage Act*. The proponent or person discovering the archaeological resources must cease alteration of the site immediately and engage a licensed consultant archaeologist to carry out archaeological fieldwork, in compliance with sec. 48 (1) of the *Ontario Heritage Act*; and
 - The *Funeral, Burial and Cremation Services Act*, 2002, S.O. 2002, c.33 requires that any person discovering human remains must notify the police or coroner.

6.0 WORKS CITED

Archaeological Services Inc. (ASI)

- 2006 Historical Overview and Assessment of Archaeological Potential Don River Watershed, City of Toronto.
- 2010 Report on the Salvage Excavation of the Antrex Site (AjGv-38), City of Mississauga, Regional Municipality of Peel, Ontario.

Armstrong, F.H.

1985 Handbook of Upper Canadian Chronology. Toronto: Dundurn Press.

Birch, J. and R.F. Williamson

2013 *The Mantle Site: An Archaeological History of an Ancestral Wendat Community.* Lanham: Rowman & Littlefield Publishers, Inc.

Boulton, D'A.

1805 *Sketch of His Majesty's Province of Upper Canada*. London: C. Rickaby (reprinted in Toronto by the Baxter Publishing Company, 1961).

Brown, J.

1995 On Mortuary Analysis – with Special Reference to the Saxe-Binford Research Program. In: Regional Approaches to Mortuary Analysis, edited by L. A. Beck. NewYork: Plenum Press, pp. 3-23.

Chapman, L. J. and F. Putnam

1984 *The Physiography of Southern Ontario*. Ontario Geological Survey, Special Volume 2. Toronto: Ontario Ministry of Natural Resources.

Crawford, G.

2003 The Wallace Site (AkGx-1), 1984 and 1985.

Credit Valley Conservation Authority (CVCA)

- n.d. Watershed Science. < http://www.creditvalleyca.ca/watershed-science/our-watershed/>
- 2006 *Watershed Report Card.* < http://www.creditvalleyca.ca/wpcontent/uploads/2011/02/WRCard-Detailed.pdf>

Crossby, P.A.

1873 Lovell's Gazetteer of British North America. Montreal: John Lovell.

Department of Agriculture

1962 1:63,360. Soil Map of Wellington County, Ontario. South Sheet. Soil Survey Report No. 5.

Dodd, C.F., D.R. Poulton, P.A. Lennox, D.G. Smith and G.A. Warrick.

- 1990 The Middle Ontario Iroquoian Stage. In: *The Archaeology of Southern Ontario to A.D.* 1650. Edited by: C.J. Ellis and N. Ferris. Occasional Publication of the London Chapter, OAS Number 5. London: Ontario Archaeological Society Inc., pp. 321-360.
- Edwards, T.W.D. and P. Fritz
 - 1988 Stable-isotope palaeoclimate records from southern Ontario, Canada: comparison of results from marl and wood. *Canadian Journal of Earth Sciences*, 25: 1397-1406
- Ellis, C.J. and D.B. Deller
 - 1990 Paleo-Indians. In: *The Archaeology of Southern Ontario to A.D. 1650*. Edited by: C.J. Ellis and N. Ferris. Occasional Publication of the London Chapter, OAS Number 5. London: Ontario Archaeological Society Inc., pp. 37-64.
- Ellis, C.J., I.T. Kenyon and M.W. Spence
 - 1990 The Archaic. In: *The Archaeology of Southern Ontario to A.D. 1650*. Edited by: C.J. Ellis and N. Ferris. Occasional Publication of the London Chapter, OAS Number 5. London: Ontario Archaeological Society Inc., pp. 65-124.

Ellis, C.J., P.A. Timmins and H. Martelle

2009 At the Crossroads and Periphery: The Archaic Archaeological Record of Southern Ontario. In: *Archaic Societies: Diversity and Complexity across the Midcontinent*. Edited by: T.E. Emerson, D.L. McElrath and A.C. Fortier. Albany, New York: State University of New York Press, pp. 787-837.

Erin Centennial Committee

1967 Erin Centennial History 1842-1967 (no publisher cited).

Ferris, N.

2013 Introduction: Seeing Ontario's Past Archaeologically. In: *Before Ontario: The Archaeology of a Province*. Edited by: M.K. Munson and S.M. Jamieson. Montreal & Kingston: McGill-Queen's University Press, pp. 3-23.

Hawkins, A.L.

2004 Report on the 2004 Investigations at the Emmerson Springs Village (AkGx-5), Town of Halton Hills, Ontario, under License P081-002 and P081-004.

Heidenrich, C.E.

1990 History of the St. Lawrence-Great Lakes Area to A.D. 165. In: *The Archaeology of Southern Ontario to A.D. 1650*. Edited by: C.J. Ellis and N. Ferris. Occasional Publication of the London Chapter, OAS Number 5. London: Ontario Archaeological Society Inc., pp. 475-492.

Heritage Mississauga

2012 *Heritage Guide: Mississauga*. Heritage Mississauga: Mississauga <http://www.heritagemississauga.com/assets/Heritage%20Guide%20-%20Final%20-%202012.pdf>

Hoffman, D.W., B.C. Matthews and R.E. Wicklund

1963 *Soil Survey of Wellington County, Ontario*. Report No. 35 of the Ontario Soil Survey. Guelph, Ontario: Department of Agriculture.

Karrow, P.F., and B.G. Warner

1990 The Geological and Biological Environment for Human Occupation in Southern Ontario. In *The Archaeology of Ontario to A.D. 1650*. Edited by C.J. Ellis and N. Ferris, pp. 5-36. Occasional Publication 5. London Chapter, Ontario Archaeological Society, London.

Konrad, V.A.

1974 *Iroquois Villages on the North Shore of Lake Ontario, 1665-1687.* Paper Presented at the Fall Meeting of the Ontario Historical Geographers. November 9, 1974, Carleton University, Ottawa, Ontario.

McMillan, C.J.

Ministry of Consumer Services

2002 Funeral, Burial and Cremation Services Act

Ministry of Culture

2005 Ontario Heritage Act.

Ministry of Environment

1990 Environmental Assessment Act

Ministry of Tourism and Culture

2011 *Standards and Guidelines for Consultant Archaeologists*. Cultural Programs Branch, Ontario Ministry of Tourism and Culture, Toronto, Ontario.

²⁰⁰⁹ Heritage Mississauga. <www.heritagemississauga>

¹⁹⁷⁴ Early History of the Township of Erin. Cheltenham: Boston Mills Press.

•	urism, Culture and Sport (MTCS) Email communication, Rob von Bitter, MTCS Data Coordinator, October 28, 2014.
Municipal Engi 2000	neers Association Municipal Class Environmental Assessment [as amended in 2007 and 2011]
Parsell, H. & C 1881	o Illustrated Historical Atlas of Waterloo & Wellington Counties, Ontario 1881-1877
Ramsden, P.G. 1990	The Hurons: Archaeology and Culture History. In: <i>The Archaeology of Southern Ontario to A.D. 1650</i> . Edited by: C.J. Ellis and N. Ferris. Occasional Publication of the London Chapter, OAS Number 5. London: Ontario Archaeological Society Inc., pp. 361-384.
Rayburn, A. 1997	Place Names of Ontario. Toronto: University of Toronto Press.
Scott, D.E. 1997	Ontario Place Names. The Historical, Offbeat or Humorous Origins of More Than 1,000 Communities. Edmonton: Lone Pine Publishing.
Smith, W.H. 1846	Smith's Canadian Gazetteer. Toronto: H. & W. Roswell.
Spence, M.W., 1990	R.H. Pihl and C. Murphy Cultural Complexes of the Early and Middle Woodland Periods. In: <i>The Archaeology of</i> <i>Southern Ontario to A.D. 1650</i> . Edited by: C.J. Ellis and N. Ferris. Occasional Publication of the London Chapter, OAS Number 5. London: Ontario Archaeological Society Inc., pp. 125-170.
Williamson, R. 1990	F. The Early Iroquoian Period of Southern Ontario. In: <i>The Archaeology of Southern</i> <i>Ontario to A.D. 1650</i> . Edited by: C.J. Ellis and N. Ferris. Occasional Publication of the London Chapter, OAS Number 5. London: Ontario Archaeological Society Inc., pp. 291- 320.
Williamson, R. 2008	F. (Ed.) Toronto: An Illustrated History of its First 12,000 Years. Toronto: James Lorimer & Co.

- Winearls, J.
 - 1991 *Mapping Upper Canada 1780-1867. An Annotated Bibliography of Manuscript and Printed Maps.* Toronto: University of Toronto Press.

7.0 MAPS

I I I I I I I I I I I I I I I I I I I	Image: second
/	BASE: Wellington County Erin Township 1881
1	0 450
1	Metres
1	ASI PROJECT NO.: 14EA-189 DRAWN BY: BW PDR DATE: 21 Oct 2014 FILE: 14EA189_Fig2_1881
1/1	Archaeological Services Inc.
11	528 Bathurst St. T 416-966-1069 Toronto, Ontario F 416-966-9723
A CONTRACTOR	Canada, M5S 2P9 info@iASI.to/www.iASI.to

Path: X:\2014 Projects\EA\14EA-189_190 Hillsburgh Dam\View\14EA189_workspace.mxd

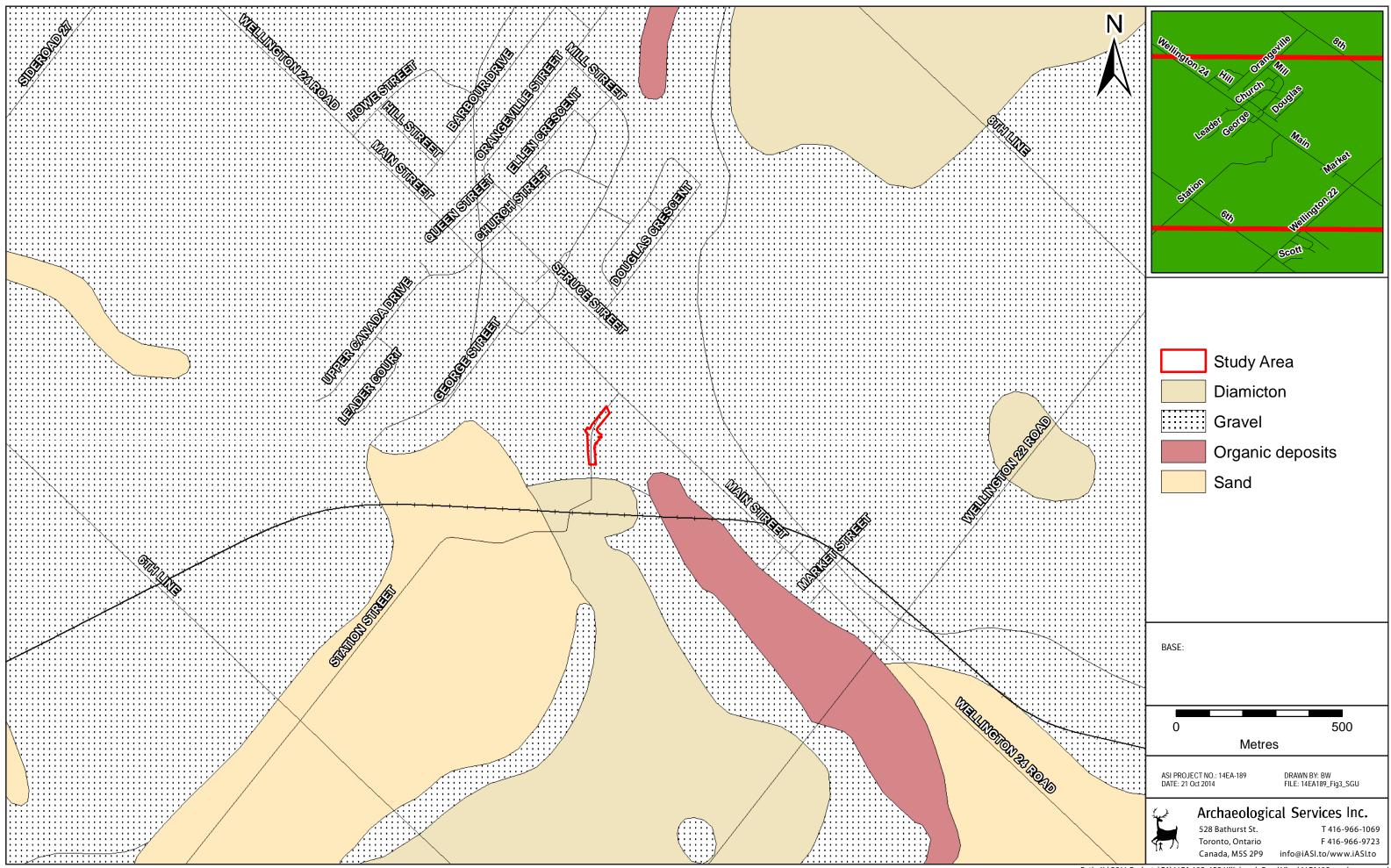


Figure 3: Hillsburgh Dam Bridge Stage 1 Study Area - Surficial Geology

Path: X:\2014 Projects\EA\14EA-189_190 Hillsburgh Dam\View\14EA189_workspace.mxd

Figure 4: Hillsburgh Dam Bridge Stage 1 Study Area - Soil Drainage

	Atennologia and a second and a
	 Study Area No Data Well Drained Imperfectly Drained Poorly Drained Very Poorly Drained
	BASE:
	0 500 Metres
A9789	ASI PROJECT NO.: 14EA-189 DATE: 21 Oct 2014 DRAWN BY: BW FILE: 14EA189_Fig4_Drain Archaeological Services Inc. 528 Bathurst St. T 416-966-1069 Toronto, Ontario F 416-966-9723 Canada, M5S 2P9 info@iASI.to/www.iASI.to

Path: X:\2014 Projects\EA\14EA-189_190 Hillsburgh Dam\View\14EA189_workspace.mxd

Figure 5: Hillsbugh Dam Bridge Stage 1 Study Area - Property Inspection Results

	Asing the second
100	Study Area
	Photo Number and Location
	Archaeological Potential
	Disturbed- No Potential
	BASE: Ortho Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community
in sa da	0 50
the state	Metres
F Jacks	ASI PROJECT NO.: 14EA-189 DRAWN BY: BW DATE: 29 Oct 2014 FILE: 14EA189_Fig5_Stg1
	Archaeological Services Inc.
atmapping, Aerogrid, IGN,	528 Bathurst St. T 416-966-1069 Toronto, Ontario F 416-966-9723 Canada, M55 2P9 info@iASI.to/www.iASI.to
CONTRACTOR OF A DECK	Canada, MJJ 27 9 IIII U@IASI.LU/ WWW.IASI.LU

Path: X:\2014 Projects\EA\14EA-189_190 Hillsburgh Dam\View\14EA189_workspace.mxd

8.0 IMAGES

Plate 1: View southwest of study area. ROW is disturbed with exception of lands to the northwest of view. Disturbed ROW has no potential. Lands with potential require test-pit survey at five metre intervals.

Plate 2: View SSE of study area. ROW is disturbed from dam construction. No potential.

Plate 3: View northwest of dam spillway. Area is disturbed. No potential.

Plate 4: View NNE of study area. Area is disturbed by dam construction and ROW grading. No potential.

Plate 5: View north of study area. ROW is disturbed. No potential.

APPENDIX C-6

Cultural Heritage Evaluation Report and Heritage Impact Assessment Cultural Heritage Evaluation and Heritage Impact Assessment: Hillsburgh Dam Bridge

Station Street over the Spillway Separating Hillsburgh Pond and Ainsworth Pond Lot 24, Concession VII Town of Erin, Wellington County, Ontario Structure No. 2064

Prepared for:

Triton Engineering Services Limited

105 Queen Street West, Unit 14 Fergus, ON N1N 1S6 Tel. (519) 843-3920 Fax (519) 843-1943

ASI File 14EA-190

November 2014

Cultural Heritage Evaluation and Heritage Impact Assessment: Hillsburgh Dam Bridge

Station Street over the Spillway Separating Hillsburgh Pond and Ainsworth Pond Lot 24, Concession VII Town of Erin, Wellington County, Ontario Structure No. 2064

EXECUTIVE SUMMARY

Archaeological Services Inc. (ASI) was contracted by Triton Engineering Services Limited to conduct a Cultural Heritage Evaluation and Heritage Impact Assessment of the Hillsburgh Dam Bridge. This report will establish the cultural heritage significance of the structure and assess impacts of the proposed undertaking in consideration of its determined cultural heritage value. This assessment is being conducted under the Municipal Class Environment Process. The bridge carries one lane each of eastbound and westbound Station Street traffic over the spillway separating Hillsburgh Pond and Ainsworth Pond in the Town of Erin, Ontario (Figure 1). According to available bridge documentation, the Hillsburgh Dam Bridge was built in 1917 (Town of Erin Bridge Inventory 2013).

Based on the results of archival research, an analysis of bridge design and construction in Ontario, field investigations and heritage evaluation, the Hillsburgh Dam Bridge was determined to retain cultural heritage value following application of Regulation 9/06 of the *Ontario Heritage Act*. Its heritage significance centres on its artistic merit, historical and contextual value, location on the Hillsburgh Dam, its early construction date and associations with Gooderham and Worts as well as general historic settlement in the region. As such, the structure was found to meet at least one of the criteria of Regulation 9/06 under the *Ontario Heritage Act*.

Following the evaluation of potential impacts on the heritage resource (see Table 3), it was determined that Conservation Alternatives 1 - 3 are the preferred alternatives, given that no impacts are expected to the heritage resource and its identified heritage attributes, with Alternative 1 being the most preferred. The remaining conservation alternatives (4 - 9) have a range of impacts, with Alternatives 8 and 9 being the least preferred options given the level and nature of the impacts resulting from the removal of the bridge.

Given the identified heritage value of the Hillsburgh Dam Bridge, the following recommendations and mitigation measures should be considered and implemented:

- 1. Conservation Alternatives 1 -3 are the preferred alternatives, with Alternative 1 being the most preferred. As part of the selection of the preferred alternatives as part of the Environmental Assessment, a clear rationale for the proposed course of action should be documented.
- 2. This report should be filed with the heritage staff at the Town of Erin, Wellington County Museum and Archives, the Archives of Ontario, and other local heritage stakeholders that may have and interest in this project.
- 3. This report should be filed with the Ministry of Tourism, Culture and Sport for review and comment.

- Should retention of the bridge be chosen as the preferred alternative (one of Conservation Alternatives 1 – 7), the character-defining elements identified in Section 8.1 should be retained and treated sympathetically.
- 5. Should replacement of the bridge be chosen as the preferred alternative (Conservation Alternative 8 or 9), three mitigation options should be considered:
 - a. Replacement/removal of existing bridge and construction of a new bridge with replication of the appearance of the heritage bridge in the new design, with allowances for the use of modern materials. The character-defining elements identified in Section 8.1 should be considered for replication.
 - b. Replacement/removal of existing bridge and construction of a new bridge with historically sympathetic design qualities to the heritage bridge, with allowances for the use of new technologies and materials.
 - c. In addition to (a) and (b), development of a commemorative strategy, such as plaquing, may be appropriate.
- 6. Should replacement of the bridge be chosen a documentation report should be completed by a Cultural Heritage Specialist and filed with the Town of Erin, the Archives of Ontario, and any other local heritage stakeholders that may have an interest in this project.

ARCHAEOLOGICAL SERVICES INC. CULTURAL HERITAGE DIVISION

PROJECT PERSONNEL

Senior Project Manager:	Annie Veilleux, MA <i>Cultural Heritage Specialist</i> <i>and Manager of the Cultural Heritage Division</i>
Project Manager:	Joel Konrad, Ph.D. <i>Cultural Heritage Specialist</i>
Cultural Heritage Specialist:	Joel Konrad
Project Coordinator:	Sarah Jagelewski, Hon. BA <i>Staff Archaeologist and</i> <i>Assistant Manager of the Environmental</i> <i>Assessment Division</i>
Project Administrator:	Carol Bella, Hon. BA <i>Research Archaeologist</i>
Archival Research:	Joel Konrad
Report Preparation:	Joel Konrad
Graphics Preparation:	Blake Williams, MLitt Geomatics Specialist
	Joel Konrad
Report Reviewer:	Annie Veilleux

TABLE OF CONTENTS

EXECUTIVE SUMMARY	i#
PROJECT PERSONNEL.	iii#
TABLE OF CONTENTS	iv#
1.0# INTRODUCTION	1#
2.0# LEGISLATION AND POLICY CONTEXT.	2#
2.1# Municipal Context and Policies	2#
2.2# Cultural Heritage Evaluation and Heritage Impact Assessment Report	4#
3.0# HISTORICAL CONTEXT AND CONSTRUCTION	5#
3.1# Introduction	5#
3.2 # Local History and Settlement	5#
3.2.1# Erin Township	
3.2.2 [#] Hillsburgh	6#
3.3 # History of the Study Area, Station Street, and Previous Bridge Crossings	6#
3.4# Bridge Construction	
3.4.1# Early Bridge Building in Ontario	10#
3.4.2# Construction of the Hillsburgh Dam Bridge	
4.0# EXISTING CONDITIONS AND INTEGRITY	
4.1# Comparative Geographic and Historic Context of Rigid Frame Bridges	12#
4.2# Additional Cultural Heritage Resources	
5.0# HERITAGE EVALUATION OF THE HILLSBURGH DAM BRIDGE	13#
6.0# ALTERNATIVES TO BE CONSIDERED FOR HERITAGE BRIDGES AS PART OF THE ENVIRONMENTAL	
ASSESSMENT PROCESS	14#
7.0# ENVIRONMENTAL ASSESSMENT OPTIONS	15#
7.1# Evaluation of Impacts	15#
8.0# CONCLUSIONS	
8.1# Summary Statement of Cultural Heritage Value	
9.0# RECOMMENDATIONS	
10.0# REFERENCES	
APPENDIX A: Photographic Plates	22#
APPENDIX B: Town of Erin Bridge Inventory	

LIST OF FIGURES

Figure 1: Location of the Study Area	1#
Figure 2: Subject bridge located on 1877 mapping	8#
Figure 3: Subject bridge located on 1902 mapping	8#
Figure 4: Subject bridge located on 1906 mapping	
Figure 5: Subject bridge located on 1937 mapping	8#
Figure 6: Subject bridge located on 1952 mapping	9#
Figure 7: Subject bridge located on 1954 aerial mapping	
Figure 8: Subject bridge located on 1979 mapping	
Figure 9: Subject bridge located on 1994 mapping	
Figure 7: Site Plan of the subject bridge, 2012.	

LIST OF TABLES

Table 1: Evaluation of the Hillsburgh Dam Bridge using Ontario Heritage Act Regulation 9/06	13#
Table 2: Evaluation of the Potential Impacts of Bridge Improvement Alternatives on the Cultural Heritage	
Resource and Identified Heritage Attributes	16#

1.0 INTRODUCTION

Archaeological Services Inc. (ASI) was contracted by Triton Engineering Services Limited to conduct a Cultural Heritage Evaluation and Heritage Impact Assessment of the Hillsburgh Dam Bridge. This report will establish the cultural heritage significance of the structure and assess impacts of the proposed undertaking in consideration of its determined cultural heritage value. This assessment is being conducted under the Municipal Class Environment Process. The bridge carries one lane each of eastbound and westbound Station Street traffic over the spillway separating Hillsburgh Pond and Ainsworth Pond in the Town of Erin, Ontario (Figure 1). According to available bridge documentation, the Hillsburgh Dam Bridge was built in 1917 (Town of Erin Bridge Inventory 2013).

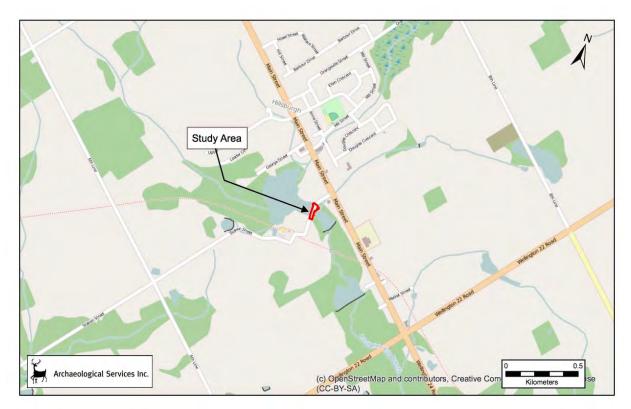


Figure 1: Location of the Study Area. Base Map: ©OpenStreetMap and contributors, Creative Commons-Share Alike License (CC-BY-SA ESRI Street Maps)

The following report is presented as part of an approved planning and design process subject to Environmental Assessment (EA) requirements. This portion of the EA study is intended to address the proposed replacement/rehabilitation of the subject structure. The principal aims of this report are to:

- Describe the methodology that was employed and the legislative and policy context that guides heritage evaluations of bridges over 40 years old;
- Provide an historical overview of the design and construction of the bridge within the broader • context of the surrounding township and bridge construction generally;
- Describe existing conditions and heritage integrity;

- Evaluate the bridge within Regulation 9/06 of the *Ontario Heritage Act* and draw conclusions about the heritage attributes of the structure; and
- Assess impacts of the undertaking, ascertaining sensitivity to change in the context of identified heritage attributes and recommend appropriate mitigation measures.

2.0 LEGISLATION AND POLICY CONTEXT

Infrastructure projects have the potential to impact cultural heritage resources in a variety of ways. These include loss or displacement of resources through removal or demolition and the disruption of resources by introducing physical, visual, audible or atmospheric elements that are not in keeping with the resources and/or their setting.

A 40-year-old threshold is used as a guiding principle when considering cultural heritage resources in the context of improvements to specified areas. While identification of a resource that is 40 years old or older does not confer outright heritage significance, this threshold provides a means to collect information about resources that may retain heritage value. Similarly, if a resource is slightly younger than 40 years old, this does not preclude the resource from retaining heritage value.

The analysis used throughout the cultural heritage resource assessment process addresses cultural heritage resources under various pieces of legislation and their supporting guidelines:

- Environmental Assessment Act (R.S.O. 1990, Chapter E.18)
 - Guideline for Preparing the Cultural Heritage Resource Component of Environmental Assessments (MCC 1992)
 - Guidelines on the Man-Made Heritage Component of Environmental Assessments (MCR 1981)
- *Ontario Heritage Act* (R.S.O. 1990, Chapter O.18) and a number of guidelines and reference documents prepared by the Ministry of Tourism and Culture (MTC):
 - o Ontario Heritage Tool Kit (MCL 2006)
 - Screening for Impacts to Built Heritage and Cultural Heritage Landscapes (November 2010)

2.1 Municipal Context and Policies

2.1.1 The Town of Erin Official Plan

The *Town of Erin Official Plan* outlines existing policies in the municipality pertaining to cultural heritage resources. Section 3.3 of the plan provides a "framework for the identification, protection and enhancement of the Towns heritage resources" (Town of Erin 2012: 14).

This plan identifies specific objectives pertaining to the identification and conservation of heritage resources. These include

a) To encourage the protection of those heritage resources which contribute in a significant way, to the identity and the character of the town;

- b) To encourage the maintenance, restoration and enhancement of buildings, structures, areas or sites in Erin which are considered to be of significant architectural, historical or archaeological value; and
- c) To encourage new development, redevelopment and public works to be sensitive to, and in harmony with, Erin's heritage resources.

Heritage resources are described in section 3.3.3 as:

- a) A property or area of historic value or interest, possessing one of the following attributes:
 - i) An example of the Town's past social, cultural, political, technological or physical development;
 - ii) A representative example of the work of an outstanding local, national or international personality;
 - A property associated with a person who has made a significant contribution to the social, cultural, political, economic, technological or physical development of the Town, County, Province or Country
 - iv) A property which dates from an early period in the Town's development
- b) A property or area of architectural value or interest, possessing one of the following attributes:
 - i) A representative example of a method of construction which was used during a certain time period or is rarely used today;
 - ii) A representative example of an architectural style, design, or period of building;
 - iii) An important Town landmark;
 - iv) A work of substantial engineering merit;
 - v) A property which makes an important contribution to the urban composition or streetscape of which it forms a part.
- c) A property or area recognized by the Province as being archaeologically significant.
- d) An area in which the presence of properties collectively represent a certain aspect of the development or cultural heritage landscape of the Town, or which collectively are considered significant to the community as a result of their location or setting.

Section 3.3.4 states that by-laws may be passed to designate heritage buildings, landscapes, or districts based on Part IV and Part V of the *Ontario Heritage Act*. These by-laws are based on the following criteria:

- a) An area associated with a particular aspect, era or event in the history of the development of the municipality; or
- b) An area characterized by a style of architecture, design, construction or ambience which is considered architecturally or historically significant to the community as a result of location or setting; or
- c) An area considered unique or otherwise significant to the community as a result of location or setting; or
- d) An area characterized by a group of buildings which are not architecturally or historically significant individually but are when considered collectively.

2.1.2 Municipal Consultation

The Town of Erin was also consulted for additional information on the bridge.¹ According to this correspondence, and contrary to the 2013 Structure Inventory provided by the Town of Erin, the bridge is listed on the Town of Erin's heritage register.

2.2 Cultural Heritage Evaluation and Heritage Impact Assessment Report

The scope of a Cultural Heritage Evaluation (CHE) is guided by the Ministry of Tourism, Culture and Sport's *Ontario Heritage Toolkit* (2006). Generally, CHEs include the following components:

- A general description of the history of the study area as well as a detailed historical summary of property ownership and building(s) development;
- A description of the cultural heritage landscape and built heritage resources;
- Representative photographs of the exterior and interior of a building or structure, and characterdefining architectural details;
- A cultural heritage resource evaluation guided by the Ontario Heritage Act criteria;
- A summary of heritage attributes;
- Historical mapping, photographs; and
- A location plan.

Using background information and data collected during the site visit, the cultural heritage resource is evaluated using criteria contained within Regulation 9/06 of the *Ontario Heritage Act*.

Ontario Heritage Act Regulation 9/06 provides a set of criteria, grouped into the following categories which determine the cultural heritage value or interest of a potential heritage resource in a municipality:

- i) Design/Physical Value;
- ii) Historical/Associative Value; and
- iii) Contextual Value.

Should the potential heritage resource meet one or more of the above mentioned criteria, a Heritage Impact Assessment (HIA) is required and the resource considered for designation under the *Ontario Heritage Act*.

In early 2011, the Ministry of Tourism and Culture (MTC) indicated that bridges not owned by the Ministry of Transportation be evaluated against Ontario Regulation 9/06 and not the Ministry of Transportation's *Ontario Heritage Bridge Guidelines* (Interim, 2008) or the *Ontario Heritage Bridge Program* (1991). With this in mind, the MTC recommends that a Heritage Impact Assessment is necessary for structures found to have potential heritage significance, as determined by the cultural heritage evaluation (MTC, June 2011).

The scope of a Heritage Impact Assessment (HIA) is provided by the MTC's *Ontario Heritage Tool Kit*. An HIA is a useful tool to help identify cultural heritage value and provide guidance in supporting environmental assessment work. As part of a heritage impact assessment, proposed site alterations and

¹ Email correspondence occurred in October 2014.

project alternatives are analyzed to identify impacts of the undertaking on the heritage resource and its heritage attributes. The impact of the proposed development on the cultural heritage resource is assessed, with attention paid to identifying potential negative impacts, which may include, but not limited to:

- Destruction of any, or part of any, significant heritage attributes or features;
- Alteration that is not sympathetic, or is incompatible, with the historic fabric and appearance;
- Shadows created that alter the appearance of a heritage attribute or change the viability of an associated natural feature or plantings, such as a garden;
- Isolation of a heritage attribute from its surrounding environment, context or a significant relationship;
- Direct or indirect obstruction of significant views or vistas within, from, or of built and natural features;
- A change in land use (such as rezoning a church to a multi-unit residence) where the change in use negates the property's cultural heritage value;
- Land disturbances such as a change in grade that alters soils, and drainage patterns that adversely affect a cultural heritage resource, including archaeological resources.

Where negative impacts of the development on the cultural heritage resource are identified, mitigative or avoidance measures or alternative development or site alteration approaches are considered.

3.0 HISTORICAL CONTEXT AND CONSTRUCTION

3.1 Introduction

Built in 1917, the Hillsburgh Dam Bridge is a single span rigid frame structure carrying one lane each of eastbound and westbound Station Street vehicular traffic over the spillway separating Hillsburgh Pond and Ainsworth Pond in the Town of Erin, Ontario. Historically, the study area is located within Lot 24, Concession XII in the Township of Erin, Ontario (Figures 2 and 3).

Cultural heritage resources are those buildings or structures that have one or more heritage attributes. Heritage attributes are constituted by and linked to historical associations, architectural or engineering qualities and contextual values. Inevitably many, if not all, heritage resources are inherently tied to "place"; geographical space, within which they are uniquely linked to local themes of historical activity and from which many of their heritage attributes are directly distinguished today. In certain cases, however, heritage features may also be viewed within a much broader context. Section 3.0 of this report details a brief historical background to the settlement of the surrounding area. A description is also provided of the construction of the bridge within its historical context.

3.2 Local History and Settlement

3.2.1 Erin Township

The land within Erin Township was acquired by the British from the Mississaugas in 1818. The first township survey was undertaken in 1819, and the first legal settlers occupied their land holdings in the following year. The township was first named for a poetic name of Ireland, *Ierne*, mentioned by the Greek geographer Strabo. Erin was initially settled by the children of Loyalists, soldiers who had served during

the War of 1812, and by immigrants from England, Scotland and Ireland (Smith 1846:55-56; Erin 1967; McMillan 1974; Armstrong 1985:143; Rayburn 1997:113).

3.2.2 Hillsburgh

This post office village was situated on the Grand River on part Lots 22 to 25 Concessions VII and VIII, Erin Township. The village was founded in the 1840s, when a tavern and sawmill were constructed by Hiram and Nazareth Hill. It became a post office village in 1851. Registered plans of subdivision for this village date from 1857-1862. It contained two grist mills, a woollen factory, a foundry and tannery. The village also contained four churches, four stores, three hotels and a telegraph office. It was a station on the Canadian Pacific Railway. The population was approximately 400 in 1873 (Crossby 1873:145; Winearls 1991:697; Scott 1997:102; Rayburn 1997:158). By the mid-nineteenth century Hillsburgh had become an important market town for grains harvested from the surrounding farms. This grain was sent to larger settlements in the south such as Oakville and Toronto.

3.3 History of the Study Area, Station Street, and Previous Bridge Crossings

Historically, the subject bridge crossing is located on Lot 24, Concession XII in Erin Township, Ontario. A review of historic mapping, archival records, council minutes, and periodicals confirmed that an earlier bridge crossing was extant adjacent to the location of the present structure. According to the Abstract Index for Lot 24, Concession VII, the subject property was granted to Patrick McCartin by the Crown in 1832 and was subsequently sold to Mary O'Reilly in 1850. In that same year the land was sold to William Gooderham and J.E. Worts, partners in the large Toronto distilling firm Gooderham and Worts. Part of the property was sold to the Credit Valley Railway Company in 1875 before the remaining land, including the study area, was passed to George Gooderham, William's son, in 1877.

As Station Street does not appear on the 1877 *Historical Atlas of Waterloo and Wellington Counties*, it is not considered an historically surveyed road (Figure 2). At that time Lot 24, Concession VII was owned by George Gooderham and a flour mill was established south of the study area. It is likely that the Hillsburgh Dam and an early bridge were built at the same time as the mill, sometime between 1877 and 1890.

According to the Abstract Index and additional land transfer documents dating to 1902, the land was then sold to local farmers John and Isaiah Aurey in 1890 (Davis 1902: 9). These documents confirm that the Hillsburgh Dam and Station Street were extant by 1902 and outline the maintenance details of the dam and mill raceway. J.C. MacMillan confirms that the Aurey brothers constructed another mill, likely sometime between 1877 and 1890 (MacMillan 1974: 10). However, the contract does not describe a structure spanning the spillway, and thus it is unclear what type of structure existed there at this time.

According to a 1902 *Plan of the Town of Hillsburgh* (Figure 3), the Hillsburgh Dam and Station Road had been surveyed and subdivided lots were proposed flanking the thoroughfare to the south of the dam. The road was likely named for the Credit Valley Railway station located to the southwest of the subject bridge. The *Historical Atlas of Wellington County*, published in 1906 (Figure 4), confirms that a dam and bridge structure fording the spillway existed prior to 1917, though no further information is offered regarding its type, size, or condition. In addition to indicating the existence of a structure, the map confirms that the Aurey Brothers owned the lot surrounding the bridge, including Hillsburgh Pond. The

map indicates that a house had been built to the southeast of the subject bridge. A railway station is pictured contiguous with the railway to the south of the bridge.

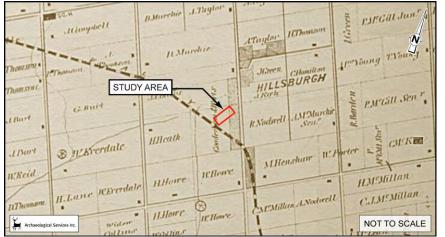


Figure 2: Subject bridge located on 1877 mapping Base Map: *Illustrated Historical Atlas of Waterloo* And Wellington Counties, 1877

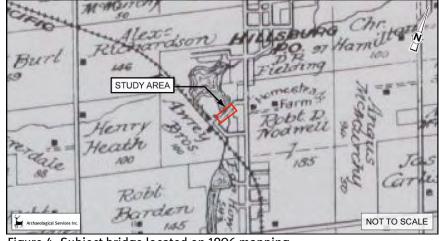
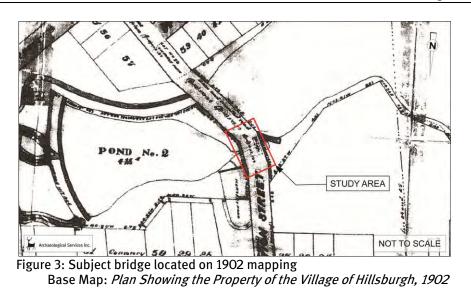



Figure 4: Subject bridge located on 1906 mapping Base Map: *Illustrated Historical Atlas of the County of Wellington, 1906*

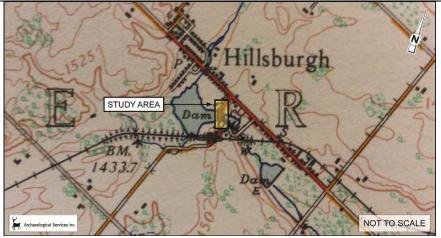
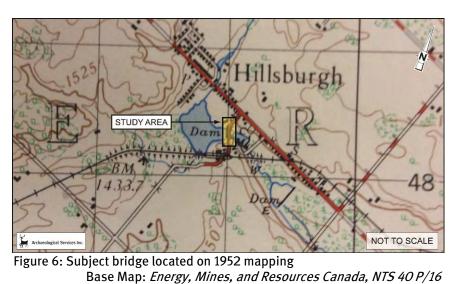



Figure 5: Subject bridge located on 1937 mapping Base Map: *Energy, Mines, and Resources Canada, NTS 40 P/16*

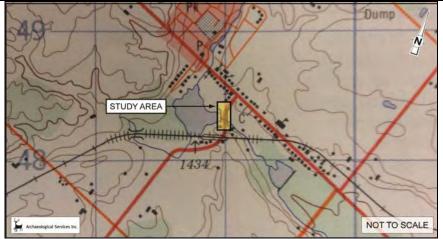


Figure 8: Subject bridge located on 1979 mapping Base Map: *Energy, Mines, and Resources Canada, NTS 40 P/16*

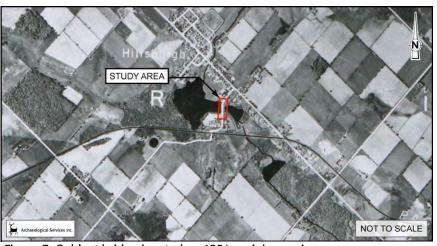


Figure 7: Subject bridge located on 1954 aerial mapping Base Map: *Hunting Survey Corporation, 1954*

Figure 9: Subject bridge located on 1994 mapping Base Map: *Energy, Mines, and Resources Canada, NTS 40 P/16*, 1994

NTS mapping dating to 1937 reveals that both Main Street and Station Street were paved roads, and that no significant changes had been made to the Hillsburgh Dam. A mill is pictured to the southeast of the dam, located on the south bank of Ainsworth Pond. The map indicates that a number of houses existed to the north of the bridge and that the Hillsburgh train station was still extant to the south. In addition, a significant increase in house construction appears to have occurred along Main Street to the north of the subject bridge.

Topographic mapping and aerial photography dating to the 1950s indicates that little change had occurred since 1937 (Figures 6 and 7). However, it appears that the Hillsburgh train station located to the south of the subject bridge had been removed by this time.

By 1979, significant settlement had occurred to the north of the subject bridge, however little development had occurred to the Hillsburgh Dam and the subject bridge (Figure 8). NTS mapping dating to 1994 indicates that several new buildings had been erected directly adjacent to the north of the subject bridge (Figure 9).

3.4 Bridge Construction

3.4.1 Early Bridge Building in Ontario

Up until the 1890s, timber truss bridges were the most common bridge type built in southern Ontario. Stone and wrought iron materials were also employed but due to higher costs and a lack of skilled craftsmen, these structures were generally restricted to market towns. By the 1890s, steel was becoming the material of choice when constructing bridges given that concrete was less expensive and more durable than its wood and wrought iron predecessors. Steel truss structures were very common by 1900, as were steel girder bridges. The use of concrete in constructing bridges was introduced at the beginning of the twentieth century, and by the 1930s, it was challenging steel as the primary bridge construction material in Ontario (Ministry of Culture and Ministry of Transportation [n.d.]:7-8).

3.4.2 Construction of the Hillsburgh Dam Bridge

The Hillsburgh Dam Bridge is a single-span, solid concrete slab bridge carrying two lanes of Station Street traffic over the spillway separating Hillsburgh Pond and Ainsworth Pond in the historic Erin Township, Wellington County, Ontario. According to available documentation, the bridge was completed in 1917, likely to replace an earlier structure of unknown construction. Unfortunately, original bridge drawings were not in the holdings at the Town of Erin or the Wellington County Museum and Archives. In addition, council minutes for the Erin Township and Wellington County were consulted to establish further detail about the construction of the bridge. However, no information could be determined from these sources.

According to the available reference documents, no refurbishments have been undertaken on the subject bridge.

4.0 EXISTING CONDITIONS AND INTEGRITY

A field review was undertaken by Joel Konrad on 9 October 2014 to conduct photographic documentation of the bridge crossing and to collect data relevant for completing a heritage evaluation of the structure. Results of the field review and bridge inspection reports received from the client were then utilized to describe the existing conditions of the bridge crossing. This section provides a general description of the bridge crossing and associated cultural heritage features. For ease of description the bridge is considered to have a north-south orientation. Photographic documentation of the bridge crossing is provided in Appendix A.

The Hillsburgh Dam Bridge is located on Lot 24, Concession VII, in the Town of Erin (Figure 8). The concrete, rigid frame bridge was built in 1917 to carry two lanes of Station Street traffic over the spillway separating Hillsburgh Pond and Ainsworth Pond.

The bridge crossing is bounded by a small wooded area at the northeast corner of the bridge, beyond which sits the Hillsburgh Fire Station. To the northeast of the bridge is a new area under development adjacent to an early-twentieth-century brick dwelling. To the west of the bridge sits the Hillsburgh Pond, and to the southwest a nineteenth-century farmhouse is extant. A number of mid- to late-twentieth-century houses sit to the southwest of the bridge while the Ainsworth Pond is visible to the east. The subject bridge is identified as a heritage structure by the Town of Erin, though it is not designated under Part IV of the *Ontario Heritage Act* and is not currently on the *Ontario Heritage Bridge List*.

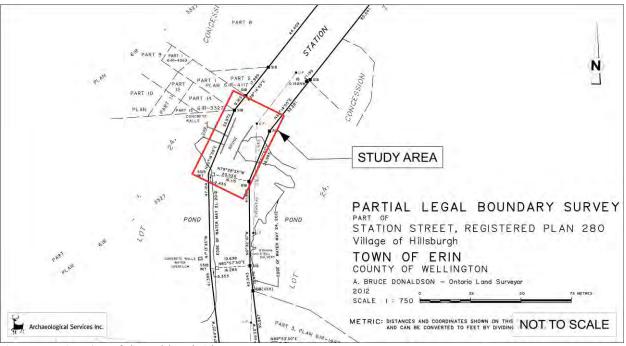


Figure 10: Site Plan of the subject bridge, 2012. Base Map: Black, Shoemaker, Robinson & Donaldson Limited, Project Number 12-9198

The Hillsburgh Dam Bridge is currently owned/maintained by the Town of Erin. According to an inspection undertaken in 2013, the structure features a total deck length of 5.2 metres with a 6 metre wide asphalt wearing surface (AECOM 2013: 2). The existing bridge features a rigid frame, poured-in-place concrete deck and concrete abutments. The original concrete railing system is still extant and features concrete posts connected by concrete rails, separated by concrete spindles. A sphere adorns the southeast concrete railing endpost, indicating that three similar spheres likely existed atop the other endposts of the

bridge. Several spindles have been removed from the west railing while, between the east and west railings, the asphalt-wearing surface of the bridge deck is cracked. The wingwalls and abutments are free from ornamentation and appear to have been parged with concrete, though significant concrete deterioration is still visible. A concrete stop log control structure is located on the west side of the subject bridge while the spillway runs beneath the bridge and down towards Ainsworth Pond to the east of the structure. Both concrete abutments terminate at the spillway. It was not possible to view the bridge's west elevation from a distance during fieldwork due to access constraints.

According to the data received from the client, the bridge has not been rehabilitated by the Town of Erin or Wellington County, though the bridge was identified for replacement as early as 1973.

The Town of Erin Municipal Structure Inspection Form, completed in 2013, presented the following deficiencies regarding the bridge:

- Decks: Narrow to wide transverse cracks and localized potholes in asphalt wearing surface;
- Soffit: Spalling and delaminations, narrow stained cracks, exposed corroded rebar, spalls on south fascia, and efflorescence;
- Railing System: Five missing spindles on the west side, narrow to wide cracks, abrasions, isolated delaminations Missing three of four end cap pieces (decorative feature), section of barrier in SW quadrant has been fitted with steel beam guiderail;
- Abutments: Narrow to wide cracks, light to medium scaling, delaminations, and spalls;
- Wingwalls: Narrow to wide cracks, light to severe scaling, spalls, delaminations;
- Signs: Hazard marker missing at southwest quadrant; and
- Approaches: Narrow to medium longitudinal cracks.

4.1 Comparative Geographic and Historic Context of Rigid Frame Bridges

ASI requested Triton Engineering to contact the Town of Erin to procure an inventory of bridges owned by the municipalities. This inventory can be found in Appendix B of this report.

Built in 1917, the Hillsburgh Dam Bridge is indicated as the second oldest bridge (excluding culverts) in the Town of Erin, and the oldest of its type. "Bridge 2," a concrete Bowstring Arch Bridge built in 1910 and located on the 10th line, is listed as the oldest bridge owned by the Town of Erin. Subsequently, the Hillsburgh Dam Bridge is understood to be the oldest concrete rigid frame bridge owned by the Town of Erin.

The Hillsburgh Dam Bridge has the 29th longest span of structures owned by the Town of Erin, and has the 29th longest structure length. "Bridge 16," located on Mill Street, has the longest span and structure length of any bridge owned by the Town of Erin, recorded as 18.25m.

4.2 Additional Cultural Heritage Resources

There are no previously identified cultural heritage resources located adjacent to the subject bridge. However, two nineteenth-century farmhouses located on the southeast and southwest of the subject bridge were identified during field review (see Appendix A, Plates 21 and 22).

5.0 HERITAGE EVALUATION OF THE HILLSBURGH DAM BRIDGE

While the Hillsburgh Dam Bridge is listed on the Town of Erin's register of heritage properties, it does not appear to have been evaluated against Regulation 9/06 of the *Ontario Heritage* Act - Table 1 contains the evaluation of Hillsburgh Dam Bridge against criteria as set out in the regulation. Within the Municipal EA process, Regulation 9/06 is the prevailing evaluation tool when determining if a heritage resource, in this case a bridge, has cultural heritage value.

Table 1: Evaluation of the Hillsburgh Dam Bridge using Ontario Heritage Act Regulation 9/06

Ontario Heritage Act Criteria	Analysis
i. is a rare, unique, representative or early example of a style, type, expression, material or construction method;	The Hillsburgh Dam Bridge's rigid frame construction is an early example of its type and is the first of its type owned by the Town of Erin. However, both the span and structure length are not significant when compared to the bridges owned by the Town of Erin.
ii. displays a high degree of craftsmanship or artistic merit, or;	The Hillsburgh Dam Bridge retains a degree of craftsmanship exemplified in the spindled concrete railing system. However, the railing system has sustained some damage and is now missing spindles and three of its four decorative spheres placed at the four bridge endposts.
iii. demonstrates a high degree of technical or scientific achievement.	This bridge exhibits a low degree of technical achievement given its short span, easy access, and gentle water flow along the spillway.

1. The property has design value or physical value because it :

2. The property has historical value or associative value because it:

	-
Ontario Heritage Act Criteria	Analysis
i. has direct associations with a theme, event, belief, person, activity, organization or institution that is significant to a community;	The structure maintains a direct connection with a number of significant themes. First, the bridge is associated with Hillburgh's rail history as it is located along Station Street, the primary route to the former Hillsburgh Railway Station. Second, the bridge sits upon a mill dam constructed in the late nineteenth century by the influential distillers Gooderham and Worts and spans the dam's spillway. Finally, the construction of the bridge facilitated increased settlement east of Hillsburgh.
ii. yields, or has the potential to yield, information that contributes to an understanding of a community or culture, or;	This criterion is not satisfied given that the structure does contribute to an understanding of a community or culture.
iii. demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	Unfortunately, no information on the construction of this bridge was uncovered.

Table 1: Evaluation of the Hillsburgh Dam Bridge using Ontario Heritage Act Regulation 9/06

3. The property has contextual value because it:

Ontario Heritage Act Criteria	Analysis
i. is important in defining, maintaining or supporting the character of an area;	The design, scale and general massing of the bridge is small in scale and reflects the surrounding natural/agricultural landscape. This bridge continues to complement the rural character of the area and contributes to the picturesque setting of the spillway connecting Hillsburgh Pond and Ainsworth Pond.
ii. is physically, functionally, visually or historically linked to its surroundings, or;	The bridge is physically, functionally and historically linked to its surroundings. It serves as a bridging point for vehicles over the spillway and is physically associated with Hillsburgh Pond, Ainsworth Pond, and the settlement of Hillsburgh. This is a traditional bridging point and was probably first established between 1877 and 1890 when Hillsburgh Dam was created.
iii. is a landmark.	Due to its location adjacent to the settlement of Hillsburgh and ornate railing system this bridge can be considered a gateway structure.

The above evaluation confirms that this structure meets at least one of the criteria contained in Regulation 9/06 of the *Ontario Heritage Act*. In particular, it was determined to retain design, historical and contextual value given its construction and location on Station Street and the Hillsburgh Dam which is associated with settlement, growth, and economic development in the region. Given that the Hillsburgh Dam Bridge met at least one of the criteria contained in Regulation 9/06, this structure is considered to be a cultural heritage resource and is eligible for designation under the *Ontario Heritage Act*.

In summary, character-defining elements associated with the Hillsburgh Dam Bridge include but are not limited to:

- Location of the bridge on Station Street;
- Historical associations with mill owned by Gooderham and Worts;
- Spindled concrete railing system;
- Early construction date; and
- Association with the settlement, growth, and economic development of Hillsburgh.

6.0 ALTERNATIVES TO BE CONSIDERED FOR HERITAGE BRIDGES AS PART OF THE ENVIRONMENTAL ASSESSMENT PROCESS

Following the evaluation of the subject cultural heritage resource, the Hillsburgh Dam Bridge was determined to retain cultural heritage value. The following nine conservation options/alternatives are arranged according to the level or degree of intervention from minimum to maximum. The conservation options are based on the *Ontario Heritage Bridge Program* (1991), which is regarded as current best practice for conserving heritage bridges in Ontario and ensures that heritage concerns, and appropriate mitigation options, are considered.

- 1. Retention of existing bridge and restoration of missing or deteriorated elements where physical or documentary evidence (e.g., photographs or drawings) can be used for their design;
- 2. Retention of existing bridge with no major modifications undertaken;

- 3. Retention of existing bridge with sympathetic modification;
- 4. Retention of existing bridge with sympathetically designed new structure in proximity;
- 5. Retention of existing bridge no longer in use for vehicle purposes but adapted for pedestrian walkways, cycle paths, scenic viewing etc.;
- 6. Relocation of bridge to appropriate new site for continued use or adaptive re-use;
- 7. Retention of bridge as heritage monument for viewing purposes only;
- 8. Replacement/removal of existing bridge with salvage elements/members of heritage bridge for incorporation into new structure or for future conservation work or displays;
- 9. Replacement/removal of existing bridge with full recording and documentation of the heritage bridge.

Given that the bridge was found to retain cultural heritage value under Regulation 9/06, all nine of these conservation options should be considered as part of the Hillsburgh Dam Bridge Cultural Heritage Evaluation Report.

7.0 ENVIRONMENTAL ASSESSMENT OPTIONS

Based on the age of the structure and deficiencies observed in 2009 and 2013, the Town of Erin retained Triton Engineering to complete a Class Environmental Assessment to assess alternatives for replacing the Hillsburgh Dam Bridge. As part of the study, the nine conservation alternatives listed in Section 6.0 are under consideration as bridge improvement alternatives.

7.1 Evaluation of Impacts

To assess the potential impacts of the proposed alternatives, the cultural heritage resource and identified heritage attributes were considered against a range of possible impacts (Table 2) as outlined in the Ministry of Tourism and Culture document entitled *Screening for Impacts to Built Heritage and Cultural Heritage Landscapes* (November 2010), which include:

- Destruction of any, or part of any, significant heritage attribute or feature (III.1).
- Alteration which means a change in any manner and includes restoration, renovation, repair or disturbance (III.2).
- Shadows created that alter the appearance of a heritage attribute or change the visibility of a natural feature of plantings, such as a garden (III.3).
- Isolation of a heritage attribute from its surrounding environment, context, or a significant relationship (III.4).
- Direct or indirect obstruction of significant views or vistas from, within, or to a built and natural feature (III.5).
- A change in land use such as rezoning a battlefield from open space to residential use, allowing new development or site alteration to fill in the formerly open spaces (III.6).
- Soil disturbance such as a change in grade, or an alteration of the drainage pattern, or excavation, etc. (III.7)

Table 2: Evaluation of the Potential Impacts of Bridge Improvement Alternatives on the Cultural Heritage Resource and Identified Heritage Attributes

Nine Bridge Improvement Alternatives	Destruction, removal or relocation	Alteration	Shadows	Isolation	Direct or indirect obstruction of significant views	Ac
1) Retention of existing bridge and restoration of missing or deteriorated elements where physical or documentary evidence (e.g. photographs or drawings) can be used for their design	No impact.	No impact.	No impact.	No impact.	No impact.	No
2) Retention of existing bridge with no major modifications undertaken	No impact.	No impact.	No impact.	No impact.	No impact.	No
3) Retention of existing bridge with sympathetic modification	No impact.	No impact given that alterations would be sympathetic to heritage attributes.	No impact.	No impact.	No impact.	No
4) Retention of existing bridge with sympathetically designed new structure in proximity	No impact.	Yes – impacts are expected given that a new bridge in proximity to the existing one will alter the immediate setting and context of the bridge site. In particular, both Hillsburgh and Ainsworth Ponds would be severely impacted by the construction of a new bridge.	No impact.	No impact.	No impact.	No
5) Retention of existing bridge no longer in use for vehicle purposes but adapted for pedestrian walkways, cycle paths, scenic viewing etc	No impact.	Yes – a change in use would result in alterations to the heritage resource.	No impact.	No impact.	No impact.	Yes peo pat wo the
6) Relocation of bridge to appropriate new site for continued use or adaptive re-use	Yes – impacts to the heritage resource are expected through relocation.	Yes – alterations to the resource are expected through relocation.	No impact.	Yes – relocation of the resource will isolate it from its original context and relationship to Hillsburgh Pond, Ainsworth Pond, Hillsburgh Dam, and the spillway.	No impact.	Yes bri veł in a of t ren im
7) Retention of bridge as heritage monument for viewing purposes only	No impact.	Yes – use of bridge for viewing purposes only would result in a change from the original use of the structure and thus is considered to be an alteration.	No impact.	No impact.	No impact.	Ye: pu cha the
8) Replacement/removal of existing bridge with salvage elements/members of heritage bridge for incorporation into new structure or for future conservation work or displays	Yes - Impacts to the heritage resource are expected through removal.	Yes – alterations to the resource are expected through removal.	No impact.	No impact.	No significant impacts to the Station Street streetscape are expected provided that a new bridge incorporates a similar grade and concrete construction.	No
9) Replacement/removal of existing bridge with full recording and documentation of the heritage bridge	Yes - Impacts to the heritage resource are expected through removal.	Yes – alterations to the resource are expected through removal.	No impact.	No impact.	No significant impacts to the Station Street streetscape are expected provided that a new bridge incorporates a similar grade and concrete	No

A change in land use	Soil disturbance
No impact.	No impact.
No impact.	No impact.
No impact.	No impact.
No impact.	Yes – impacts are expected through the construction of a new structure in proximity.
Yes – use of bridge for pedestrian walkways, cycle paths, scenic viewing, et cetera, would result in a change from the original use of the structure.	No impact.
Yes – the adaptive re-use of the bridge for purposes other than vehicular purposes would result in a change from the original use of the structure. If the bridge remains in vehicular use, no impact is expected.	Yes – impacts are expected through process of removing the bridge from its current location.
Yes – use of bridge for viewing purposes only would result in a change from the original use of the structure.	No impact.
No impact.	Yes – impacts are expected through removal of the existing bridge and the introduction of a new structure.
No impact.	Yes – impacts are expected through removal of the existing bridge and the introduction of a new

Table 2: Evaluation of the Potential Impacts of Bridge Improvement Alternatives on the Cultural Heritage Resource and Identified Heritage Attributes

_	 F	 		
			construction.	

Page 17

structure.

8.0 CONCLUSIONS

Based on the results of archival research, an analysis of bridge design and construction in Ontario, field investigations, and application of Regulation 9/06 of the *Ontario Heritage Act*, the Hillsburgh Dam Bridge was determined to possess heritage value. The following factors determined this assessment: bridge design, early bridge construction date, and both historical and contextual value given its location on the Hillsburgh Dam which is associated with Gooderham and Worts as well as the general settlement, growth, and economic development in the region. Given that the Hillsburgh Dam Bridge met at least one of the criteria contained in Regulation 9/06, this structure is considered to be a cultural heritage resource and is eligible for designation under the *Ontario Heritage Act*.

8.1 Summary Statement of Cultural Heritage Value

The Hillsburgh Dam Bridge is a single span, concrete rigid frame bridge that was built in 1917 to carry Station Road over the spillway connecting Hillsburgh Pond and Ainsworth Pond in the Township of Erin. The bridge has undergone limited modifications since its construction in 1917 and no major alterations to its original form or design are apparent.

Historically, the Hillsburgh Dam Bridge retains direct associations with the Hillsburgh Dam, built for milling purposes by Gooderham and Worts, likely between 1877 and 1890, as well as Station Street, a thoroughfare connecting Hillsburgh to the Credit Valley Railway station to the southwest.

In terms of design value this bridge exhibits some degree of craftsmanship and artistic merit. The retention of the original concrete railing system, in particular, adds to the Bridge's heritage value.

Contextually, the Hillsburgh Dam Bridge contributes to the scenic character of Station Street and functions as a gateway structure. Moreover, it is strongly linked to its location on Station Street, which served as an historic thoroughfare in the region and continues to be an important road.

In summary, character-defining elements associated with the Hillsburgh Dam Bridge include but are not limited to:

- Location of the bridge on Station Street;
- Historical associations with mill owned by Gooderham and Worts;
- Spindled concrete railing system;
- Early construction date; and
- Association with the settlement, growth, and economic development of Hillsburgh.

9.0 RECOMMENDATIONS

Based on the results of archival research, an analysis of bridge design and construction in Ontario, field investigations and heritage evaluation, the Hillsburgh Dam Bridge was determined to retain cultural heritage value following application of Regulation 9/06 of the *Ontario Heritage Act*. Its heritage significance centres on its artistic merit, historical and contextual value, location on the Hillsburgh Dam, its early construction date and associations with Gooderham and Worts as well as general historic settlement in the region. As such, the structure was found to meet at least one of the criteria of Regulation

9/06 under the *Ontario Heritage Act* and may therefore be considered for municipal designation under the *Ontario Heritage Act*.

Following the evaluation of potential impacts on the heritage resource (see Table 2), it was determined that Conservation Alternatives 1-3 are the preferred alternatives, given that no impacts are expected to the heritage resource and its identified heritage attributes, with Alternative 1 being the most preferred. The remaining conservation alternatives (4-9) have a range of impacts, with Alternatives 8 and 9 being the least preferred options given the level and nature of the impacts resulting from removal of the bridge.

Given the identified heritage value of the Hillsburgh Dam Bridge, the following recommendations and mitigation measures should be considered and implemented:

- 1. Conservation Alternatives 1 -3 are the preferred alternatives, with Alternative 1 being the most preferred. As part of the selection of the preferred alternatives as part of the Environmental Assessment, a clear rationale for the proposed course of action should be documented.
- 2. This report should be filed with the heritage staff at the municipalities of the Town of Erin, Wellington County Museum and Archives, the Archives of Ontario, and other local heritage stakeholders that may have an interest in this project.
- 3. This report should be filed with the Ministry of Tourism, Culture and Sport for review and comment.
- 4. Should retention of the bridge be chosen as the preferred alternative (one of Conservation Alternatives 1-7), the character-defining elements identified in Section 8.1 should be retained and treated sympathetically.
- 5. Should replacement of the bridge be chosen as the preferred alternative (Conservation Alternative 8 or 9), three mitigation options should be considered:
 - a. Replacement/removal of existing bridge and construction of a new bridge with replication of the appearance of the heritage bridge in the new design, with allowances for the use of modern materials. The character-defining elements identified in Section 8.1 should be considered for replication.
 - b. Replacement/removal of existing bridge and construction of a new bridge with historically sympathetic design qualities to the heritage bridge, with allowances for the use of new technologies and materials.
 - c. In addition to (a) and (b), development of a commemorative strategy, such as plaquing, may be appropriate.
- 6. Should replacement of the bridge be chosen a documentation report should be completed by a Cultural Heritage Specialist and filed with the Town of Erin, the Archives of Ontario, and any other heritage stakeholders that may have an interest in this project.

10.0 REFERENCES

Armstrong, Frederick H.

1985 Handbook of Upper Canadian Chronology. Dundurn Press, Toronto.

Boulton, D'Arcy.

1805 *Sketch of His Majesty's Province of Upper Canada*. C. Rickaby (reprinted in Toronto by the Baxter Publishing Company, 1961), London.

Crossby, P.A.

1873 Lovell's Gazetteer of British North America. John Lovell, Montreal.

Erin Township

1967 Centenial History of Erin Township and Erin Village, 1842-1967.

Historical Atlas Publishing Co.

1972 Illustrated Historical Atlas of Wellington County, Ontario. First published in 1906.

MacMillan, C.J.

1974 Early History of the Township of Erin. The Boston Mills Press, Cheltenham.

Mika, Nick and Helma

1977 Places in Ontario. Mika Publishing, Belleville.

Ministry of Culture, Ontario (MCL)

- 2005 Ontario Heritage Act.
- 2006 Ontario Heritage Tool Kit

Ministry of Culture and Communications, Ontario

1992 *Guidelines for Preparing the Cultural Heritage Resource Component of Environmental Assessments.*

Ministry of Culture and Recreation, Ontario (MCR)

1981 Guidelines on the Man-Made Heritage Component of Environmental Assessments.

Ministry of Environment, Ontario

2006 Environmental Assessment Act

Ministry of Tourism and Culture, Ontario

2010 Screening for Impacts to Built Heritage and Cultural Heritage Landscapes.

Ministry of Transportation (MTO)

- 2006 Environmental Reference for Highway Design
- 2006 Environmental Standards and Practices
- 2006 *Cultural Heritage Built Heritage and Cultural Heritage Landscapes: Technical Requirements for Environmental Impact Study and Environmental Protection/Mitigation.*
- 2007 Environmental Guide for Built Heritage and Cultural Heritage Landscapes

Ministry of Transportation and Ministry of Culture and Communications, Ontario

1991 Ontario Heritage Bridge Program, Information Package.

Page, H.R.

1880 Illustrated Atlas of the Dominion of Canada. H. Belden & Co., Toronto.

Smith, W.H.

1846 Smith's Canadian Gazetteer. H. & W. Rowsell, Toronto.

Town of Erin

2007 The Official Plan of the Town of Erin.

APPENDIX A: Photographic Plates

Plate 1: North approach to the bridge.

Plate 2: South approach to the bridge.

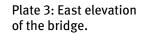


Plate 4: Oblique view of the east elevation, looking north. Note the spherical adornment on the southeast endpost of the railing system.

Plate 5: Oblique view of the west elevation, looking north.

Plate 6: Oblique view of the east elevation, looking south.



Plate 7: Oblique view of the west elevation, looking south.

Plate 8: View of the bridge deck, looking south. Note the concrete railings with spindles lining the asphalt deck.

Plate 9: View of concrete railing system at the northwest corner of the bridge.

Plate 10: Detail of steel barrier attached to the concrete railing system at the southeast corner of the bridge.

Plate 11: Detail of east side of east railing.

Plate 12: Detail of circular design on bridge post.

Plate 13: Detail of concrete railing system with spindles removed.

Plate 14: Detail of soffit, east railing system, and south abutment.

Plate 15: Detail of concrete deterioration at east side of north abutment.

Plate 16: View towards east side of south abutment.

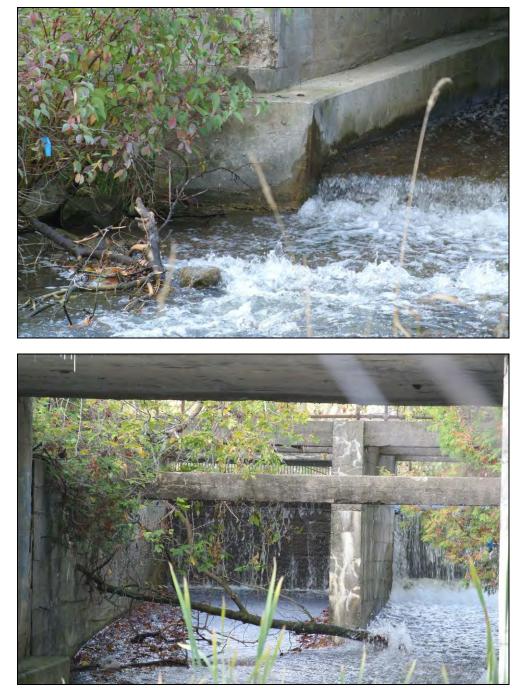


Plate 17: Detail of the footings on the southeast corner of the south abutment.

Plate 18: View west along the spillway to the stop log control structure.

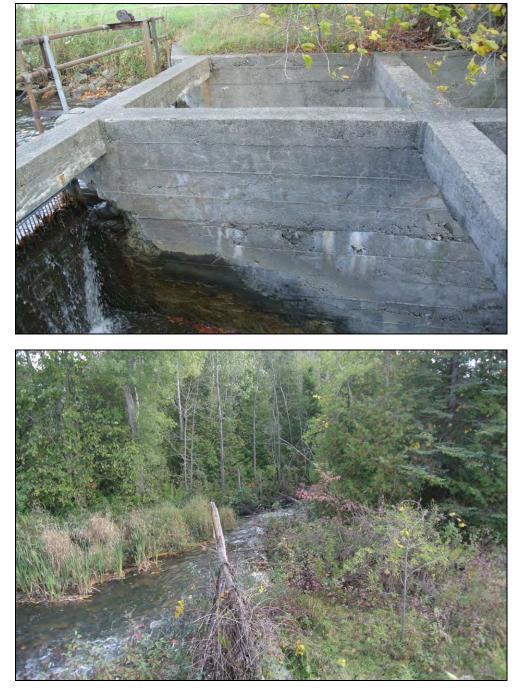


Plate 19: Detail of stop log control structure.

Plate 20: Spillway to the east of the subject bridge, looking northeast.

Plate 21: View along the Hillsburgh Dam to the south of the subject bridge.

Plate 20: View west towards Hillsburgh Pond from Hillsburgh Dam.

Plate 21: Nineteenthcentury, two-storey farmhouse with hipped roof located to the southwest of the subject bridge.

Plate 22: Two-storey, nineteenth-century brick farmhouse with "L" shape footprint and gable roof located to the northwest of the subject bridge.

APPENDIX B:

Town of Erin Bridge Inventory

Structure ID	Road Name	Location	Owner	Structure Class	Structure Type	Total Deck Length	Overall Structure Width	SPANS	TOTAL_SPAN_LENGTH	No. of Lanes	CONST_YEAR
2066	Erin - Garafraxa Townline	1.3km East of Wellington Rd 24	Town of Erin	Culvert	Open Footing	4.1	17.1	1	3.6	2	0
2068	Erin - Garafraxa Townline	0.5km East of First Line	Town of Erin	Culvert	Open Footing	4.2	7.4	1	3.7	2	0
1	Winston Churchill Blvd	0.1 km North of Sideroad 27	Town of Erin	Culvert	Open Footing	6.6	5	1	6.1	1	1930
2002	Winston Churchill Blvd	1.1 km North of Sideroad 27	Town of Erin	Culvert	Open Footing	5.7	17	1	5	2	1990
2026	Sideroad 32	0.3 km East of Sixth Line	Town of Erin	Culvert	Rectangular Culvert	4.5	10.25	1	4	0	1990
2027	Sideroad 32	0.4 km West of Sixth Line	Town of Erin	Culvert	Open Footing	7.5	8.5	1	3	0	1940
2046	5th. Line	1.6 km South of Sideroad 17	Town of Erin	Culvert	Rigid Frame, Vertical legs	9.35	7.82	1	8.55	2	
2048	5th. Line	0.5 km South of Sideroad 24	Town of Erin	Culvert	Rectangular Culvert	4.1	7.4	1	3.6	2	1960

Cultural Heritage Evaluation and Heritage Impact Assessment Hillsburgh Dam Bridge Town of Erin, Ontario

1.8 km North of Town of Rectangular Culvert 4.9 19.7 2051 8th. Line 1 4.2 2 1920 Wellington Culvert Erin Rd 22 0.1km East Town of 16P of Main Bridge 2.5 18.25 18.25 0 0 Mill Street 1 Erin Street 0.1 km South of Rectangular Town of 2052 8th. Line Culvert 3.7 9.5 1 3.2 2 1910 Erin-Culvert Erin Garafraxa Town Line 1.2 km east 27th Town of Rectangular of Ninth 2053 Culvert 5.6 6.7 5 1950 1 2 Sideroad Erin Culvert Line 0.6 km East Rectangular 17th Side Town of 3.9 2055 Culvert 14.5 1 3.9 2 1950 Road of Fifth Line Erin Culvert 17th Side 0.1 km East Rectangular Town of 3.6 2057 Culvert 7 1 3.1 2 1945 Road of First Line Erin Culvert Station 1.3 km West Town of Road Rectangular 2059 Culvert 4.5 6.2 3.6 2 1 1930 (Sideroad of Fifth Line Erin Culvert 24) Station 0.2 km East Town of Road Rectangular 2060 Culvert 3.5 1960 8 1 3 2 (Sideroad of Fifth Line Erin Culvert 24) Station Road 0.4 km east Town of Rectangular 2061 Culvert 4.1 6.4 1 3.6 2 1930 Erin (Sideroad of Fifth Line Culvert 24)

Page 35

2064	Station Road	0.2 km West of Wellington Rd. 24	Town of Erin	Bridge	Solid Slab	5.2	7.4	1	4.4	2	1917
2067	East Garafraxa Erin Townline	0.01 km East of Second Line	Town of Erin	Culvert	Arch Culvert	5.1	15	1	3.2	2	2000
2071	East Garafraxa Erin Townline	0.1 km East of Third Line	Town of Erin	Culvert	Rectangular Culvert	5.4	14	1	4.7	2	1996
2072	East Garafraxa Erin Townline	0.8 km East of Third Line	Town of Erin	Culvert	Rectangular Culvert	5.4	11.7	1	4.9	2	1970
2082	9th Line	0.8 km South of Erin- Garafraxa Town Line	Town of Erin	Culvert	Rectangular Culvert	4.8	15.7	1	4.2	2	1970
3	1st Line	6.1 km North of Sideroad 32	Town of Erin	Bridge	Frame, Inclined Legs	10.9	5.6	1	10	0	1920
4	1st. Line	4.5 km North of Wellington Rd 22	Town of Erin	Culvert	Rectangular Culvert	10.8	20.6	2	9.6	2	1985
5	2nd. Line	1.2 km South of Erin- Garafraxa	Town of Erin	Bridge	T-Beam	6.5	5.6	1	6	2	1920

		Town Line									
6	3rd Line	1.5 km North of Wellington Rd. 124	Town of Erin	Bridge	T-Beam	9.3	5.6	1	8.5	0	1920
7	3rd. Line	2.1 km North of Sideroad 27	Town of Erin	Bridge	Bowstring Arch	8.8	7.2	1	7	2	1925
8	4th Line	0.1 km South of Wellington Rd 22	Town of Erin	Culvert	Rectangular Culvert	7.5	11.6	1	6.6	2	1960
9	8th Line	0.2 km South of Sideroad 17	Town of Erin	Bridge	Earth Filled Arch	9.8	6.5	1	8	1	1930
2	10th Line	1.5km South of 15th Sideroad	Town of Erin	Bridge	Bowstring Arch	12	5.8	1	11	1	1910
10	17th Sideroad	0.1km West of 8th Line	Town of Erin	Culvert	Arch Culvert	10	16	2	8	2	1970
11	8th Line	0.01KM North of Sideroad 17	Town of Erin	Bridge	T-Beam	8.8	5.8	1	7.3	1	1920
12	Sideroad 17	0.2km East of Third Line	Town of Erin	Bridge	Frame, Inclined Legs	14	9.1	1	13	2	2001
13	Dundas St. West	0.4KM West of Main St.	Town of Erin	Culvert	Rectangular Culvert	11.2	10.3	2	10	2	1976

Page 37

14	Church Street	0.3km West of Main St.	Town of Erin	Culvert	Rectangular Culvert	4.3	6.8	1	3.5	1	1930
15	Charles Street	0.1KM West of Main St.	Town of Erin	Bridge	Rectangular Voided Slab	9.2	6	1	8	2	1964
16	Mill Street	0.1km East of Main St.	Town of Erin	Culvert	Rectangular Culvert	5	8.5	1	4.2	2	1930
2005	10th Line	1.4km North of Wellington Rd. 124	Town of Erin	Culvert	Rectangular Culvert	5.6	12.2	1	5	2	1965
2009	15th Sideroad	1.0km West of Winston Churchill Blvd. (Wellington Rd. 25)	Town of Erin	Culvert	Arch Culvert	6.3	11.4	1	5	2	2006
2010	15th Sideroad	0.7km West of Winsotn Churchill Blvd (Wellington Rd. 25)	Town of Erin	Culvert	Arch Culvert	5	11.9	1	3.5	2	2006
2011	10th Line	0.2km South of Sideroad 15	Town of Erin	Culvert	Rectangular Culvert	7	9.4	1	5.8	2	1988
2018	1st. Line	5.0km North of Sideroad 32	Town of Erin	Culvert	Rectangular Culvert	7.4	6.3	1	3.7	2	
2019	3rd. Line	1.2km South of Hwy 124	Town of Erin	Culvert	Rectangular Culvert	7.2	7.2	1	3	2	

2023	5th. Line	South of Side road 10	Town of Erin	Culvert	Rectangular Culvert	5.6	12.4	1	4.8	2	1965
2033	1st. Line	0.3km South of Sideroad 17	Town of Erin	Culvert	Rectangular Culvert	4.3	5.6	1	3.6	2	
2039	3rd. Line	0.6KM North of Sideroad 27	Town of Erin	Culvert	Rectangular Culvert	4.9	11.1	1	4.4	0	1970
2040	4th. Line	1.1km South of Erin- Garafraxa Townline	Town of Erin	Culvert	Rectangular Culvert	3.5	14.5	1	3.1	0	2003
2042	Forth Line	0.1km North Station Rd. (Sideroad 24)	Town of Erin	Culvert	Rectangular Culvert	4.2	11.7	1	3.6	2	1970
2045	4th. Line	0.8km South of Sideroad 17	Town of Erin	Culvert	Rectangular Culvert	5.6	8	1	5	2	1950

APPENDIX C-7

Bridge Inspection Report

Summary Action Report Structure 2064 (MTO Site No.) Bridge 2064

Inspection Date	e	06/06/2013	mm/dd/yyyy			(Condition I	ndex Va	lue (BCI) 68.6
Next Biennial I	nspection	06/06/2015	mm/dd/yyyy			(Current Re	p. Value		\$325,455
Additional Inve	stigations									-
Investigation			Priority	Cost	Investigatio	on		P	Priority	Cost
No additional inve	estigations re	equired.								
Performance D	eficiencies	6								
Element Group	Eler	nent		Р	erformance D	Deficiency				
Barriers	Rail	ing Systems		Р	edestrian/vehi	cular hazard				
Accessories	Sigr	IS		Р	edestrian/vehi	cular hazard				
Maintenance N	eeds									
Element Group	Element			Mainten	ance Require	ed	Priority	Comme	nt	
Accessories	Signs			Other			1 yr	Replace	hazard m	arker.
Decks	Wearing S	urface		Rout and	d Seal		2 yr	Seal crac	cks	
Decks	Wearing S	urface		Bridge S	Surface Repair		2 yr	Surface	patches	
Approaches	Wearing S	urface		Rout and	d Seal		2 yr	Seal Cra	cks	
Repair/Rehabil	itation									
Element Group	Element			Repair/R	ehabilitation			F	Priority	Cost
Abutments	Wingwalls			Minor Re	hab Pat	ch repair and	crack repair	1	-5 yrs	\$8,000
Decks	Soffit - Thio	ck Slab		Minor Re	hab Pat	ch repair		1	-5 yrs	\$6,000
Abutments	Abutment	Walls		Minor Re	hab Sea	al cracks		1	-5 yrs	\$4,000

Barriers	Railing Systems		Minor Rehab	Reconstruct missing spindles and Within 1 repair cracks	\$9,000
				Total Repair/Rehabilitation Cost	\$27,000
Town of Erin		100 %	\$51,000.00 -	Total Associated Work Cost	\$24,000
		0%	\$0.00	Total Cost	<u>\$51,000</u>

Overall Comments

Repair railing system, abutment, deck soffit, wingwalls. Guiderail is connected to first interior barrier post, substandard connection.

Town of Erin

Municipal Structure Inspection Form

Structure Number:

2064

Inventory Data								
Structure Name	Bridge 2064			Hw	y No.	Key	Photo	
Cross. Type Over	🗹 Road 🗌 Rail	Ped Nav	v. Water	Non-Nav. \	Wat 🗌 Other	r		Contraction of
Cross. Type Under	Road Rail	Ped Nav	v. Water	Non-Nav. V	Nat 🗌 Other	r the		
Road Name	Station Road							
Structure Location	0.2 km West of Welli	ngton Rd. 24				1 A	Sec. 1	THE T
Latitude	43.78718 Longi	tude -80.14203	Cur	. Rep.Value	\$325,455	5	And the second	
Owner(s)/	Town of Erin		100 %			**		and the second second
% Share			0 %	0 % Heritage Status Not Co			d for Designatior	١
MTO Region	Southwestern			Road Side	Env. Unspe	ecified		
MTO District	London/Stratford			Road Class	Local			
Old County	Wellington			Lane Type				
Geographic Twp.	Erin			Posted Spe	ed	50	No. of Lanes	2
Structure Type	Solid Slab			AADT		700	Pct. Trucks	0
Structure Material				Inspection	Route Seque	nce		
Articulation		Interchange	e Number					
Total Deck Length	5.2 m Ro a	d Width	6 m	Interchange	e Structure N	umber		
Overall Width	7.4 m Ver	. Clear.	0 m	Detour Len	gth	0 km	Skew Angle	0 °
Total Deck Area	38.00 m ² No.	of Spans	1	Fill on Stru	cture	0 m	Struct. Dir.	East-West
Special Routes	Transit Schoo	Truck	Bicycle	Insp. Durat	ion	hr		
Spans		ment Value is based						
Span Name		Span Length	Span Na	ame		S	pan Length	
Span 1		4.4 m						
Historical Data								
Year Built	1917	уууу	Year of	Last Major R	ehab		0 уууу	
Last OSIM Inspection	n	mm/dd/yyyy	Contra	ct No. When B	uilt			
Last Enhanced OSIM		mm/dd/yyyy	Last Ev	aluation			mm/dd/yyyy	
Last Enhanced Access		mm/dd/yyyy	Current Load Limit		(0 t 0	t 0 t	
Last Underwater Ins	p	mm/dd/yyyy	Load L	imit By-Law N	lo.		mm/dd/yyyy	
Last Condition Surve	ey 🗌	mm/dd/yyyy	By-Lav	v Expiry Date			mm/dd/yyyy	

Rehab History

Town of Erin

Municipal	Structure	Inspection	Form
-----------	-----------	------------	------

Structure Number:

Field Inspection Information:										
Inspection Date	06/06/2013 mm/dd/yyyy 🗌 Multi Day Inspection 🗹 OSIM 🗌 Enhanced OSIM	BCI 68.6								
Inspector	Mario Marin Eng. Responsible Christine Beard Laaber, P.Eng.									
Others in Party	Kyle McTavish									
Access Equip.	Lift Ladder Boat Bridge Master Other									
Other Equip.	Camera, Hammer, Other Hand Tools									
Weather	Partly Cloudy Temperature 12 °C									

Additional Investigations Required:					
Investigation		Priority			Estimated Cost
	None	Normal	Urgent		
Detailed Deck Condition Survey	\checkmark				\$0
Delamination Survey of Asphalt-Covered Deck	\checkmark				\$0
Concrete Substructure Condition Survey	\checkmark				\$0
Detailed Coating Condition Survey	\checkmark				\$0
Detailed Timber Investigation	\checkmark				\$0
Post-Tensioned Strand Investigation	\checkmark				\$0
Underwater Investigation	\checkmark				\$0
Fatigue Investigation	\checkmark				\$0
Seismic Investigation	\checkmark				\$0
Structure Evaluation	\checkmark				\$0
Monitoring of Deformations, Movements and Settlements	\checkmark				\$0
Monitoring of Crack Widths	\checkmark				\$0
Investigation Notes				Total Cost	\$0

Overall Structure Notes:										
Recommedend	Work on Structure	None	Rehab	Replace	Remove					
Timing of Reco	ommended Work	None	Now	✓ 1 to 5 years	6 to 10 years					
Overall Comments	riepan rannig eyetern, a		t, wingwalls. Guid	erail is connected to	first interior barrier post, substandard					
BCI Change Justification										
Next Inspectio	n 06/06/2015 mi	n/dd/yyyy	Es	stimated Load Limit	0 t 0 t 0 t					

AECOM

Town of Erin **Municipal Structure Inspection Form**

BCI Histo	ory						
Insp. Date	BCI	Inspector			BCI His	story	
01-Nov-10	69.07	Scott Davis, P.Eng.	400			-	
06-Jun-13	68.64	Mario Marin	100 90 80 70 60 50 40 30 20 10	€95.07			68.64
			0 1	2010	2011	2012	2013

Structure Number:

All BCI values are based on the MTO BCI methodology published in April 2008. As a result, BCI values for 2007 and earlier are approximate only, with potential discrepancies resulting from changes (over time) in the way quantities for certain elements are calculated.

Standard Codes

Suspected Performance Deficiencies

- 00 None
- 01 Load carrying capacity
- Excessive deformations (deflections/rotations) 02
- 03 Continuing settlement
- 04 Continuing movements
- 05 Seized bearings

Maintenance Needs

- 01 Lift and Swing Bridge Maintenance
- 02 Bridge Cleaning
- Bridge Handrail Maintenance 03
- 04 Painting Steel Bridge Structures
- 05 Bridge Deck Joint Repair
- Bridge Bearing Maintenance 06

- Bearing not uniformly loaded/unstable 06
- 07 Jammed expansion joint
- 08 Pedestrian/vehicular hazard
- 09 Rough riding surface
- 10 Surface ponding 11
 - Deck drainage
- Repair to Structural Steel Repair of Bridge Concrete 07
- 08
- Repair of Bridge Timber 09
- 10 Bailey Bridges - Maintenance
- Animal/Pest Control 11
- 12 Bridge Surface Repair

- Slippery surfaces
- Flooding/channel blockage 13
- 14 Undermining of foundation
- Unstable embankments 15

Concrete Sealing

Rout and Seal Bridge deck Drainage

Other

16

13

14

15

16

17

18

- 12

Erosion Control at Bridges

Scaling (Loose Concrete or ACR Steel)

Other

v1118

Structure Number:

Element Data							
Decks - Wearing	Surface						
Element Group	Decks		Length	5.20 Width	6.00		
Element Name	Wearing Surface			Height	0.00 Count	1.00	
Location				Total Quantity	31.20		
Material	Asphalt			Limite	d Inspection		
Element Type				Environm	ient		
Protection System				Benig	n		
Condition Data	Units Exc	ell. Good	Fair Poor	Mode	rate		
Comments	sq. m	0.00 25.20	2.00 4.0	0 🗸 Sever	e		
Narrow to wide transver	rse cracks and oc	alized potholes.					
Performance Deficience		Maintenance Needs	Priorit	Comments			
None	Jies	Bridge Surface Repair	2 yr	Surface patc	hes		
		Rout and Seal	2 yr	Seal cracks			
Rehab/Repair Recomn	nendations	Priority Cost	-				
Decks - Deck Top)						
Element Group	Decks			Length	5.20 Width	7.40	
Element Name	Deck Top			Height	0.00 Count	1.00	
Location					Total Quantity	38.48	
Material	Cast-in-place co	ncrete		Limite	d Inspection		
Element Type				Environment			
Protection System				Benig	n		
Condition Data	Units Exc	ell. Good	Fair Poor	✓ Mode	rate		
Comments	sq. m	0.00 35.48	3.00 0.0	0 Sever	e		
Estimated from soffit.							
Performance Deficience	cies	Maintenance Needs	Priorit	Comments			
None			, non	Commonto			
Rehab/Repair Recomn	nendations	Priority Cost	Comments				

Town of Erin

	01		-
wunicipai	Structure	Inspection	Form

Structure Number:

Decks - Soffit - Thick Slab									
Element Group	Decks			Length	7.40 Width	4.40			
Element Name	Soffit - Thick Sla	ab				Height	0.00 Count	1.00	
Location							Total Quantity	32.56	
Material	Cast-in-place co	oncrete				🗌 Limite	ed Inspection		
Element Type						Environm	nent		
Protection System					✓ Benig	n			
Condition Data	Units Excell. Good Fair Poor				Mode	rate			
Comments	sq. m	0.00 27.56	6	2.50	2.50	Sever	re		
Spalling and delaminati	ons, narrow stain	ed cracks, exposed	l corrode	ed rebar, s	palls on sout	th fascia and e	efflorescence.		
Performance Deficient	cies	Maintenance Ne	eds		Priority	Comments			
None									
Rehab/Repair Recomm	nendations	Priority	Cost	Comme	nte				
Minor Rehab			6,000	Patch re					
Barriers - Railing	Systems		.0,000		P				
Element Group	Barriers					Length	19.60 Width	0.00	
Element Name	Railing Systems					Height	1.00 Count	2.00	
Location	Each Side					noight	Total Quantity	39.20	
Material	Cast-in-place co	ncrete				Limited Inspection			
Element Type		and Continuous Rail	ling			Environment			
Protection System	Concrete 1 03t a		iing						
Condition Data	Units Exc	ell. Good		Fair	Poor				
Condition Data	m Exc	0.00 31.20		4.00	4.00				
Comments				I]	
5 missing spindles on the (decorative feature), se							s of 4 end cap pieces		
Performance Deficiend	cies	Maintenance Ne	eds		Priority	Comments		ŗ	
Pedestrian/vehicular ha	azard								
Rehab/Repair Recomm	Priority	Cost	Comme						
Minor Rehab		Within 1yr \$	59,000	Reconst cracks	ruct missing	spindles and r	epair		

Town of Erin **Municipal Structure Inspection Form** 2064 Structure Number: **Barriers - Railing Systems** Length **Element Group** Barriers 0.00 Width 0.00 4.00 **Element Name** Railing Systems Height 0.00 **Count** South Side **Total Quantity** 4.00 Location Limited Inspection Material Steel **Element Type** Steel Flex Beam over other railing Environment **Protection System** Hot dip galvanizing Benign Excell. Moderate **Condition Data** Units Good Fair Poor 4.00 0.00 0.00 m 0.00 Severe Comments Priority Comments **Performance Deficiencies Maintenance Needs** None Priority Comments **Rehab/Repair Recommendations** Cost **Barriers - Posts** 0.00 0.00 Width **Element Group Barriers** Length 1.00 **Element Name** Posts Height 0.00 Count **Total Quantity** 1.00 Location South Side Limited Inspection Material Steel Environment **Element Type Protection System** Benign Moderate **Condition Data** Units Excell. Good Fair Poor 0.00 1.00 0.00 0.00 Severe Comments **Performance Deficiencies** Maintenance Needs Priority Comments None **Rehab/Repair Recommendations** Priority Cost Comments

Town of Erin **Municipal Structure Inspection Form** 2064 Structure Number: **Abutments - Abutment Walls Element Group** Abutments Length 7.40 Width 2.00 Abutment Walls Height 3.00 **Count Element Name** East and West Total Quantity 44.40 Location □ Limited Inspection Material Cast-in-place concrete **Element Type** Environment **Protection System** Benign **Condition Data** ✓ Moderate Units Excell. Good Fair Poor 2.00 sq. m 0.00 38.40 4.00 Severe Comments Narrow to wide cracks, light to medium scaling. Delaminations, spalls. **Performance Deficiencies Maintenance Needs** Priority Comments None **Rehab/Repair Recommendations** Priority Cost **Comments** Minor Rehab 1-5 yrs \$4,000 Seal cracks **Abutments - Wingwalls** 7.00 Width 0.00 **Element Group** Abutments Length 4.00 **Element Name** Wingwalls Height 3.50 Count **Total Quantity** 98.00 Location All Four Quadrants Limited Inspection Material Cast-in-place concrete **Element Type** Environment **Protection System** Benign **Condition Data** Units Excell. Good Fair Poor ✓ Moderate 4.00 4.00 sq. m 0.00 90.00 Severe Comments Narrow to wide cracks, light to severe scaling, spalls, delaminations. **Performance Deficiencies** Maintenance Needs Priority Comments None **Rehab/Repair Recommendations** Priority Cost Comments Minor Rehab 1-5 yrs \$8,000 Patch repair and crack repair

Town of Erin

Municipal Struc	ture Inspec	tion Form	Stru	cture Nu	mber:	2064			
Foundations - Fo	oundations (b	elow ground leve	el)						
Element Group	Foundations				Length	0.00 Width	0.00		
Element Name	Foundations (be	elow ground level)			Height	0.00 Count	0.00		
Location						Total Quantity	0.00		
Material			✓ Limite	d Inspection					
Element Type			Environm	ent					
Protection System					✓ Benigr	ı			
Condition Data	Units Exc	ell. Good	Fair	Poor	Moder	ate			
Comments					Severe	e			
Comments									
Performance Deficien None		Maintenance Need	5	Priority	Comments				
Rehab/Repair Recom			ost Comme	nts					
Embankments &			ays		• .• F		0.00		
Element Group	Embankments &				Length	0.00 Width	0.00		
Element Name	Streams & Wate	erways			Height	0.00 Count	0.00		
Location	Through Bridge					Total Quantity	100.00		
Material	Cast-in-place co	oncrete				d Inspection			
Element Type					Environm	ent			
Protection System					✓ Benigr	ı			
Condition Data	Units Exc		Fair	Poor	Moder	ate			
Comments	All	0.00 100.00	0.00	0.00	Sever	e			
Dam located approxim	Comments Comments Dam located approximately 15m upstream.								
Performance Deficien	cies	Maintenance Need	s	Priority	Comments				
None									
Rehab/Repair Recom	mendations	Priority C	ost Comme	nts					

Town of Erir

Municipal	Structure	Inspection	Form
I OWN OF ERIN			

Structure Number:

Element Group		nbankments					
	Embankments &	k Streams			Length	0.00 Width	0.00
Element Name	Embankments				Height	0.00 Count	4.00
Location	All Four Quadra	nts				Total Quantity	4.00
Material					Limite	d Inspection	
Element Type				,	Environm	ent	
Protection System					Benigi	า	
Condition Data	Units Exc	ell. Good	Fair	Poor	✓ Moder		
	Each	0.00 4.00	0.00	0.00	Sever	Э	
Comments							
Performance Deficien	cies	Maintenance Need	ds	Priority	Comments		
None							
Rehab/Repair Recomm		•	Cost Comment	's			
Element Group	Embankments &	& Streams			Length	0.00 Width	0.00
Element Name	Slope Protection	<u></u> ו			Height	0.00 Count	4.00
Location	All Four Quadra	nts			Ľ	Total Quantity	4.00
Material	Vegetation				Limite	d Inspection	1 1
Element Type					Environm	ent	
Protection System					Benigi		
Condition Data	Units Exc	ell. Good	Fair	Poor	Moder		
Comments	Each	0.00 4.00	0.00	0.00			
1	cies	Maintenance Need	ls	Priority	Comments		
Performance Deficien							

	•	ction Form	• • • • •		imber:			
Accessories - S	igns							
Element Group	Accessories				Length	0.00	Nidth	0.00
Element Name	Signs				Height	0.00 C	Count	4.00
Location	All Four Quadra	All Four Quadrants					antity	4.00
Material			Limite	ed Inspectior	า			
Element Type	Hazard Markers	6			Environn	nent		
Protection System					🗌 Beniç	jn		
Condition Data	Units Exe	cell. Good	Fair	Poor	Mode	erate		
Comments	Each	0.00 3.00	0.00	1.00	✓ Seve	re		
Marker at SW quadra	nt missing.							
Performance Deficie	ncies	Maintenance Needs	5	Priority	Comments			
Pedestrian/vehicular	hazard	Other		1 yr	Replace haz	ard marker.		
Kenad/Repair Recon	nmendations	Priority C	ost Commer	nts				
Approaches - W	learing Surfac	•	ost Commer	nts				
Approaches - W Element Group	Approaches	e	ost Commer	nts	Length		Width	
Approaches - W Element Group Element Name	Approaches	e	ost Commer		Length Height	0.00 C	Count	2.00
Approaches - W Element Group Element Name	Vearing Surfac Approaches Wearing Surfac Each End	e	ost Commer	nts	Height	0.00 C Total Qua	Count antity	2.00
Approaches - W Element Group Element Name Location Material	Approaches	e	ost Commer		Height	0.00 C	Count antity	2.00
Approaches - W Element Group Element Name Location Material	Vearing Surfac Approaches Wearing Surfac Each End	e	ost Commer		Height	0.00 C Total Qua ed Inspection	Count antity	6.00 2.00 72.00
Approaches - W Element Group Element Name Location Material Element Type Protection System	Vearing Surfac Approaches Wearing Surfac Each End Asphalt	e			Height	0.00 C Total Qua ed Inspection ment	Count antity	2.00
Approaches - W Element Group Element Name Location Material Element Type Protection System	Vearing Surfac Approaches Wearing Surfac Each End Asphalt Units Exc	e se cell. Good	Fair	Poor	Height Height Limite Environn Benig Mode	0.00 C Total Qua ed Inspection ment gn erate	Count antity	2.00
Approaches - W Element Group Element Name Location Material Element Type Protection System Condition Data	Vearing Surfac Approaches Wearing Surfac Each End Asphalt	e			Height	0.00 C Total Qua ed Inspection ment gn erate	Count antity	2.00
Approaches - W Element Group Element Name Location Material Element Type Protection System Condition Data Comments	Vearing Surfac Approaches Wearing Surfac Each End Asphalt Units Exc sq. m	e se cell. Good 0.00 68.00	Fair	Poor	Height Height Limite Environn Benig Mode	0.00 C Total Qua ed Inspection ment gn erate	Count antity	2.00
Approaches - W Element Group Element Name Location Material Element Type Protection System Condition Data Comments	Vearing Surfac Approaches Wearing Surfac Each End Asphalt Units Exc sq. m	e 	Fair	Poor	Height Height Limite Environn Benig Mode	0.00 C Total Qua ed Inspection ment gn erate	Count antity	2.00
Approaches - W Element Group Element Name Location Material Element Type Protection System Condition Data Comments	Vearing Surfac Approaches Wearing Surfac Each End Asphalt Units Exc sq. m	e 	Fair	Poor	Height Height Limite Environn Benig Mode	0.00 C Total Qua ed Inspection ment gn erate	Count antity	2.00
Approaches - W Element Group Element Name Location Material Element Type Protection System Condition Data	Vearing Surfac Approaches Wearing Surfac Each End Asphalt Units Exc sq. m	e 	<i>Fair</i> 2.00	Poor	Height Height Limite Environn Benig Mode	0.00 C Total Qua ed Inspection ment gn erate	Count antity	2.00
	Vearing Surfac Approaches Wearing Surfac Each End Asphalt Units Exc sq. m	e cell. Good 0.00 68.00 se cracks	<i>Fair</i> 2.00	Poor 2.00	Height	0.00 C Total Qua ed Inspection nent gn erate re	Count antity	2.00
Approaches - W Element Group Element Name Location Material Element Type Protection System Condition Data Comments Narrow to medium lor	Vearing Surfac Approaches Wearing Surfac Each End Asphalt Units Exc sq. m ngitudinal transvers	e cell. Good 0.00 68.00 se cracks Maintenance Needs Rout and Seal	<i>Fair</i> 2.00	Poor 2.00 Priority 2 yr	Height Height Limit Environn Benig Mode V Seve	0.00 C Total Qua ed Inspection nent gn erate re	Count antity	2.00

Municipal Structure Inspection Form

Structure Number:

2064

Repair/Rehabilitation Required								
Element Group	Element	Repair/Rehabilitation		Priority	Cost			
Abutments	Abutment Walls	Minor Rehab		1-5 yrs	\$4,000			
Barriers	Railing Systems	Minor Rehab		Within 1	\$9,000			
Decks	Soffit - Thick Slab	Minor Rehab		1-5 yrs	\$6,000			
Abutments	Wingwalls	Minor Rehab		1-5 yrs	\$8,000			
			Total Panair/Pahabilitatia	n Cost	\$27.000			

Total Repair/Rehabilitation Cost \$27,000

Associated Work

	Comments		E	Estimated Cost
Approaches]	\$0
Detours]	\$0
Traffic Control]	\$10,000
Utilities]	\$0
Right-of-Way]	\$0
Environmental Study]	\$0
Other	Engineering			\$9,000
Contingencies		10%	**	\$5,000
Engineering		%	**	\$0
** If based on a percentage nearest thousand dollars.	ge calculated values rounded-up to the	Total Associated Work Cost		\$24,000
nearest thousand donars.		Total Repair/Rehabilitation Cost		\$27,000
		Total Cost		\$51,000
		Town of Erin Share @ 100%		\$51,000
Justification				

Structure Number:

Looking east at structure.

Looking upstream.

Structure Number:

Looking downstream.

Narrow to wide cracks on wearing surface.

Structure Number:

Missing spindles on barrier.

Wide crack on barrier.

Structure Number:

Delaminations, wide cracks on barrier post.

North elevation.

Structure Number:

South elevation.

Spalls, wide crack on wingwall.

Structure Number:

Spalls, delamination on wingwall and fasica.

Spalls, exposed corroded rebar on fasica.

Structure Number:

06.06.2013 11.33

Typical soffit.

Delamination and efflorescence on soffit.

Structure Number:

Delamination, spalling and scaling on abutment.

Wide crack on abutment.

Structure Number:

 06.06.2013
 11:35

Delamination, spalling and exposed corroded rebar on soffit.

