

Mattamy (Erin) Limited and 2779181 Ontario Inc. Erin, Ontario

Mattamy (Erin) Limited and 2779181 Ontario Inc. Erin, Ontario

R.J. Burnside & Associates Limited 292 Speedvale Avenue West Unit 20 Guelph ON N1H 1C4 CANADA

June 2022 300052075.0002

Distribution List

No. of Hard Copies	PDF	Email	Organization Name
0	Yes	Yes	Ryan Oosterhoff, Mattamy Homes
0	Yes	Yes	Tom Baskerville, 2779181 Ontario Inc.
0	Yes	Yes	John Tsjeerdsma, DSEL

Record of Revisions

Revision	Date	Description
-	June 16, 2022	First Submission
1	October 18, 2023	Second Submission

R.J. Burnside & Associates Limited

Report Prepared By:

Stephanie Charity, B.Sc., P.Ge

Hydrogeologist

SC:cl

Report Reviewed By:

Dwight Smikle, M.Sc., P.Geo.

Vice President – Hydrogeology

DS:cl

STEPHANIE L. CHARITY PRACTISING MEMBER

DWIGHT J. SMIKLE

Table of Contents

1.0	Intro	oduction	1
	1.1	Scope of Work	1
2.0	Phy	sical Setting	
	2.1	Topography and Drainage	
		2.1.1 Surface Water Monitoring	
	2.2	Geology	
	2.3	Stratigraphy	4
3.0	Hyd	rogeology	
	3.1	Hydraulic Conductivity	
		3.1.1 Grainsize Analysis	
		3.1.2 Single Well Response Tests	
	3.2	Local Groundwater Use	
	3.3	Groundwater Level Monitoring Results	
	3.4	Surface Water/Groundwater Interactions	8
	3.5	Interpreted Groundwater Flow	
	3.6	Recharge and Discharge Conditions	9
4.0	Wat	er Quality	10
	4.1	Groundwater Quality	10
	4.2	Surface Water Quality	11
5.0	Wat	er Balance	11
	5.1	Water Balance Components	12
	5.2	Approach and Methodology	13
	5.3	Water Balance Component Values	14
	5.4	Pre-Development Water Balance (Existing Conditions)	14
	5.5	Potential Urban Development Impacts to Water Balance	15
	5.6	Post-Development Water Balance with No Mitigation	15
	5.7	Mitigation Strategies for Infiltration	16
	5.8	Post-Development Infiltration with LID Measures in Place	17
	5.9	Feature Based Water Balance	18
6.0	Dev	elopment Considerations	
	6.1	Construction Below the Water Table	18
	6.2	Source Water Protection	19
	6.3	Local Groundwater Supply Wells	19
	64	Well Decommissioning	19

_	_		
	2	h	ne
	a	v	163

Table 1:	Estimated Hydraulic Conductivity Based on Grainsize Analyses	5
Table 2:	Single Well Response Testing Results	6
Table 3:	Water Balance Component Values	.14
Table 4:	Pre-Development Water Balance	.15
Table 5:	Pre- and Post-Development Infiltration	.16
Table 6:	Post-Development Infiltration with Roof Leader Disconnection	.17

Figures

Figure 1	Site Location
Figure 2	Monitoring Locations
Figure 3	Topography and Drainage
Figure 4	Surficial Geology
Figure 5	Bedrock Geology
Figure 6	Well and Cross-Section Locations
Figure 7	Interpreted Geological Cross-Section A-A'
Figure 8	Interpreted Geological Cross-Section B-B'
Figure 9	Interpreted Geological Cross-Section C-C'
Figure 10	Interpreted Geological Cross-Section D-D'
Figure 11	Interpreted Groundwater Flow
Figure 12	Post-Development Land Use
Figure 13	Wellhead Protection Areas
Figure 14	Recharge Areas

Appendices

Appendix A MECP Well Records

Appendix B Borehole Logs

Appendix C Grainsize and Hydraulic Conductivity

Appendix C-1 Grainsize Analysis

Appendix C-2 Hydraulic Conductivity

Appendix D Groundwater Levels

Appendix E Surface Water Monitoring

Appendix F Water Quality

Appendix G Water Balance

Disclaimer

Other than by the addressee, copying or distribution of this document, in whole or in part, is not permitted without the express written consent of R.J. Burnside & Associates Limited.

In the preparation of the various instruments of service contained herein, R.J. Burnside & Associates Limited was required to use and rely upon various sources of information (including but not limited to: reports, data, drawings, observations) produced by parties other than R.J. Burnside & Associates Limited. For its part R.J. Burnside & Associates Limited has proceeded based on the belief that the third party/parties in question produced this documentation using accepted industry standards and best practices and that all information was therefore accurate, correct and free of errors at the time of consultation. As such, the comments, recommendations and materials presented in this instrument of service reflect our best judgment in light of the information available at the time of preparation. R.J. Burnside & Associates Limited, its employees, affiliates and subcontractors accept no liability for inaccuracies or errors in the instruments of service provided to the client, arising from deficiencies in the aforementioned third party materials and documents.

R.J. Burnside & Associates Limited makes no warranties, either express or implied, of merchantability and fitness of the documents and other instruments of service for any purpose other than that specified by the contract.

1.0 Introduction

R.J. Burnside & Associates Limited (Burnside) was retained by Mattamy (Erin) Limited and 2779181 Ontario Inc. to complete a hydrogeological assessment for a proposed residential subdivision located on adjacent parcels of land at 5552 Eighth Line and 5520 Eighth Line in the Town of Erin (herein referred to as the subject lands). The subject lands are located at the southwest corner of Sideroad 17 and Eighth Line (Part Lots 15 and 16, Con. 8) in the Town of Erin, County of Wellington (Figure 1). The hydrogeological assessment has been completed in support of a draft plan of subdivision for each of the parcels, 5552 Eighth Line owned by 2779181 Ontario Inc. and 5520 Eighth Line owned by Mattamy (Erin) Limited. The site location and instrumentation installed as part of the current assessment are shown on Figure 2. An initial study report was provided in June 2022 and based on review agency comments an updated report is being provided in October 2023. The updated report seeks to address agency comments on the initial report.

1.1 Scope of Work

The scope of the hydrogeological assessment involved a review of available regional information as well as the completion of site-specific investigations as described below, all field assessments were conducted to characterize the entirety of the subject lands as hydrogeological conditions were determined to be similar across both parcels:

- 1. Review of published geological and hydrogeological information: A review of background material for the area, including topography, surficial geology and bedrock geology mapping and existing geotechnical and hydrogeological reports was completed to assess the regional hydrogeological setting.
- 2. Review of the Ministry of the Environment, Conservation and Parks (MECP) water well records: The MECP maintains a database that provides geological records of water supply wells drilled in the province. A list of the available MECP water well records for local wells is provided in Appendix A and the well locations are plotted on Figure 6. It is noted that the well locations listed in the MECP records are approximations only and may not be representative of the precise well locations in the field. These well data were compiled and mapped to characterize the local groundwater resources and assess potential impacts to the local private wells from development of the subject lands.
- 3. Install groundwater monitoring network: Groundwater monitoring locations were established to characterize seasonal variations in the water table in both the shallow and deep aquifers. A total of ten boreholes were drilled and completed as monitoring wells (5 cm diameter) to determine the local stratigraphy and site-specific soil and groundwater conditions of the subject lands. Two

monitoring well nests (two wells of different depths at the same location) were installed to assess vertical gradients. An existing monitoring well (referred to as MW4) was included in the monitoring network. A well record or borehole log for MW4 is not available. Two piezometer nests were also installed in wetlands and a single piezometer was installed at a pond to assess vertical hydraulic gradients in the features. The locations of the monitoring wells and piezometers are shown on Figure 2 and monitoring well construction details are provided on the borehole logs in Appendix B.

- 4. Hydraulic conductivity testing: Burnside conducted single well response tests in order to determine hydraulic conductivity. Single well response tests were attempted at five groundwater monitoring wells (MW1s, MW1d, MW2, MW3 and MW9). The hydraulic conductivity field testing results are provided in Appendix C.
- Monitoring of groundwater levels: Monitoring has been completed in monitoring wells and piezometers to measure the depth to the water table and assess the horizontal and vertical groundwater flow conditions. Groundwater level monitoring began in May 2021 and is ongoing. Automatic water level recorders (dataloggers) were installed in three monitoring wells and three piezometers to document the range of groundwater fluctuations and the response of aquifers to precipitation events (MW1s, MW3, MW8, PZ1d, PZ2d, PZ3). Barometric data from a barologger installed on the subject lands was used for calibration of the datalogger results. The groundwater monitoring data and hydrographs are provided in Appendix D.
- 6. Surface water monitoring: Surface water monitoring was completed along drainage features that traverses the subject lands (SW1) and at a pond (SG1) in the northern portion of the subject lands (Figure 2). The surface water station SW1 was inspected for water depth and flow and the water level at SG1 was recorded on each site visit. Surface water elevations, when present, were also recorded at each piezometer location. The surface water monitoring data are summarized in Appendix E.
- 7. Water quality sampling: Water quality data was collected from two monitoring wells (MW1d and MW9) and one surface water location to typify the water quality in the vicinity of the subject lands. The water samples were submitted to a qualified laboratory for analyses of general water quality indicators (e.g., pH, hardness, and conductivity), basic ions (including chloride and nitrate) and selected metals to characterize the background water quality of the subject lands. The laboratory water quality data are provided in Appendix F.
- 8. Water balance calculations: Pre- and post-development water balance calculations have been completed to assess the groundwater infiltration volumes

across the study area. The local climate data and detailed water balance calculations are provided in Appendix G.

9. Data compilation, assessment of site conditions and reporting.

2.0 Physical Setting

2.1 Topography and Drainage

The subject lands are located in the physiographic region known as the Guelph Drumlin Field which is characterized by drumlins or groups of drumlins, edged with gravel terraces and swampy valleys (Chapman & Putnam, 1984). The topographic high on the subject lands is 459 metres above sea level (masl) which occurs on the ridge of a drumlin (ice-contact slope) running west-east that divides the property (Figure 3). South of the ridge the topography follows a steep drop toward the West Credit River Wetland Complex that outlets to the property to the south at an elevation of 417 masl. North of the drumlin ridge, the property slopes down towards the north, reaching an elevation of 397 masl along the north property lines (Figure 3).

The subject lands are located in the West Credit River subwatershed within the jurisdiction of the Credit Valley Conservation (CVC). Drainage on the north side of the ridge is generally to the northeast towards the Erin Branch of the Credit River just beyond the northeast corner of the property. Discontinuous watercourses/drainage swales are mapped on the subject lands draining north and connecting to wetlands that form part of the West Credit River Wetland Complex.

Drainage in the south portion of the subject lands slopes towards the wetland (also part of the West Credit River Wetland Complex) in the south corner of the subject lands (Figure 3).

2.1.1 Surface Water Monitoring

Surface water flow was monitored at SW1 along the drainage feature mapped in the north corner of the subject lands (Figure 3). Flow was observed at SW1 in April 2021 during the site walk and April 2022 but was dry for all monitoring events May 2021 to March 2022 (Table E-1, Appendix E). These observations indicate that the drainage feature is intermittent and carries water associated with the spring melt and runoff. Monitoring subsequent to the above have confirmed the designation as intermittent.

Surface water levels were measured at a pond downstream of SW1 at SG1 from May 2021 to October 2022 (Figure 3). Water levels at SG1 ranged from 0.04 m to 0.75 m above the bottom of pond (Table E-2, Appendix E).

2.2 Geology

Surficial geology mapping published by the Ontario Geological Survey (2003) shows that the subject lands are underlain by ice-contact stratified deposits south of the ridge, till consisting of sandy silt to silty sand north of the ridge, and glaciofluvial deposits at the northeast corner (Figure 4). Organic deposits are mapped just north of the subject lands along the course of the Credit River (Erin Branch). The bedrock underlying the subject lands consists of dolostone from the Amabel Formation (Figure 5).

2.3 Stratigraphy

A total of 10 boreholes were drilled and completed as monitoring wells in May 2021 to determine the local stratigraphy and site-specific soil and groundwater conditions of the subject lands (logs provided in Appendix B and locations shown on Figure 6). The boreholes indicated that the overburden stratigraphy is generally composed of layers of sand and gravel and silty sand till that are underlain by a finer grained clay with silt and stones. The more prevalent till deposits were generally composed of sandy silt to silty sand with varying amounts of clay and gravel and cobbles. Some layers of clay and silt may have developed in the till and these form localized low permeability layers or lenses. The borehole logs generally agree with the published mapping, although the surficial deposits encountered at MW9 and MW2 are interpreted to be glaciofluvial deposits rather than the sandy silt till that is mapped to this area.

To illustrate the shallow stratigraphy of the subject lands, schematic geologic cross-sections have been prepared (Figures 7, 8 and 9) using the MECP well records (Appendix A) and the soils information collected during drilling of boreholes and monitoring wells (Appendix B). The locations of the cross-sections are illustrated on Figure 6 along with the locations of water wells and boreholes used in the construction of the cross-sections. The cross-sections illustrate that the subject lands are underlain by overburden ranging in thickness from 5 m up to 65 m overlying limestone bedrock (Figures 6, 7 and 8). The overburden consists of layers of sand, gravel, and silty sand glacial till generally overlying a layer of clay with silt and stones. Bedrock is interpreted to be found at elevations from 385 masl to 395 masl.

3.0 Hydrogeology

3.1 Hydraulic Conductivity

The ability of soil to transmit groundwater is measured as its hydraulic conductivity. Hydraulic conductivity is low in poorly transmissive sediments (aquitards) and higher in more transmissive sediments (aquifers). The determination of hydraulic conductivity rates assists with the determinations of groundwater flow volumes and directions and the relationships between various layers in the subsurface. There are various methods that can be used to assess soil hydraulic conductivity depending on the available

instrumentation. Grainsize data and soil characteristics collected during a geotechnical investigation can be used to provide a general estimate of hydraulic conductivity. In situ bail-down or slug-testing methods are used in groundwater monitoring wells to assess site-specific hydraulic conductivity. Both methods have been used to estimate the hydraulic conductivity of the soils encountered in the boreholes completed on the subject lands as discussed below.

3.1.1 Grainsize Analysis

Representative soil samples were collected during drilling of boreholes and six samples were submitted for grainsize analysis.

To estimate hydraulic conductivity based on grainsize analysis, an empirical formula method known as the Hazen estimation is used. This method is an approximation of hydraulic conductivity based on grainsize curves for sandy soils. The approximation does not strictly apply to finer grained materials however, it is still considered useful to provide a general indication of the range of the hydraulic conductivity values. Grainsize distribution data were available for seven samples obtained from on-site wells and these data were used to obtain hydraulic conductivity values empirically using the Hazen method. The grainsize distribution graphs are provided in Appendix C-1 and the estimated hydraulic conductivity values are provided in Table 1.

Table 1: Estimated Hydraulic Conductivity Based on Grainsize Analyses

Sample ID	Depth of Sample (mbgs*)	Soil Description	% Fines	Estimated Hydraulic Conductivity (cm/s)
MW1-SS5	3.0	Gravelly Sand	12	3.6 x 10 ⁻³
MW1-SS6	4.6	Sand and Silt	40	2.5 x 10 ⁻⁵
MW2-SS4	2.3	Silty Sand	35	2.3 x 10 ⁻⁴
MW3-SS6	3.8	Silty Gravelly Sand	28	2.3 x 10 ⁻⁴
MW6-SS10	12.2	Silty Sand	35	1.0 x 10 ⁻⁴
MW7-SS8	7.6	Sand and Silt	40	1.2 x 10 ⁻³

^{*}metres below ground surface

Grainsize analyses results indicate that the sediments within the overburden range in composition from gravelly sand (12% fines) to sand and silt (40% fines). The greater amounts of fines within a deposit impacts the ability of the material to transmit water and generally lowers the overall hydraulic conductivity. Groundwater flow is generally limited by fine grained sediments with lower hydraulic conductivity. Grainsize analysis completed indicate that the sediments generally consist of varying amounts of sand, silt and gravel with trace clay. The hydraulic conductivities based on grainsize analyses for the sediments is estimated in the range of 10⁻³ to 10⁻⁴ cm/sec.

3.1.2 Single Well Response Tests

To assess the in situ hydraulic conductivity of the sediments, single well response tests (bail-down tests and slug tests) were conducted at five monitoring wells. The results from the tests were plotted (Appendix C-2) and analyzed to calculate hydraulic conductivity of the sediments screened. A summary of the calculated hydraulic conductivities is provided below in Table 2.

Table 2: Single Well Response Testing Results

Monitoring Well	Screen Interval (mbgs)*	Formation Screened	Hydraulic Conductivity (cm/sec)
MW1s	3.1 – 4.6	Gravelly Sand	1.3 x 10 ⁻³
MW1d	7.6 – 9.1	Silty Sand Till	2.2 x 10 ⁻⁵
MW2	2.6 – 3.1	Silty Sand	3.6 x 10 ⁻⁴
MW3	2.3 – 3.8	Sand/Silty Sand	5.3 x 10 ⁻⁵
MW9	3.1 – 4.6	Sandy Gravel	2.9 x 10 ⁻⁴

^{*}metres below ground surface

Single well response tests in wells screened in the silty sand till (MW1d, MW3) indicate moderate hydraulic conductivities in the order of 10⁻⁵ cm/sec.

3.2 Local Groundwater Use

The Village of Erin is supplied with municipal groundwater however there are still some private water supply wells that are used. A review of the MECP well records for an area of approximately 500 m surrounding the subject lands identified 39 well records. Of the 39, 37 were for water supply wells and the other 2 records were for monitoring wells. All of the 37 water supply wells are completed in the bedrock at depths ranging from 17 m to 68 m. The capacity of the wells reviewed generally ranged between 18 L/min (4 gpm) and 180 L/min (40 gpm). Summaries of the MECP well records are provided in Appendix A and the plotted locations have been included on Figure 6.

A municipal supply well (Town of Erin Well 8) is located on the east side of Eighth Line less than 50 m from the subject lands. The well record is incorrectly plotted in the MECP database further than 500 m east of the site. The well record reports the estimated capacity as 450 L/min (100 gpm). The subject lands are located within Erin Well 8's wellhead protection area for which the implications are discussed in Sections 5.2 and 5.3.

3.3 Groundwater Level Monitoring Results

Water levels in 10 monitoring wells and 5 piezometers were collected from May 2021 to September 2023 using a water level meter. Dataloggers (automatic water level

recorders) were installed in May 2021 at MW1s, MW6s, MW8, PZ1d and PZ2d and in June 2021 at PZ3 to provide continuous data (hourly readings) of water levels during the monitoring period. The datalogger at MW6s was moved to MW3 in June 2021 as MW6s continued to show dry conditions. A barometric pressure logger was also installed to measure changes in barometric pressure. These data are used to correct the water level data by accounting for changes in atmospheric pressure.

The groundwater monitoring data show the following (refer to Figure 2 for the monitoring locations and the data tables and hydrographs in Appendix D):

- Groundwater elevations across the subject lands range from 396 masl to 436 masl.
- Monitoring wells in the upland areas (MW4, MW5, MW6s/d and MW7) had water levels ranging from 7 m to more than 12 m below ground. MW4 located at 442.4 masl, was constructed to a depth of 19.7 meters and was consistently dry (Figure D-4). MW5 had water levels near the bottom of the screen (~7 mbgs) from July to November then water levels rose to a high of 3.2 mbgs in April 2022 (Figure D-5). The highest groundwater level attained at this monitor was 1.21 mbgs in April 2023. At MW6s/d, water levels were generally dry except for brief periods between March and August in 2022 and May and September in 2023 with a high of 8 mbgs (Figure D-6). Water levels at MW7 were consistently dry indicating the water table is greater than 11.9 mbgs at this location (Figure D-7).
- Monitoring wells located in the lower areas to the north (MW1sd, MW2, MW3, MW8 and MW9) had water levels ranging from 0.1 to 3.5 mbgs. Seasonal variation in these wells ranged from 1.6 m at MW2 to 3.0 m at MW8.
- Typically, shallow wells in southern Ontario show a seasonal pattern in groundwater levels with highest levels occurring in the spring, declining throughout the summer and early fall and then rising again in the late fall/early winter. Water levels observed on the subject lands are consistent with this trend with water levels lowest in the summer months, increasing in the fall and highest in the spring months.
- Hourly automatic water level readings (datalogger readings) collected at monitoring wells MW1s, MW3 and MW8 are plotted against precipitation to determine if there is a correlation between changes in water level and the occurrence of precipitation events. At MW1s there was no direct response to precipitation observed (Figure D-1, Appendix D). At MW3, the water level increased 0.9 m after an 80 mm rain event on September 21/22 and 0.75 m after a 42 mm rain event in February (Figure D-3). At MW8, a response to precipitation event is observed with water levels increasing approximately 0.5 m in response to a large rain event in September 2021 and a 42 mm rain event in February 2022 (Figure D-8).

Nested monitoring wells MW1s/d and MW6s/d were installed to determine vertical hydraulic gradients and evaluate the recharge or discharge conditions on the subject lands. There was small upward gradient observed at monitoring well nest MW1s/d with water levels in the deep wellbeing slightly higher than the shallow well MW1s, however the difference is too small to be considered significant (Figure D-1, Appendix D). At MW6s/d water levels in the deep well were lower than the shallow well when the wells were not dry indicating recharge conditions (Figure D-6).

3.4 Surface Water/Groundwater Interactions

Piezometers were installed at selected wetlands and surface water features on the subject lands to assess the potential for surface water/groundwater interactions and vertical gradients beneath the surface water features. The groundwater levels for the piezometers are provided in Table D-1 and Figures D-10 to D-12, Appendix D. Surface water levels measured at the piezometers are included on the figures and provided in Table E-2, Appendix E.

- PZ1s/d is located in a small, treed wetland channel on the north half of the subject lands. Surface water in the wetland at PZ1s/d was observed at 0.04 m above ground surface in June and July 2021 and was dry the rest of the 2022. In 2023 the surface water level has remained fairly consistent with 2022 observations with only minor seasonal variations being noted (Table E-2, Appendix E). Water levels in the shallow piezometer PZ1s were recorded slightly above ground surface for the duration of the monitoring period (Figure D-10, Appendix D). Water levels measured in the deep piezometer PZ1d show a steady increase from June to December suggesting that water levels were recovering from installation and indicating low hydraulic conductivity in the soils. Static water levels in PZ1d measured after June 2021 were higher than levels in PZ1s indicating an upward gradient and discharge conditions in this area.
- PZ2s/d is located within the West Credit River wetland complex on the east side of the subject lands just north of a woodlot. Water levels at PZ2s were dry from July to October 2021 then ranged from ground surface to 0.54 m below ground between November 2021 and September 2023 (Figure D-11, Appendix D). Water levels at PZ2d ranged from 1.2 mbgs up to 0.01 m above grade. The gradients at PZ2sd appear to change seasonally with a downward gradient during the summer months and upward gradient in the winter and spring. Due to the established elevations compared to regional conditions it is interpreted that perched groundwater conditions exist in this area and support a local groundwater system around the wetland. Surface water was observed at PZ2s/d on only two occasions, April and May 2022. The wetland was dry at PZ2 the rest of the monitoring rounds (Table E-2, Appendix E).

PZ3 is located at a pond on the south half of the subject lands and was installed on June 30, 2021. Surface water levels at PZ3 ranged from dry during late summer and fall months to 0.55 m in July 2022 and was greater than 0.9 m from April to September in 2023 (Table E-2, Appendix E). The automatic water level meter readings at PZ3 show water levels in the piezometer initially recovering from installation increasing to 0.17 m above ground surface in mid-July then decreasing gradually over the rest of July and August which is typical for summer groundwater levels. Water levels show impacts from large precipitation events in September 2021. In the fall of 2021, water levels start to rise and reach a seasonal high in the summer of 2022 after which the levels fall till November 2022. Based on the observed trends, water level in the piezometer is above grade during the summer months and below grade in the winter months. The observations suggest a discharge gradient at the pond in the summer months and potential recharge during fall/winter.

3.5 Interpreted Groundwater Flow

Groundwater elevation data (June 2021) obtained from the monitoring wells and piezometers are shown on Figure 11, along with the interpreted groundwater elevation contours for the area. The groundwater movement in the shallow overburden on the subject lands is interpreted to follow the elevation contours. North of the ridge the shallow groundwater is interpreted to flow northwards towards the low-lying wetlands and the Erin Branch of the Credit River. The groundwater is influenced by the surface topography with groundwater moving from topographic highs towards topographic lows. Arrows perpendicular to the groundwater contours are used to illustrate the groundwater flow directions. It is noted that groundwater flow on north of the ridge is generally towards the north and northwest with slight convergence around watercourses and wetland areas. It is interpreted that groundwater is close to surface in the topographically low areas and also in areas close to wetlands.

3.6 Recharge and Discharge Conditions

Areas where water from precipitation infiltrates into the ground and moves downward (i.e., areas of downward hydraulic gradients) are known as recharge areas. These areas are generally in areas of relatively higher topographic elevation. Areas where groundwater moves upward (i.e., areas of upward hydraulic gradients) are discharge areas and these generally occur in areas of relatively lower topographic elevation, such as along watercourses. Recharge and discharge may occur in local, intermediate and more regional flow systems. Infiltrating water at any given location may follow a shallow flow path and discharge a short distance away from the recharge area along the nearest slopes or in small watercourses, swales, agricultural ditches, wetlands, etc. This is referred to as a local groundwater flow system (i.e., flows that closely follow the existing topography with relatively short flow distances, e.g., up to a few hundred metres).

The coarse-grained soils on the subject lands are ideal for recharge, however high water table conditions in some areas due to the presence of fine grained sediments may impede recharge from occurring. The finer grained soils may also result in horizontal flow through these local flow systems and provide support for wetlands in these areas.

Water level measurements in piezometers and observations in the most northerly wetlands and in the vicinity of PZ1s/d indicate the potential for groundwater discharge to the wetlands and along the surface water features in this area. It is generally interpreted that the upland areas of the subject lands are recharge areas, and that recharge occurs where the groundwater table is at sufficient depth. The wetland feature in the central area of the subject lands is interpreted to be developed on a pocket of finer grained material that sits on top of the coarser grained sands. Surface runoff and local groundwater recharge is ponded in this area by the low permeability soil conditions. As dry conditions persist and as the perched water table drains the groundwater support is gradually reduced and therefore groundwater support to this feature is seasonal.

South of the wetlands are two pond features that are interpreted to exist in similar conditions to the central wetland. The presence of fine-grained sediments in these areas has created the circumstances that allow for perched groundwater conditions to exist and cause local groundwater support to these ponds. The main source of water for these features is however surface water that ponds in the area and gradually infiltrates to the local perched system before percolating a second time to the regional groundwater system or being used by vegetation around the pond.

4.0 Water Quality

To establish background water quality on the subject lands groundwater samples were collected on July 12, 2021. Water samples were collected from two groundwater wells (MW1d and MW9) and one surface water location (the watercourse adjacent to PZ1s/d). The samples were sent to AGAT Laboratories for analysis of general water quality indicator parameters and basic ions (e.g., pH, alkalinity, hardness, conductivity, chloride, nitrate, etc.) and selected metals.

4.1 Groundwater Quality

The analytical results from the laboratory are provided in Tables F-1, Appendix F and are discussed below. The data reviewed showed the following:

Both wells exceeded the Ontario Drinking Water Quality Standards (ODWQS)
aesthetic objective for total hardness (100 mg/L) with values of 267 and 270 mg/L.
Hardness in groundwater is caused by dissolved calcium and magnesium and is
typically a result of the geologic material of the aquifer.

- MW1d exceeded the ODWQS aesthetic objective for manganese (0.05 mg/L) with a value of 0.097 mg/L. Manganese naturally occurs in aquifers and at elevated levels causes staining during household use.
- Both wells exceeded the ODWQS aesthetic objective for turbidity due to the sampling techniques and well construction.
- There were no other exceedances of the ODWQS in the groundwater sample results.
- Nitrate in the groundwater ranged from less than 0.05 mg/L to 0.43 mg/L indicating that the groundwater has not been impacted by the surrounding land use activities such as septic systems or agricultural activities.

4.2 Surface Water Quality

The analytical results from the laboratory are provided in Tables F-2, Appendix F and are discussed below. The data reviewed showed the following:

- The total phosphorus concentrations were 0.07 mg/L. There is no firm PWQO for phosphorus; however, these concentrations exceed the 0.03 mg/L generally recommended phosphorus concentration for streams. Total phosphorus is a measure of all forms of phosphorus (dissolved or particulate) that are found in the water sample.
- The total concentrations of the cadmium, cobalt, copper, lead and zinc all marginally exceeded the PWQO guidelines for surface water. These may be attributed to sediment in the surface water. The concentration of total iron exceeded the PWQO guideline (0.3 mg/L) with a value of 12.1 mg/L.
- The concentration of nitrate in the surface water was 1.01 mg/L indicating that the groundwater may be impacted by the surrounding land use activities such as septic systems or agricultural activities.

Overall, the water quality data suggest that the surface water and groundwater quality in the Subject Lands area are relatively fair condition compared to the provincial drinking water and surface water quality guidelines. The data suggests that the surface water quality may locally be affected by anthropogenic influences (i.e., agricultural land uses).

5.0 Water Balance

A water balance assessment is required in order to assess potential land development impacts on the local groundwater conditions. The water balance completed for this study has been completed to determine the pre-development recharge volumes (based

on existing land use conditions) and the post-development recharge volumes that would be expected based on the proposed land use plan. The detailed water balance calculations are provided in Appendix G.

5.1 Water Balance Components

A water balance is an accounting of the water resources within a given area. As a concept, the water balance is relatively simple and may be estimated from the following equation:

P = S + ET + R + I

Where: P = precipitation

S = change in groundwater storage ET = evapotranspiration/evaporation

R = surface water runoff

I = infiltration

The components of the water balance vary in space and time and depend on climatic conditions as well as the soil and land cover conditions (i.e., rainfall intensity, land slope, soil hydraulic conductivity and vegetation). Runoff, for example, occurs particularly during periods of snowmelt when the ground is frozen, or during intense rainfall events. Precise measurement of the water balance components is difficult and as such, approximations and simplifications are made to characterize the water balance of a property. Field observations of the drainage conditions, land cover and soil types, groundwater levels and local climatic records are important input considerations for the water balance calculations.

The groundwater balance components for the subject lands are discussed below:

Precipitation (P)

The long-term average annual precipitation for the area of the subject lands is 946 mm based on data from the Environment Canada Fergus Shand Dam (Station 6142400, 43°44'05.088" N, 80°19'49.098" W, elevation 417.6 masl) for the period between 1981 and 2010. The climate station is located 19 km west of the subject lands. Average monthly records of precipitation and temperature from this station have been used for the water balance calculations in this study (Appendix G).

Storage (S)

Although there are groundwater storage gains and losses on a short-term basis, the net change in groundwater storage on a long-term basis is assumed to be zero so this term is dropped from the equation and not considered for the calculations.

Evapotranspiration (ET)

Evapotranspiration and evaporation components vary based on the characteristics of the land surface cover (i.e., type of vegetation, soil moisture conditions, perviousness of surfaces, etc.). Potential evapotranspiration (PET) refers to the water loss from a vegetated surface to the atmosphere under conditions of an unlimited water supply. The actual rate of evapotranspiration (AET) is generally less than the PET under dry conditions (i.e., during the summer when there is a soil moisture deficit). In this report, the PET and AET have been calculated using a soil-moisture balance approach.

Water Surplus (R + I)

The difference between the mean annual P and the mean annual ET is referred to as the water surplus. Part of the water surplus travels across the surface of the soil as surface or overland runoff (R) and the remainder infiltrates the surficial soil (I). The infiltration is comprised of two end member components: one component that moves vertically downward to the groundwater table (referred to as recharge) and a second component that moves laterally through the topsoil profile or shallow soils as interflow that re-emerges locally to surface (i.e., as runoff) at some short time following cessation of precipitation. As opposed to the "direct" component of surface runoff that occurs during precipitation or snowmelt events, interflow becomes an "indirect" component of runoff. The interflow component of surface runoff is not accounted for in the water balance equation cited above since it is often difficult to distinguish between interflow and direct (overland) runoff, however both interflow and direct runoff together form the total surface water runoff component.

5.2 Approach and Methodology

The analytical approach to calculate the water balance utilized for this assessment involves monthly soil-moisture balance calculations to determine the pre-development (based on existing land use) infiltration volumes. For the purposes of this study, the water balance calculations were undertaken using a spreadsheet model. The soil-moisture balance approach utilized assumes that soils do not release water as potential recharge while a soil moisture deficit exists. During wetter periods, any excess of precipitation over evapotranspiration first goes to restore soil moisture. Once the soil moisture deficit is overcome, any further excess water can then pass through the soil as infiltration and either become interflow (indirect runoff) or recharge (deep infiltration).

The soil moisture capacity for the soils on the subject lands were estimated based on guidance available in the MECP SWM Planning and Design Manual (2003). A soil moisture storage capacity of 150 mm was used for the areas where the land cover was predominantly short to moderate-rooted vegetation in the fields and agricultural areas (Table G-1, Appendix G). A soil moisture storage capacity of 300 mm was used for the areas where the land cover was woodland (Table G-2, Appendix G). A soil moisture

storage capacity of 75 mm was used for areas that were shallow rooted vegetation such as meadow and orchard as well as residential lawn (Table G-3, Appendix G). Tables G-1 to G-3 in Appendix G detail the monthly potential evapotranspiration calculations accounting for latitude and climate, and then calculate the actual evapotranspiration and water surplus components of the water balance based on the monthly precipitation and soil moisture conditions.

The MECP SWM Planning and Design Manual (2003) methodology for calculating total infiltration based on topography, soil type and land cover was used and a corresponding runoff component was calculated for the soil moisture storage conditions. The calculated water balance components from this table are then used to assess the pre-development and post-development volumes for runoff and infiltration as presented on Table G-4 in Appendix G.

5.3 Water Balance Component Values

The detailed monthly calculations of the water balance components are provided in Tables G-1 to G-3 in Appendix G. For these calculations, it has been assumed that sandy loam soils are representative for the subject lands for estimating the soil infiltration factor. The calculations show that a water surplus is generally available from November to May (see Figure G-1). The monthly water balance calculations illustrate how infiltration occurs during periods when there is sufficient water available to overcome the soil moisture storage requirements. The monthly calculations are summed to provide estimates of the annual water balance component values (Tables G-1, G-2 and G-3, Appendix G). A summary of these values is provided in Table 3.

Water Balance	Agricultural	Woodland	Open Space/Urban
Component	Lands		Lawn
Average Precipitation	946 mm/year	946 mm/year	946 mm/year
Actual Evapotranspiration	582 mm/year	582 mm/year	571 mm/year
Water Surplus	364 mm/year	364 mm/year	375 mm/year
Infiltration	218 mm/year	255 mm/year	225 mm/year
Runoff	146 mm/year	109 mm/year	150 mm/year

Table 3: Water Balance Component Values

5.4 Pre-Development Water Balance (Existing Conditions)

The water balance component values from Tables G-1, G-2 and G-3 were used to calculate the average annual volume of infiltration across the subject lands. Water balance calculations have been completed for the 5552 Eighth Line property and 5520 Eighth Line property. An area of the subject lands labeled "Lands to be Retained" will not be included in the development and therefore was not included in the water balance calculations (see Figure 14). The pre-development water balance calculations

are presented in Table G-4 and Table G-5 in Appendix G and summarized in Table 4 below.

Table 4: Pre-Development Water Balance

Water Balance	Runoff	Infiltration	
Component	(m³/year)	(m³/year)	
5552 Eighth Line	38,700	60,700	
5520 Eighth Line	44,200	87,100	
Total	82,900	147,800	

5.5 Potential Urban Development Impacts to Water Balance

It is recognized that the urban development of an area affects the natural water balance. The most significant difference is the addition of impervious surfaces as a type of surface cover (i.e., roads, parking lots, driveways, and rooftops). Impervious surfaces prevent infiltration of water into the soils and the removal of the vegetation removes the evapotranspiration component of the natural water balance. The evaporation component from impervious surfaces is relatively minor (estimated to be 10% to 20% of precipitation) compared to the evapotranspiration component that occurs with vegetation in this area (about 62% of precipitation in the area of the subject lands). So, the net effect of the construction of impervious surfaces is that most of the precipitation that falls onto impervious surfaces becomes surplus water and direct runoff. The natural infiltration components (interflow and deep recharge) are reduced.

A water balance calculation of the potential water surplus for impervious areas is shown at the bottom of Table G-1 in Appendix G. There is an evaporation component from impervious surfaces and this is typically estimated to be between about 10% and 20% of the total precipitation. For the purposes of the calculations in this study, the evaporation has been estimated to be 15% of precipitation. The remaining 85% of the precipitation that falls on impervious surfaces is assumed to become runoff. Therefore, assuming an evaporation/loss from impervious surfaces of 15% of the precipitation, there is a potential water surplus from impervious areas of 804 mm/year.

It is noted that the proposed development will be serviced by municipal water supply and wastewater services. Therefore, there will be no impact on the water balance and local groundwater or surface water quantity and quality conditions related to any on-site groundwater supply pumping or disposal of septic effluent.

5.6 Post-Development Water Balance with No Mitigation

To assess potential development impacts on infiltration, the post-development infiltration volumes were calculated for the subject lands based on land use areas and the associated percentage imperviousness for the current design layout provided by the

design engineers. The proposed land uses areas used in the water balance are mapped on Figure 12. The infiltration and runoff components for the post-development land uses have been calculated using the MECP SWM Planning and Design Manual (2003) methodology based on topography, soil type and land cover as shown on Tables G-1 to G-3 in Appendix G. The post-development water balance calculations are presented in Table G-4 and Table G-5 in Appendix G and summarized in Table 5 below.

Water Balance **Pre-Development Post-Development** Reduction in Infiltration Infiltration Component Infiltration (m³/year) (m³/year) (m³/year) 60,700 26,800 33,900 5552 Eighth Line 5520 Eighth Line 87,100 73,100 14,000 147,800 99.900 47.900 Total

Table 5: Pre- and Post-Development Infiltration

Comparing the pre- and post-development infiltration volumes, shows that development has the potential to reduce the average infiltration on the subject lands from 147,800 m³/year to 99,900 m³/year, i.e., a reduction of about 47,900 m³/year or 32%. These calculations assume no low impact development (LID) measures for stormwater management are in place.

5.7 Mitigation Strategies for Infiltration

In order to minimize the potential impacts of development on the water balance, the use of Low Impact Development (LID) measures for stormwater management are generally recommended by the conservation authority. LID is based on the premise of trying to manage stormwater to minimize the runoff of rainfall and increase the potential for infiltration where possible. There are, as outlined in the MECP SWMP Design Manual (2003) and Low Impact Development (LID) Stormwater Management Planning and Design Guide published by the CVC and TRCA (2010), a number of best management practices and mitigation techniques that can be used to increase the potential for post-development infiltration and mitigate the reductions in infiltration that occur with residential land development.

Techniques to maximize the water availability in pervious areas such as designing grades to direct roof runoff towards lawns, side and rear yard swales, boulevards, parks, and other open space areas throughout the development where possible can increase infiltration and reduce the volume of runoff directed to stormwater management facilities. Increasing the topsoil thickness is a method to increase the soil water storage area and potentially increase recharge volumes. Other LID practices that may be considered to control stormwater runoff for residential development areas include, but are not limited to, the use of vegetated buffer strips, rain gardens, construction of bioretention cells or bioswales, tree pits, cisterns and the use of porous pavers. The Functional Servicing

Report completed for the proposed development includes additional details on the proposed LIDs for stormwater management.

5.8 Post-Development Infiltration with LID Measures in Place

The basic premise for low impact development is to try to manage stormwater to minimize the runoff of rainfall and increase the potential for infiltration. The Functional Servicing/Stormwater Management Report (DSEL, 2022) indicates the LIDs recommended for the subject lands will include roof leader disconnection and increased topsoil.

Quantification of these surficial LID techniques is challenging and there are no widely accepted quantification standards. To assess the potential effectiveness of the recommended LID measures for groundwater infiltration for the subject lands, the water balance component values were recalculated. Based on the suitability of the local soils for roof leader disconnection, the impact of this LID measure was evaluated as part of the current assessment. This measure was applied as outlined below.

In the single detached and townhome residential areas roof areas will be disconnected and directed to front/rear/side yards. The TRCA/CVC Low Impact Development Stormwater Management Planning and Design Guide allows for a 50% runoff reduction (contribution to recharge) from roof leader disconnection and discharge to pervious areas. This 50% runoff reduction is based on the hydrologic soil group A and B (sandy to sandy loam) soils being present at the site. Recalculation of the water balance for the subject lands with these LID measures in place are presented in Tables G-6 and G-7, Appendix G and are summarized below in Table 6.

Table 6: Post-Development Infiltration with Roof Leader Disconnection

Water Balance Component	Pre-Development Infiltration (m³/year)	Post-Development Infiltration with LIDs (m³/year)	Decrease in Infiltration (m³/year)
5552 Eighth Line	60,700	52,200	8,500
5520 Eighth Line	87,100	90,600	-3,500
Total	147,800	142,800	5,000

The calculations demonstrate that the decrease in infiltration across the entire subject lands can be mitigated with roof leader disconnection down to 5,000 m³/year which is a decrease from pre-development conditions of 3%. Based on the required assumptions and the known variations in the values used, a 3% deficit can be regarded as a match to pre-development infiltration. Due to the success of roof leader disconnection in mitigating impacts to groundwater recharge, no further analysis of post-development LID impact on groundwater was completed.

5.9 Feature Based Water Balance

As a further assessment of development impact a feature based water balance was completed for the wetland features located on the subject lands. This assessment was completed by Geo Morphix Ltd. and included a characterization of the subject lands and pre- and post-development water balance to account for the impact of the proposed development on the wetland features. The full feature-based water balance report is included as Appendix H of the Functional Servicing Report and indicates that the post-development annual runoff volumes will be maintained within +/-10% of pre-development runoff at each of the seven surface water features on the subject lands.

6.0 Development Considerations

6.1 Construction Below the Water Table

Based on groundwater level data collected as part of this study water table on the subject lands range from 1 to 4 m in the topographically low area and 7 to greater than 12 m in the topographically higher lands.

Should excavations during construction of servicing extend below the water table the local soils may need to be dewatered. Due to the potential for encountering the water table during construction, the dewatering of local aquifers may be required in order for services to be installed below the water table. The undertaking of dewatering according to industry standards and in accordance with a MECP processes will ensure that adequate attention is paid to potential adverse impacts to the environment. Currently the MECP allows for construction dewatering of less than 400,000 L/d to proceed under the Environmental Activity Sector Registry (EASR) process. If dewatering is to be above this threshold, then the standard Permit to Take Water (PTTW) process applies. In both cases, a scientific study is required in support of EASR registration or PTTW application. This scientific study must review the potential for environmental impacts and provide mitigation and monitoring measures to the satisfaction of the MECP or other review agency. The requirements for construction dewatering will be confirmed by geotechnical/hydrogeological investigations completed in support of detailed design.

The construction of buried services below the water table has the potential to capture and redirect groundwater flow through more permeable fill materials typically placed in the base of excavations. Groundwater may also infiltrate into joints in storm sewers and manholes. Over the long-term, these impacts can lower the groundwater table across the development area. To mitigate this effect, services to be installed below the water table should be constructed to prevent redirection of groundwater flow. This will involve the use of anti-seepage collars or clay plugs surrounding the pipes to provide barriers to flow and prevent groundwater flow along granular bedding material and erosion of the backfill materials.

6.2 Source Water Protection

The subject lands are located within the Credit Valley Source Protection Area for which policies in the CTC Source Protection Plan (SPP) apply. Since the subject lands are located within the wellhead protection areas for the Town of Erin's Well 8 (Figure 13) the proposed development will be subject to policies if activities include any of the prescribed drinking water threats (Clean Water Act, 2006) that would be a significant drinking water threat. Potential drinking water threats are discussed in the Drinking Water Threats Disclosure Report submitted under separate cover.

A review of the MECP's Source Protection Atlas indicates that the subject lands are mapped as a highly vulnerability aquifer (HVA) area (Figure 14). Depending on land use, runoff from urban developments may contain a variety of dilute contaminants such as suspended solids, chloride from road salt, oil and grease, metals, pesticide residues, bacteria and viruses. For groundwater, generally, with the exception of the dissolved constituents such as nitrogen and salt, most contaminants are attenuated by filtration during groundwater transport through the soils. The potential for effects on local groundwater quality from infiltration in the urban areas is therefore expected to be limited. There are no policies for HVAs in the CTC Source Protection Plan (SPP).

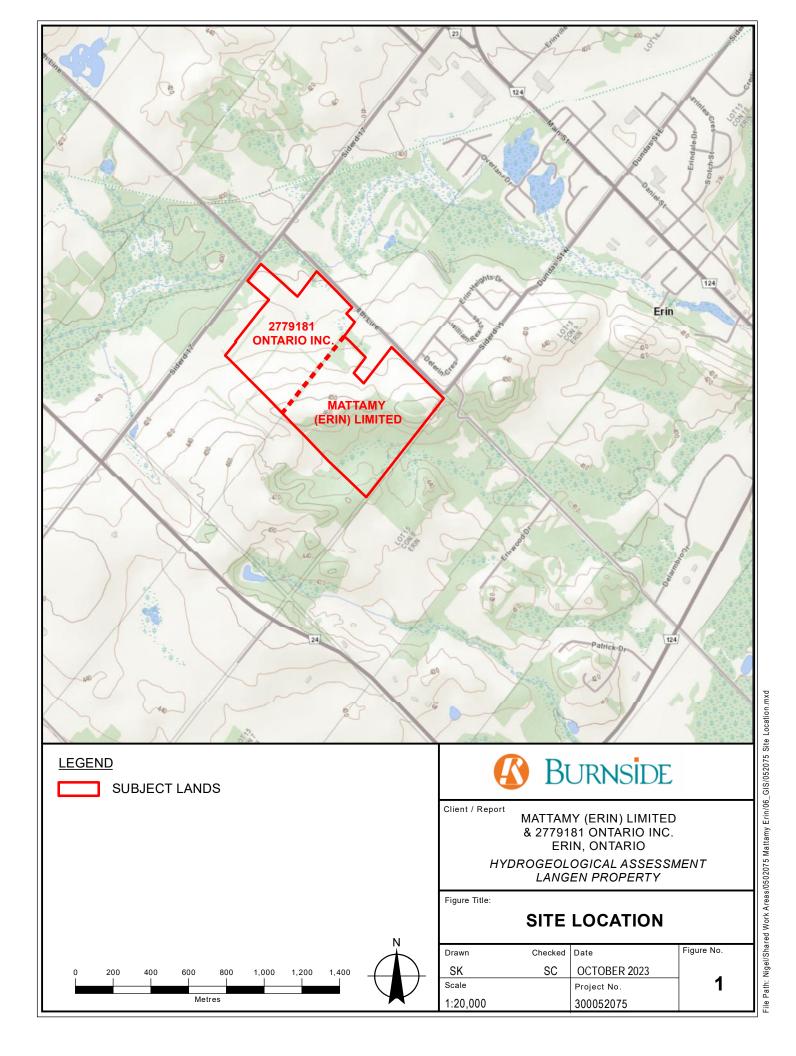
6.3 Local Groundwater Supply Wells

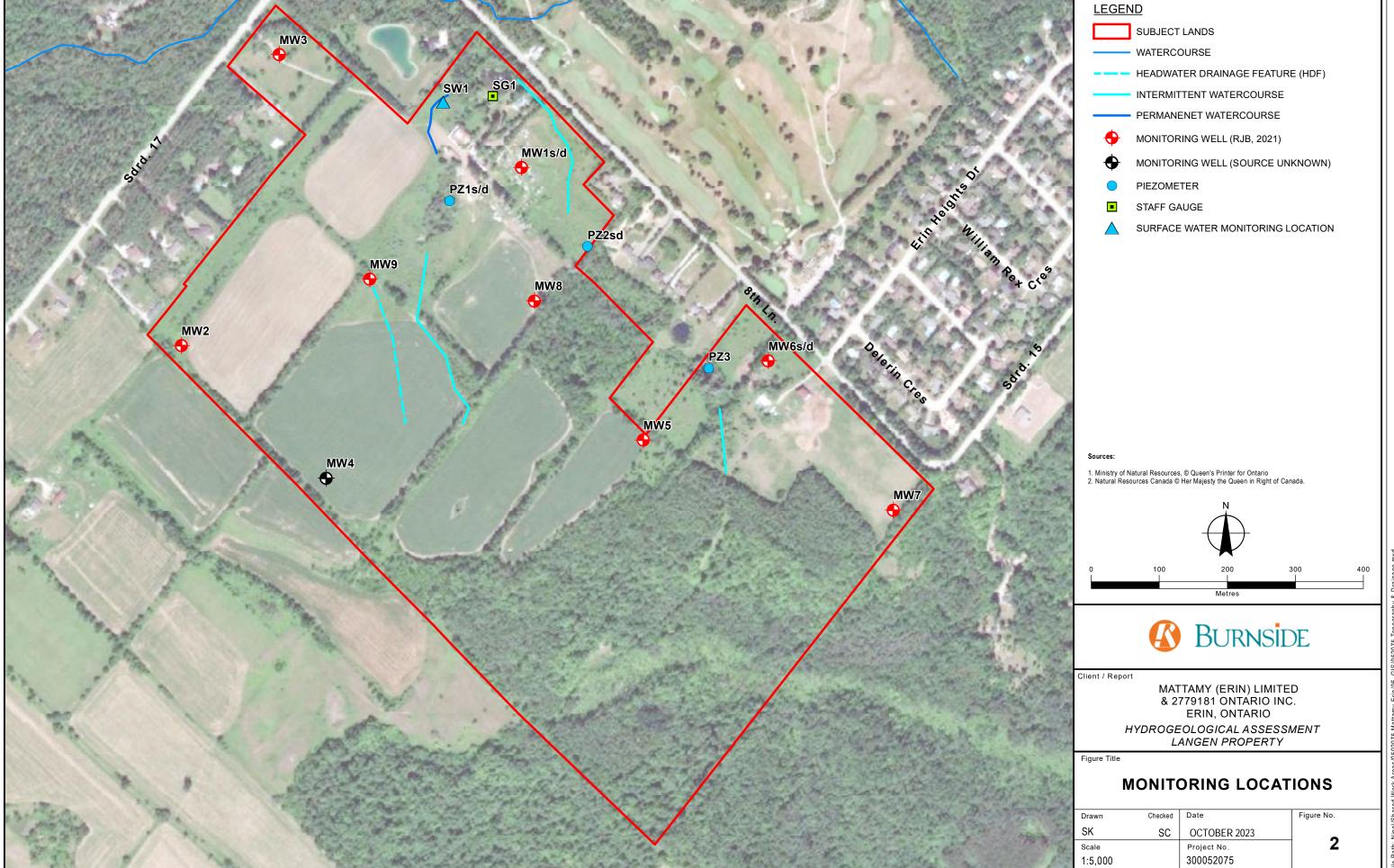
The Village of Erin is supplied with municipal water and subject lands will be serviced by municipal water supply however, the surrounding rural properties fall outside of the serviced area and are supplied by individual domestic water wells. A review of MECP water well records within 500 m of the subject lands indicates that all water supply wells are located in the bedrock with depths ranging from 17 m to 68 m. The capacity of the wells reviewed generally ranged between 18 L/min (4 gpm) and 180 L/min (40 gpm).

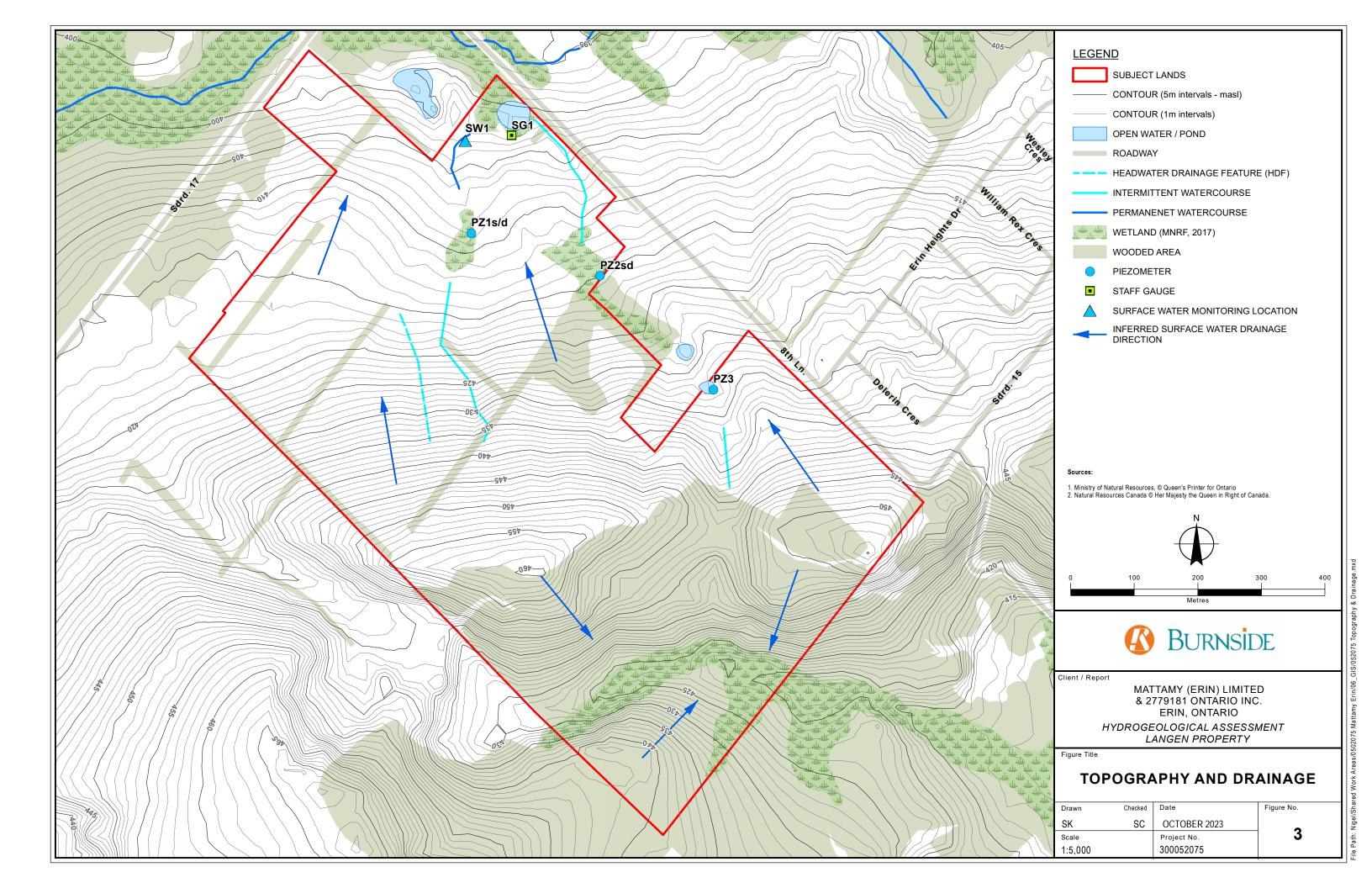
A review of the MECP records for Permits to Take Water (PTTW) issued in the area show that the Town of Erin has a PTTW for the municipal well (Erin Well 8) and the golf course north of the subject lands has a PTTW for surface and groundwater sources.

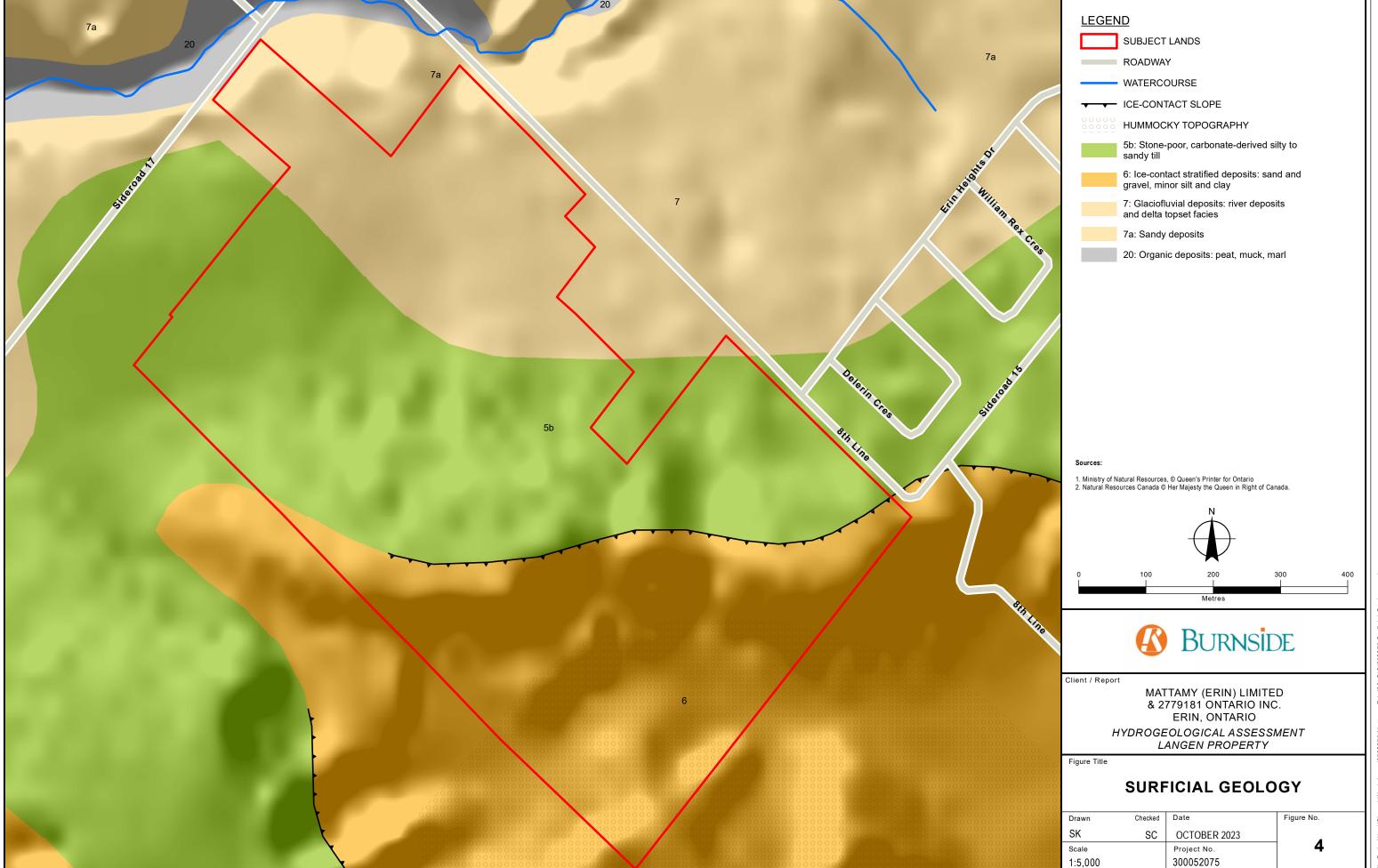
During construction, dewatering activities if required will be limited to groundwater within the overburden.

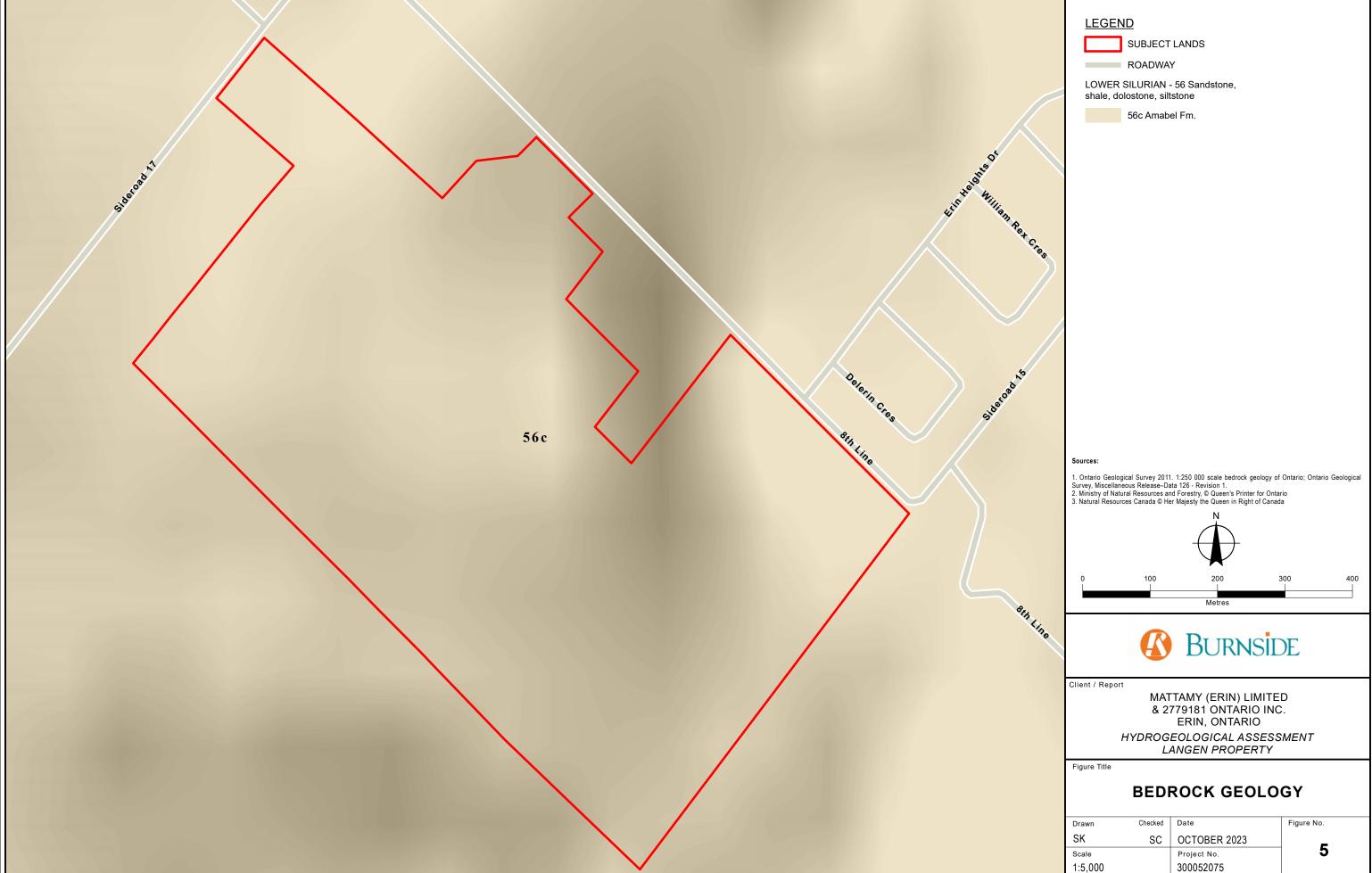
It is recommended that a water supply well survey be completed to establish baseline conditions in surrounding wells before construction.

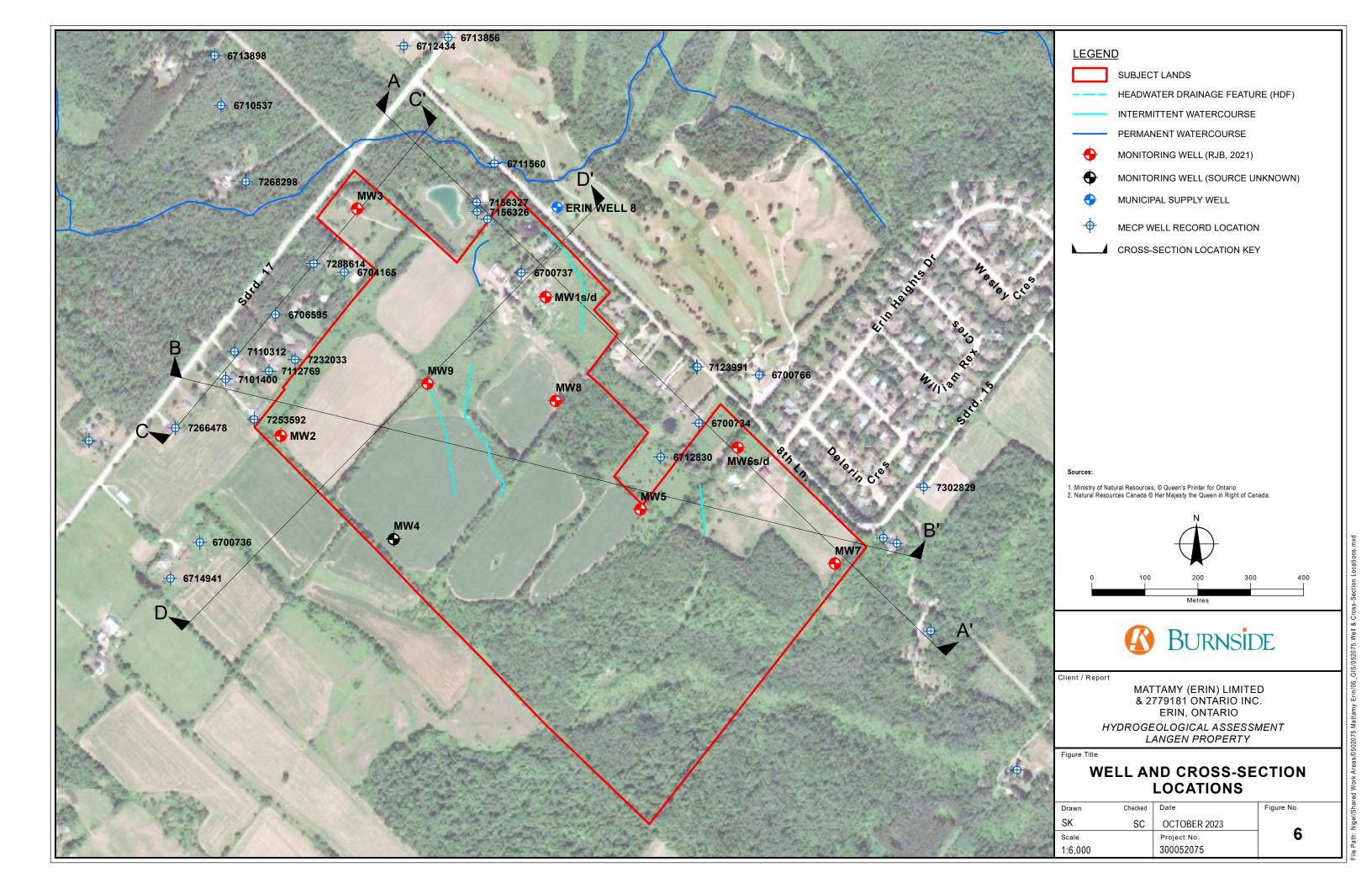

6.4 Well Decommissioning

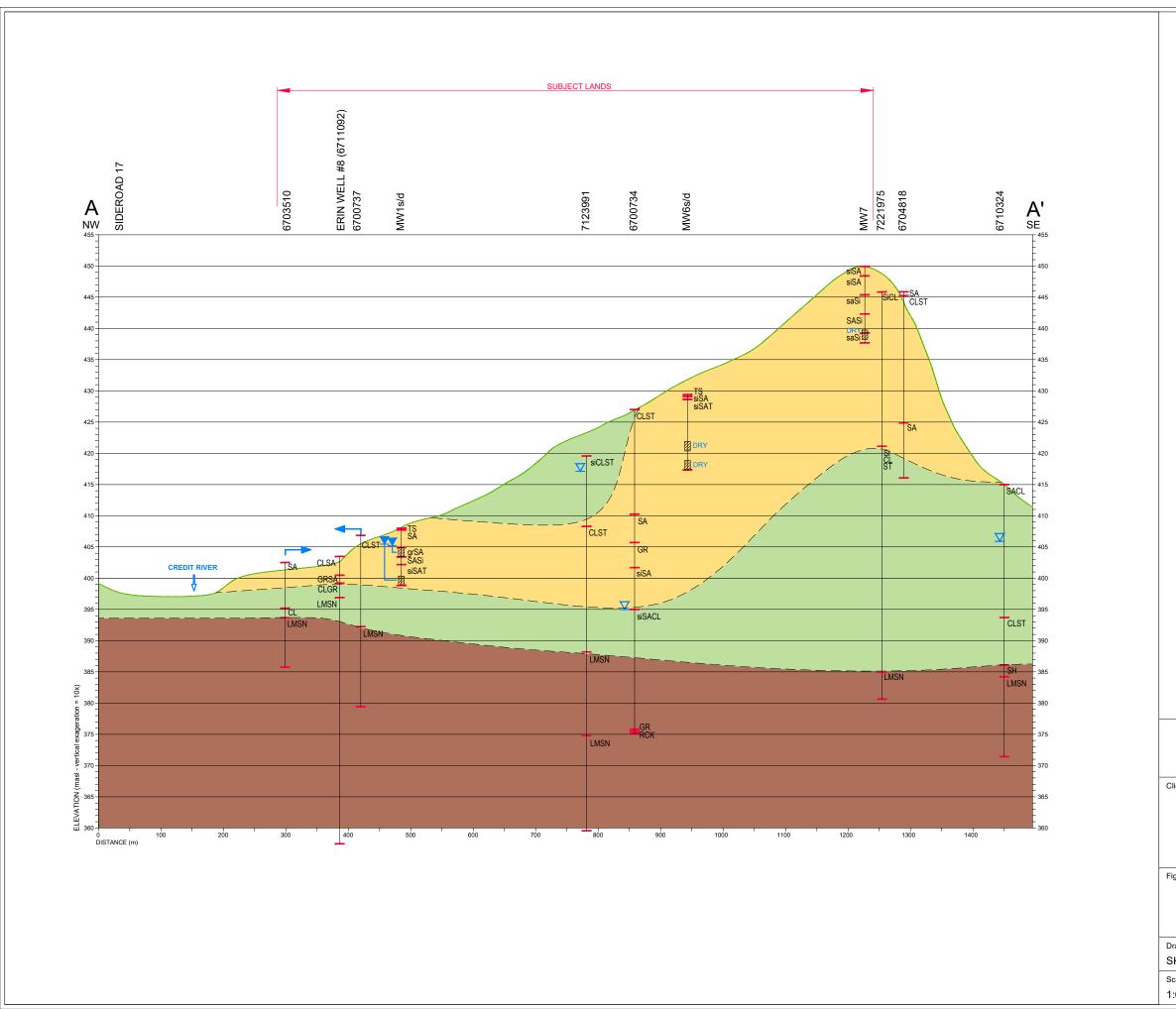

Prior to or during construction, it is necessary to ensure that all inactive wells within the development footprint have been located and properly decommissioned by a licensed water well contractor according to Ontario Regulation 903. This regulation applies to

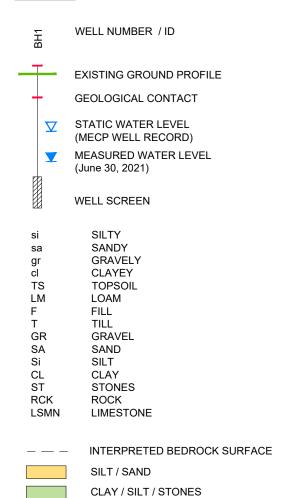

private domestic wells and to the groundwater observation wells installed for this study unless they are maintained throughout the construction for monitoring purposes.




Figures







BEDROCK

Client / Report

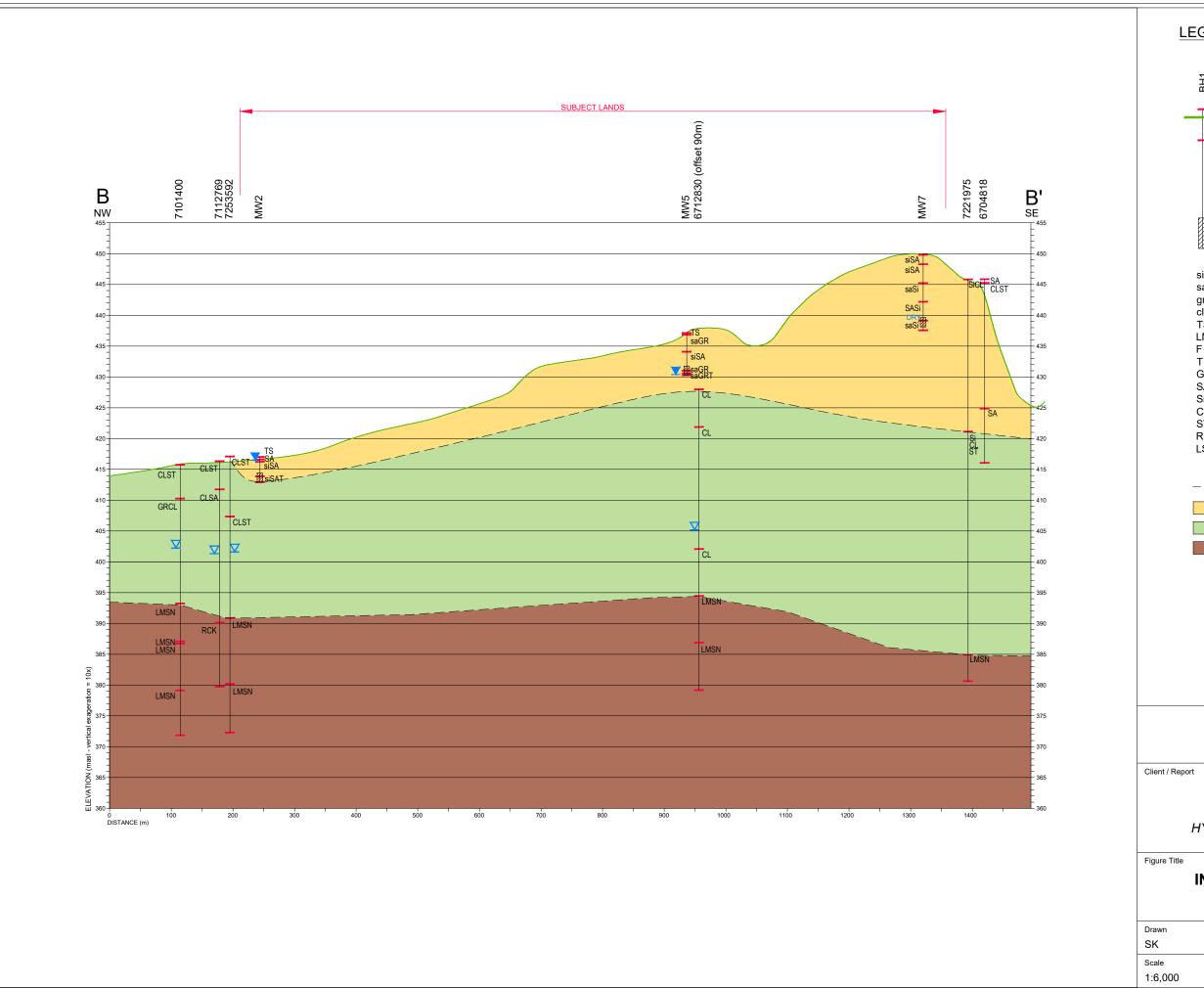
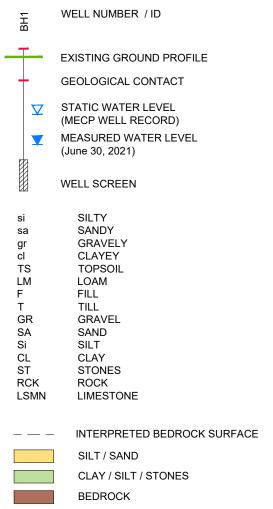
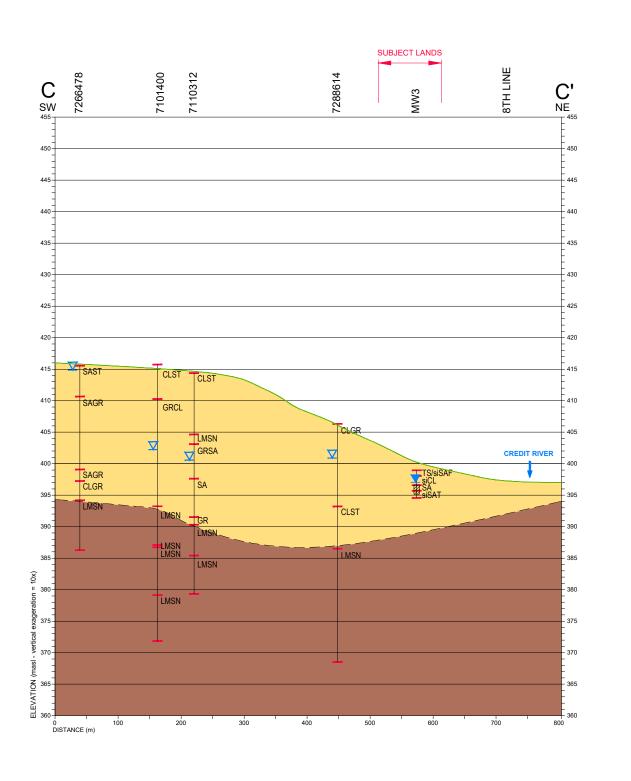

MATTAMY (ERIN) LIMITED
& 2779181 ONTARIO INC.
ERIN, ONTARIO
HYDROGEOLOGICAL ASSESSMENT
LANGEN PROPERTY

Figure Title


INTERPRETED GEOLOGICAL CROSS-SECTION A-A'

Drawn	Checked	Date	Figure No.
SK	SC	OCTOBER 2023	
Scale		Project No.	7
1:6,000		300052075	

igel/Shared Work Areas/050344 Mattamy Erin/02_Production/ 052075 Cross-Sections.dwg Date Plotted: May 27, 2022



MATTAMY (ERIN) LIMITED
& 2779181 ONTARIO INC.
ERIN, ONTARIO
HYDROGEOLOGICAL ASSESSMENT
LANGEN PROPERTY

INTERPRETED GEOLOGICAL CROSS-SECTION B-B'

Drawn	Checked	Date	Figure No.
SK	SC	OCTOBER 2023	
Scale		Project No.	8
1:6,000		300052075	

Nigel/Shared Work Areas/050344 Mattamy Erin/02_Production/ 052075 Cross-Sections.dwg Date Plotted: May 27, 202

WELL NUMBER / ID

EXISTING GROUND PROFILE

GEOLOGICAL CONTACT

STATIC WATER LEVEL (MECP WELL RECORD)

MEASURED WATER LEVEL (June 30, 2021)

WELL SCREEN

SILTY SANDY gr cl TS **GRAVELY** CLAYEY TOPSOIL LM LOAM FILL TILL GR GRAVEL SA SAND SILT CL CLAY ST STONES RCK ROCK LIMESTONE LSMN

INTERPRETED BEDROCK SURFACE

SILT / SAND

CLAY / SILT / STONES

BEDROCK

Client / Report

MATTAMY (ERIN) LIMITED & 2779181 ONTARIO INC. ERIN, ONTARIO DROGEOLOGICAL ASSESSME

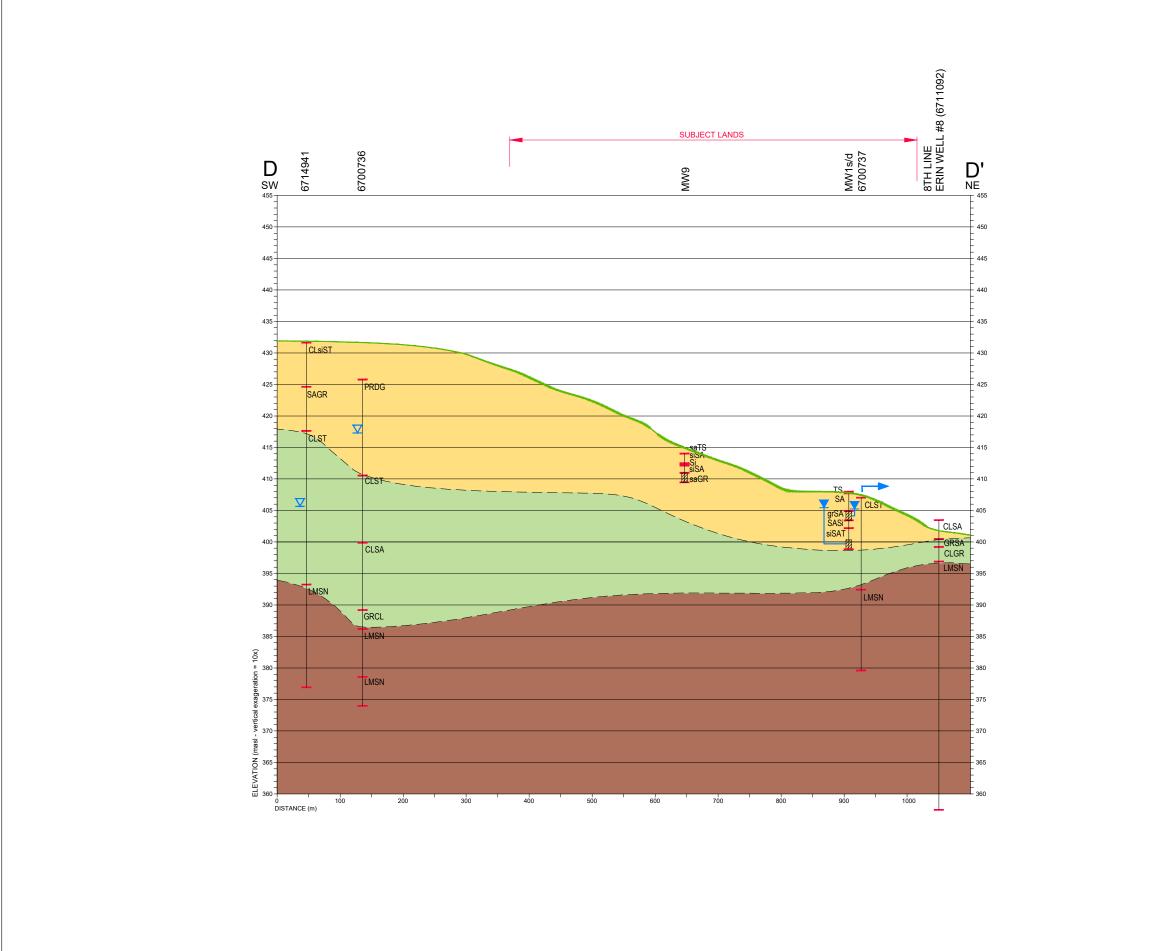

HYDROGEOLOGICAL ASSESSMENT LANGEN PROPERTY

Figure Title

INTERPRETED GEOLOGICAL CROSS-SECTION C-C'

Drawn	Checked	Date	Figure No.	
SK	SC	OCTOBER 2023		
Scale		Project No.	9	
1:6,000		300052075		

//Shared Work Areas/050344 Mattamy Erin/02_Production/ 052075 Cross-Sections.dwg Date Plotted: May 27, 2022 - 1:59 F

LEGEND

WELL NUMBER / ID

EXISTING GROUND PROFILE
GEOLOGICAL CONTACT

STATIC WATER LEVEL
(MECP WELL RECORD)

MEASURED WATER LEVEL
(June 30, 2021)

WELL SCREEN

SANDY GRAVELY CLAYEY TS TOPSOIL LOAM FILL TILL GR GRAVEL SA SAND Si CL ST RCK SILT CLAY STONES ROCK LIMESTONE LSMN

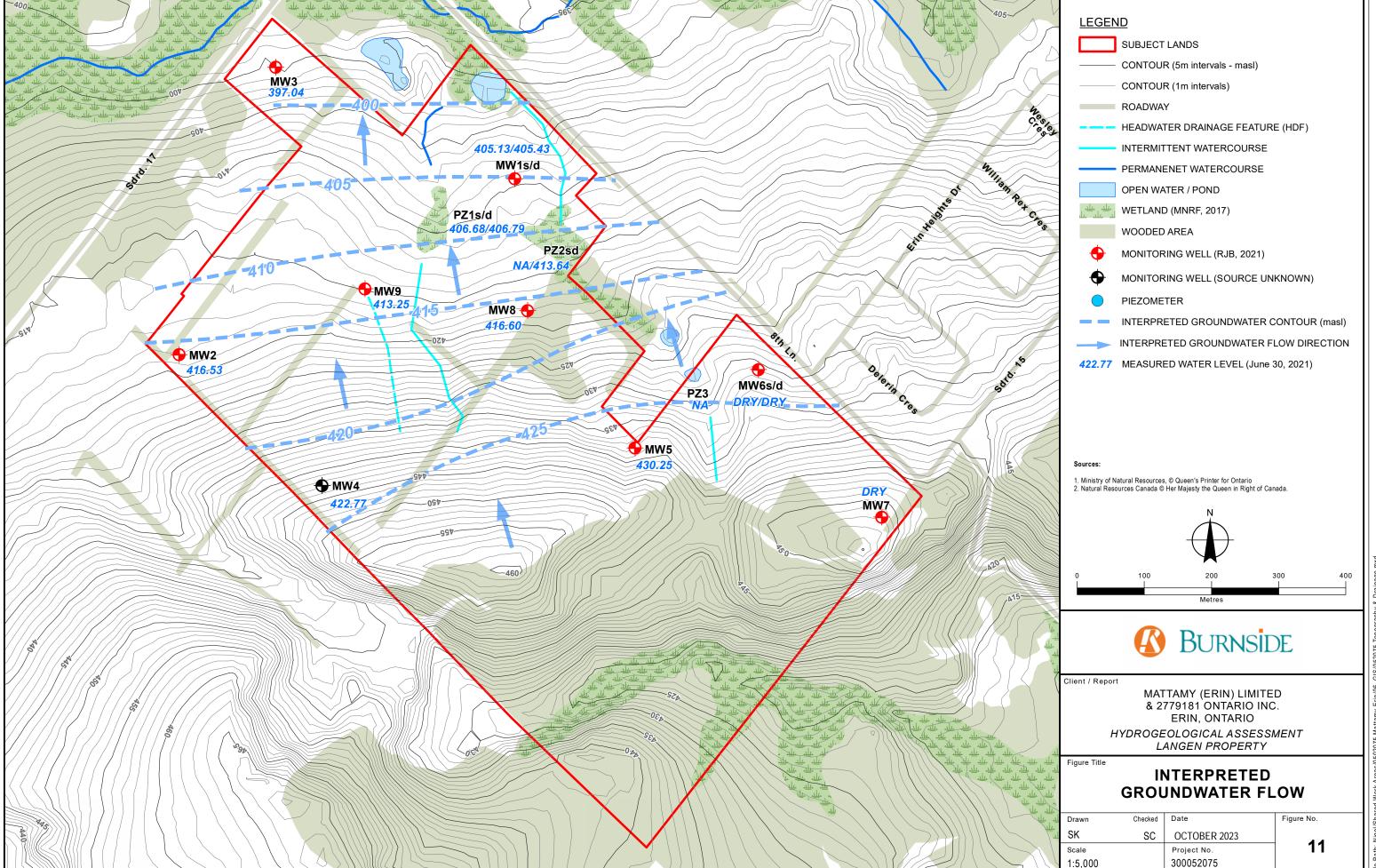
— — INTERPRETED BEDROCK SURFACE

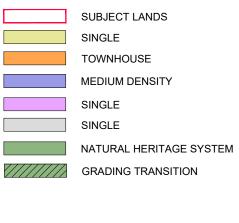
SILT / SAND
CLAY / SILT / STONES

DEATH OF CITY

BEDROCK

Client / Report


MATTAMY (ERIN) LIMITED
& 2779181 ONTARIO INC.
ERIN, ONTARIO
HYDROGEOLOGICAL ASSESSMENT
LANGEN PROPERTY

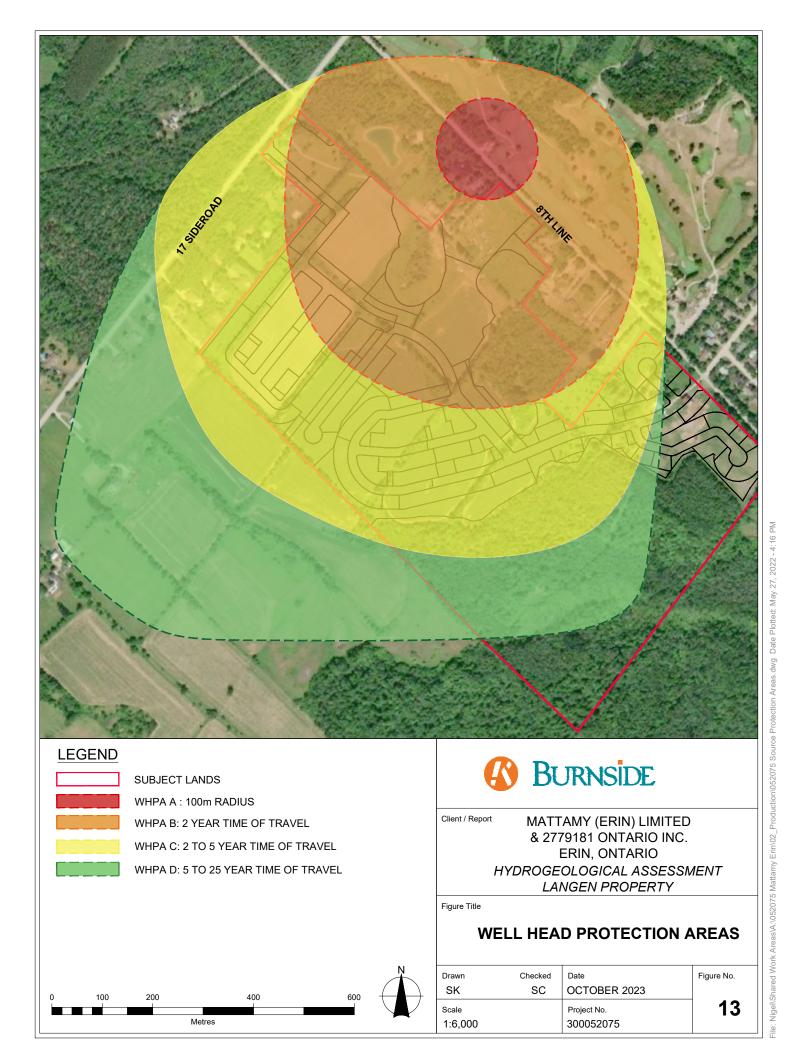

Figure Title

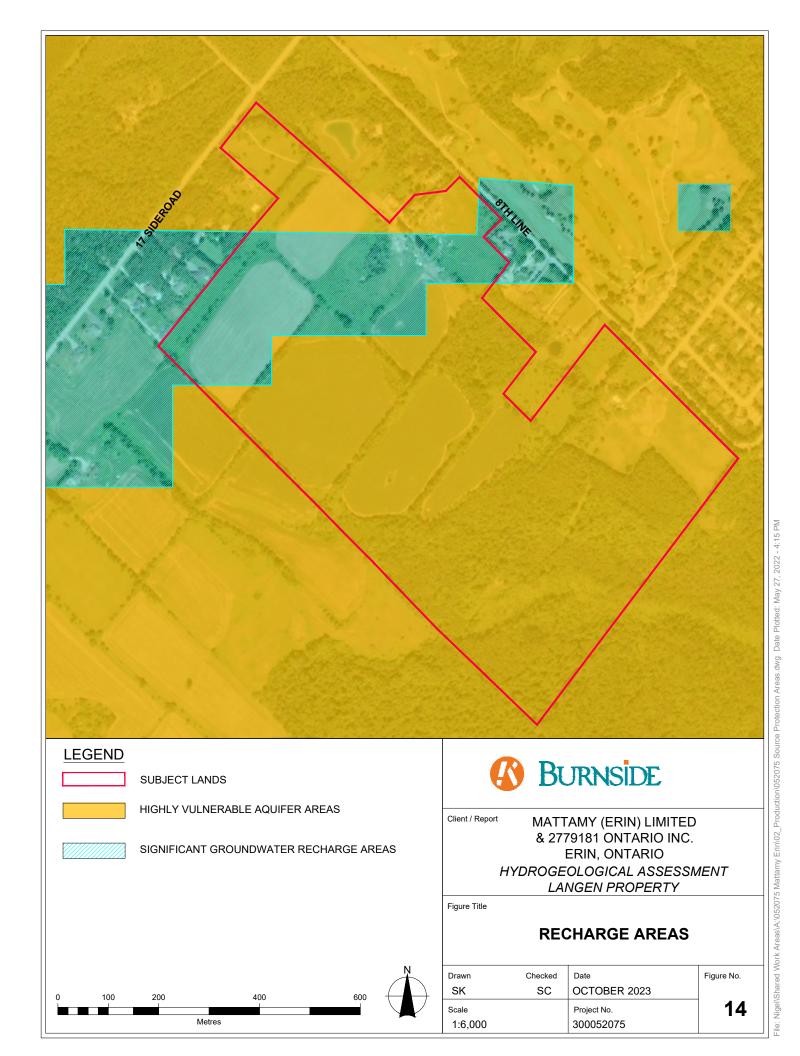
INTERPRETED GEOLOGICAL CROSS-SECTION D-D'

Drawn	Checked	Date	Figure No.
SK	SC	OCTOBER 2023	
Scale		Project No.	10
1.6 000		300052075	

igel/Shared Work Areas/050344 Mattamy Erin/02_Production/ 052075 Cross-Sections.dwg Date Plotted: May 27, 2022

Metres


Client / Report MATTAMY (ERIN) LIMITED & 2779181 ONTARIO INC. ERIN, ONTARIO HYDROGEOLOGICAL ASSESSMENT LANGEN PROPERTY


Figure Title

POST-DEVELOPMENT LAND USE

Drawn	Checked	Date	Figure No.
SK	SC	OCTOBER 2023	
Scale		Project No.	12
1:6,000		300052075	

lle: Nigel/Shared Work Areas/A:1052075 Mattamy Erin/02_Production\052075 Source Protection Areas.dwg Date Plotted: May 27, 2022 - 4:17 PM

Appendix A

MECP Well Records

Tuesday, August 03, 2021

2:08:25 PM

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
ERIN TOWNSHIP CON 08 004	17 572737 4846553 W	2008/07 2663	6.25 6.25	FR 0115	45/48/20/1:	DO		7110312 (Z83937) A056242	BRWN CLAY STNS GRVL 0032 GREY LMSN LYRD 0037 BRWN GRVL SAND CLAY 0055 BRWN SAND 0075 GREY GRVL 0079 GREY LMSN FCRD 0095 GREY LMSN 0115 BRWN
ERIN TOWNSHIP CON 08 014	17 574227 4845480 W	1987/06 3317	5 5	FR 0130	27/35/14/1:15	DO		6708822 (09497)	BRWN CLAY SAND 0018 GREY CLAY 0053 GREY CLAY STNS 0079 BRWN ROCK 0104 GREY LMSN 0120 GREY LMSN PORS 0130
ERIN TOWNSHIP CON 08 014	17 574239 4845516 W	1987/08 3317	5 5	FR 0130	26/35/10/1:30	DO		6709055 (18017)	BRWN SAND CLAY 0044 GREY CLAY STNS 0066 GREY ROCK 0075 GREY LMSN 0140
ERIN TOWNSHIP CON 08 015	17 573987 4846191 W	1973/07 4320	4 4	FR 0098	27/35/8/3:30	DO		6704818 ()	BRWN SAND 0002 BRWN CLAY STNS 0069 BLUE SNDS 0098
ERIN TOWNSHIP CON 08 015	17 574214 4845763 W	1973/09 4320	4 4	FR 0105	8/9/4/10:0	DO		6704820 ()	BRWN SAND 0019 BRWN CLAY SAND 0048 GREY CLAY STNS 0073 GREY LMSN 0105 GREY SNDS 0128
ERIN TOWNSHIP CON 08 015	17 573852 4845291 W	2010/05 7154	6.25 6	FR 0181	88/90/15/1:0	DO		7150211 (Z107364) A084655	BRWN SAND SILT 0021 BRWN CLAY SILT 0043 GREY CLAY STNS 0171 GREY LMSN 0182
ERIN TOWNSHIP CON 08 015	17 574051 4846026 W	1990/01 3317	5 5	FR 0120 FR 0135	30/36/10/1:30	DO		6710324 (57343)	BRWN SAND CLAY 0070 GREY CLAY STNS 0095 GREY SHLE 0101 GREY LMSN 0143
ERIN TOWNSHIP CON 08 016	17 573541 4846354 W	1998/12 3317	6 6	FR 0140 FR 0155	75/90/10/1:30	DO		6712830 (192048)	BRWN CLAY SAND 0020 GREY CLAY STNS SAND 0085 GREY CLAY STNS 0110 BRWN LMSN 0135 GREY LMSN 0160
ERIN TOWNSHIP CON 08 016	17 573609 4846524 W	2009/03 7154	4.25 4	FR 0136 FR 0154 FR 0174	54//10/1:0	МО		7123991 (Z89737) A073328	BRWN CLAY STNS SLTY 0037 GREY CLAY STNS 0103 BRWN LMSN 0147 GREY LMSN 0197
ERIN TOWNSHIP CON 08 016	17 573613 4846418 W	1963/08 2406	5	FR 0170	105/110/10/6:30	ST DO		6700734 ()	LOAM 0002 BRWN CLAY STNS 0055 FSND 0070 GRVL 0083 BRWN FSND SILT 0105 GREY FSND SILT CLAY 0168 GRVL 0169 GREY ROCK 0170
ERIN TOWNSHIP CON 08 017	17 573214 4846803 W	1969/07 3316	4 4	FR 0049	/20/20/1:0	ST DO		6703510 ()	MSND GRVL 0024 CLAY 0029 GREY LMSN 0055
ERIN TOWNSHIP CON 08 017	17 572944 4846703 W	1971/09 3316	4 4	FR 0116	15/24/8/1:0	DO		6704165 ()	CLAY STNS GRVL 0056 GREY LMSN CLAY 0075 GREY LMSN 0120
ERIN TOWNSHIP CON 08 017	17 572814 4846623 W	1977/08 3317	5 5	FR 0105	22/30/9/3:0	DO		6706595 ()	CLAY STNS 0070 GREY LMSN 0116
ERIN TOWNSHIP CON 08 017	17 573278 4846702 W	1967/12 3316	4 4	FR 0085	/0/5/:	ST DO		6700737 ()	CLAY STNS 0048 GREY LMSN 0090
ERIN TOWNSHIP CON 08 017	17 572873 4846310 L	2001/11 7154	6 6	FR 0076	6/34/10/3:	DO		6713898 (238263)	BRWN SAND 0031 BRWN LMSN 0042 GREY LMSN 0080

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
ERIN TOWNSHIP CON 08 017	17 573227 4846908 W	1994/09 2663	8 8	FR 0050 FR 0060 FR 0078 FR 0103	7/40/40/1:	DO		6711560 (141439)	LOAM 0001 BRWN SAND CLAY STNS 0029 GREY LMSN 0103
ERIN TOWNSHIP CON 08 017	17 572462 4846385 W	1995/06 3317	6 6	FR 0100	43/55/10/1:30	DO		6711737 (158302)	GRVL STNS 0010 BRWN CLAY STNS 0016 GREY CLAY STNS SAND 0078 GREY LMSN 0115
ERIN TOWNSHIP CON 08 017	17 572671 4846193 W	1961/01 2414	4 4	FR 0160	28/40/10/1:0	DO		6700736 ()	PRDG 0050 GREY CLAY BLDR 0085 CLAY FSND 0120 GRVL CLAY 0130 GREY LMSN 0155 BLCK LMSN 0170
ERIN TOWNSHIP CON 08 017	17 573194 4846835 W	7407	1.97			DO		7156327 (Z50894) A095369	
ERIN TOWNSHIP CON 08 017	17 572616 4846125 W	2004/06 7154	6.21	FR 0142 FR 0176	85/115/12/2:0	DO		6714941 (Z06940) A006855	BRWN CLAY SILT STNS 0023 GREY SAND GRVL 0046 GREY CLAY STNS 0126 GREY LMSN 0180
ERIN TOWNSHIP CON 08 017	17 572720 4846501 W	2008/01 2663	15.6	FR 0044	45/48/15/1:0	DO		7101400 (Z79473) A056198	BRWN CLAY STNS 0018 BRWN GRVL CLAY STNS 0074 GREY LMSN FCRD 0094 GREY LMSN 0095 LMSN 0120 LMSN DKCL 0144
ERIN TOWNSHIP CON 08 017	17 572886 4846719 W	2017/05 7154	6.25 6	FR 0018	18/61/10/1:	DO		7288614 (Z250142) A205311	BRWN CLAY GRVL 0043 GREY CLAY STNS 0065 BRWN LMSN 0124
ERIN TOWNSHIP CON 08 017	17 572802 4846516 W	2008/09 7385	6.11 6.11	FR 0012	49/66/12/1:0	DO		7112769 (Z80651) A066875	BRWN CLAY STNS 0015 GREY CLAY SAND GRVL 0086 GREY ROCK 0120
ERIN TOWNSHIP CON 08 017	17 572625 4846409 W	2016/06 2576	6 6	FR 0080 FR 0091	4/9/6/1:	DO		7266478 (Z227731) A202051	BRWN SAND STNS 0016 BRWN SAND GRVL 0054 GREY SAND GRVL 0060 BRWN CLAY GRVL 0076 GREY LMSN 0096
ERIN TOWNSHIP CON 08 017	17 573195 4846817 W	2010/11 7407	14.1		62///:	DO		7156326 (Z50895) A	
ERIN TOWNSHIP CON 08 017	17 572774 4846425 W	2015/11 7154	6.25 6		51/71/10/1:	DO		7253592 (Z220234) A173691	BRWN CLAY STNS 0032 GREY CLAY STNS 0086 BRWN LMSN 0121 GREY LMSN 0147
ERIN TOWNSHIP CON 08 017	17 572851 4846538 W	2014/10 7154	6.25 6	FR 0116	47/61/20/1:	DO		7232033 (Z197982) A146175	BRWN SILT CLAY STNS 0028 GREY CLAY STNS 0075 BRWN LMSN 0122
ERIN TOWNSHIP CON 08 018	17 572758 4846874 W	2016/05 7407	6			DO		7268298 (Z216896) A161195	
ERIN TOWNSHIP CON 08 018	17 572357 4846270 W	2012/08 7154	6.25 6	FR 0087	28/48/10/1:0	DO		7185587 (Z152157) A125535	BRWN CLAY STNS GRVL 0021 GREY CLAY STNS 0069 BRWN LMSN 0092
ERIN TOWNSHIP CON 08 018	17 572489 4847289 W	1987/07 3317	5 5	FR 0059	///:	DO		6709062 (09525)	BRWN SAND CLAY GRVL 0028 GREY CLAY 0035 CLAY STNS 0047 GREY LMSN 0061

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
ERIN TOWNSHIP CON 08 018	17 572711 4847018 W	1990/08 3317	6 6	FR 0059	//10/1:30	DO		6710537 (57467)	BRWN CLAY STNS SAND 0008 GREY CLAY STNS 0032 GREY LMSN 0061
ERIN TOWNSHIP CON 09	17 574038 4846297 W	2017/11 7154	6.23 6	FR 0217	112/138/10/1:	DO		7302829 (Z270833) A219404	BRWN SILT CLAY 0034 GREY CLAY SILT 0127 GREY CLAY STNS 0190 BRWN LMSN 0222
ERIN TOWNSHIP CON 09 017	17 573350 4847367 W	1985/07 2332	5 5	FR 0120	24/28/12/2:0	IN		6708395 ()	BRWN LOAM SAND GRVL 0017 BRWN CLAY STNS 0032 GREY CLAY STNS 0052 GREY LMSN 0165
ERIN TOWNSHIP CON 09 018	17 573140 4847146 W	2001/09 7154	6	FR 0106	/3/15/1:	DO		6713856 (235936)	BRWN GRVL STNS 0036 GREY GRVL TILL STNS 0055 GREY LMSN 0100 BRWN LMSN LYRD 0110
ERIN TOWNSHIP CON 09 018	17 573611 4846524 W	2009/03 7154	4.25 4	FR 0087 FR 0101 FR 0112	8/9/10/1:0	МО		7123992 (Z89738) A073327	BRWN CLAY STNS SLTY 0027 GREY CLAY STNS 0032 BRWN LMSN 0117 GREY LMSN 0150
ERIN TOWNSHIP CON 09 018	17 573056 4847130 W	1997/09 3317	6 6	FR 0124	0/5/10/1:30	DO		6712434 (181348)	FILL 0003 BRWN CLAY GRVL BLDR 0025 CLAY BLDR 0042 BRWN LMSN 0079 GREY LMSN 0125
ERIN TOWNSHIP CON 08 017	17 573962 4846201 W	2014/04 7154	6.25 6	FR 0212	130/135/10/1:0	DO		7221975 (Z181424) A133138	BRWN SILT CLAY 0081 GREY SILT CLAY STNS 0200 BRWN LMSN 0214
ERIN VILLAGE	17 574403 4846376 W	2017/12 7407	5			DO		7310912 (Z247313) A161179	
ERIN VILLAGE	17 573727 4846509 W	1963/04 3316	4 4	FR 0217	53/55/10/2:0	СО		6700766 ()	CLAY STNS 0138 GREY LMSN 0218

TOWNSHIP CON LOT UTM DATE CNTR CASING DIA WATER PUMP TEST WELL USE SCREEN WELL **FORMATION**

SNDS SANDSTONE

SNDY SANDYOAPSTONE

Notes:

DRTY DIRTY

DRY DRY

UTM: UTM in Zone, Easting, Northing and Datum is NAD83; L: UTM estimated from Centroid of Lot; W: UTM not from Lot Centroid DATE CNTR: Date Work Completedand Well Contractor Licence Number

PEAT PEAT

PGVL PEA GRAVEL

CASING DIA: .Casing diameter in inches

WATER: Unit of Depth in Fee. See Table 4 for Meaning of Code

HARD HARD

HPAN HARDPAN

PUMP TEST: Static Water Level in Feet / Water Level After Pumping in Feet / Pump Test Rate in GPM / Pump Test Duration in Hour: Minutes

WELL USE: See Table 3 for Meaning of Code SCREEN: Screen Depth and Length in feet

WELL: WEL (AUDIT #) Well Tag . A: Abandonment; P: Partial Data Entry Only

FORMATION: See Table 1 and 2 for Meaning of Code

1. Core Material and Descriptive terms

Code Description	Code	Description	Code	Description	Code	Description	Code	Description
BLDR BOULDERS	FCRD	FRACTURED	IRFM	IRON FORMATION	PORS	POROUS	SOFT	SOFT
BSLT BASALT	FGRD	FINE-GRAINED	LIMY	LIMY	PRDG	PREVIOUSLY DUG	SPST	SOAPSTONE
CGRD COARSE-GRAINED	FGVL	FINE GRAVEL	LMSN	LIMESTONE	PRDR	PREV. DRILLED	STKY	STICKY
CGVL COARSE GRAVEL	FILL	FILL	LOAM	TOPSOIL	QRTZ	QUARTZITE	STNS	STONES
CHRT CHERT	FLDS	FELDSPAR	LOOS	LOOSE	QSND	QUICKSAND	STNY	STONEY
CLAY CLAY	FLNT	FLINT	LTCL	LIGHT-COLOURED	QTZ	QUARTZ	THIK	THICK
CLN CLEAN	FOSS	FOSILIFEROUS	LYRD	LAYERED	ROCK	ROCK	THIN	THIN
CLYY CLAYEY	FSND	FINE SAND	MARL	MARL	SAND	SAND	TILL	TILL
CMTD CEMENTED	GNIS	GNEISS	MGRD	MEDIUM-GRAINED	SHLE	SHALE	UNKN	UNKNOWN TYPE
CONG CONGLOMERATE	GRNT	GRANITE	${\tt MGVL}$	MEDIUM GRAVEL	SHLY	SHALY	VERY	VERY
CRYS CRYSTALLINE	GRSN	GREENSTONE	MRBL	MARBLE	SHRP	SHARP	WBRG	WATER-BEARING
CSND COARSE SAND	GRVL	GRAVEL	MSND	MEDIUM SAND	SHST	SCHIST	WDFR	WOOD FRAGMENTS
DKCL DARK-COLOURED	GRWK	GREYWACKE	MUCK	MUCK	SILT	SILT	WTHD	WEATHERED
DLMT DOLOMITE	GVLY	GRAVELLY	OBDN	OVERBURDEN	SLTE	SLATE		
DNSE DENSE	GYPS	GYPSUM	PCKD	PACKED	SLTY	SILTY		

2. Core Color

3. Well Use Code Description Code Description Code Description DO Domestic WHIT WHITE OT Other ST Livestock TH Test Hole BLUE BLUE IR Irrigation DE Dewatering IN Industrial MO Monitoring YLLW YELLOW CO Commercial MT Monitoring TestHole BRWN BROWN MN Municipal RED RED PS Public

NU Not Used

AC Cooling And A/C

4. Water Detail

BLGY BLUE-GREY

BLCK BLACK

Code	Description	Code	Description
FR	Fresh	GS	Gas
SA	Salty	IR	Iron
SU	Sulphur		
MN	Mineral		
IIK	IInknown		

Appendix B

Borehole Logs

Rock Core

Wash Cuttings

MW1d

		292 Speedvale Avenutelephone (519) 823-	ue West,	Unit 20, 0	Guelp	h, Onta 7	ario, N1H 10	C4		F	age_	1	of _	1
Client: N	Mattamy Homes	Project Name: Hy						Logged b	y:	E. Pe	ntne	у		
Project I	No.: 300052075.0002	Location: Erin,	ON					Ground (r	n ams	sl):	408.4	16		
Drilling C	Co.: Orbit Garant Drilling	Date Started:	5/5/202	1				Static Water Level Depth (m): 2.63						3
Drilling N	Method: Hollow Stem Auger	Date Completed:	5/5/2	2021				Sand Pack Depth (m): 7.3 - 9.1						
		<u>'</u>					1				iPLE			_
Depth Scale	Stratigraphic Description	1	Strat. Plot	Elev. Depth						Туре		N.Val		pth ale
(ft) (m)	Surface Elevation (m): 408	3.46	S T	(m)					Num.	7	lnt.	ź		(m)
(it) (iii)	TOPSOIL 400).40											(11)	(111
	\brown, moist	_	*****	408.20 0.26					1	SS	IXI	5		
-	SAND			-							\angle			F
4	brown, compact, well-graded sand	s, some		1									-	
- 1.0	gravel, trace silt, moist			}					2	SS	X	45		1.0
	layering of medium sand @ 0.78 m	1]							$V \setminus$			
5.0				<u> </u>									5.0 —	H
				:					3	SS	$ \mathcal{V} $	29		
- 2.0				-							$ /\backslash $			2.0
_			*****	1									_	
-	layering of medium sand @ 2.3 m			}	$ \nabla$				١.		\mathbb{N}/\mathbb{I}			-
	a attempts of here O. A. ma			}	<u>-</u>				4	SS	$ \Lambda $	41		
10.0 - 3.0	saturated by 2.4 m			405.41									10.0 —	3.0
10.0	GRAVELLY SAND			3.05							\setminus		10.0 —	
L	grey-brown, compact, well-graded			_					5	SS	X	57		L
	sub-angular gravel, some silt, satu	rated		1	Į¥		bentonite	e seal			\longrightarrow			
1,0				1									_	4.0
- 4.0				1										4.0
														1
15.0	SAND AND SILT			403.89 4.57	-								15.0 —	ſ
	reddish-grey, dense, medium to fin	e sand, some		<u> </u>					6	SS	X	4		1
- 5.0	gravel, trace clay, slightly plastic, w			Ţ							\angle			- 5.0
4	, , , , , , , , , , , , , , , , , , , ,												_	
-				†										r
	SILTY SAND TILL			402.66 5.80	-									1
20.0 - 6.0	reddish-grey, dense, medium to fin	e sand silt		F									20.0 —	6.0
	some gravel, trace clay, wet	e sanu, siit,		1							\mathbb{N}/\mathbb{I}			
-	graver, adde day, wet			}					7	SS	X	61		H
				-										1
7.0				+										7.0
				:										
L				ļ-										-
25.0	grading finer sand/siltier @ 7.6 m			ł			†						25.0 —	
- 8.0	9			<u> </u>					8	SS	X	>50		8.0
	consistent drilling to 9.1 m]		::H::		nd pook			\angle			
				ŀ			silica sar screen	ій раск					-	L
	no sample recovered at 9.1 m due	to rock in split		1			Johnson							1
	spoon			_	1									
9.0	End of Donahala			399.32 9.14	1	<u>∷∏∷</u> 9.14	·]							9.0
	End of Borehole													
Prepare	ed By: J. Donkersgoed	Checked By:	S. C	harity				Date F	rena	red.	5/	15/2	021	
This bor	ehole log was prepared for hydrogeologica	I and/or environme	ental pu	rposes	and	does	not neces	sarily cont	ain inf	orma	tion s	suitat	le fo	r a
geotech	nical assessment of the subsurface condition	ons. Borehole dat	a requi	res inter	rpret	ation l	oy R. J. B	urnside & /	Assoc	iates	Limit	ted p	ersor	nnel
betore u	se by others.		-											
EGEND	MONITORING WE	LL DATA	SAI	MPLE T	YPE	AC [Au	ger Cutting	SS	$_{\rm S} igstar$	\leq	Split S	Spoor	1
▼ Wate		dia. PVC				cs [ntinuous	AF	٦ .	_	Air Ro		
		-								\equiv	_		,	

51 mm dia. PVC #10 slot

∑ Static Water Level - 5/21/2021 | Screen:

∑ Static Water Level - 5/21/2021

ct Name: H ion: Erin Started: Completed	, ON 5/5/202			bentonii	Logged by Ground (m Static Wat Sand Pact	n ams ter Le k Dep	sl): evel D	n): 2 .	3 8 (m):	
Started: Completed	5/5/202 : 5/5/2	Elev. Depth (m)		bentonin	Static Wat	ter Le	evel Coth (m	Depth n) : 2 IPLE	(m): . 7 - 4	Depth Scale (ft) (m
Completed	: 5/5/2	Elev. Depth (m)		bentonii	Sand Paci	k Dep	oth (m SAM	n) : 2 IPLE	.7 - 4	Depth Scale (ft) (m
		Elev. Depth (m)		bentonit			SAM	IPLE		Depth Scale (ft) (m
/ ne	Strat.	Depth (m)		bentonit	te seal	Num.	Туре	lnt.	N.Val	Scale (ft) (m
/ ne				bentonit	te seal					_ _ 1.0
		405.33 3.05 403.81 4.57	▼	silica sa screen	and pack					10.0 - 3.0
			•:¸•:¸•[¸•]		silica sa	silica sand pack	silica sand pack	▼ silica sand pack	silica sand pack	silica sand pack

Prepared By: J. Donkersgoed Checked By: S. Charity Date Prepared: 5/15/2021
This borehole log was prepared for hydrogeological and/or environmental purposes and does not necessarily contain information suitable for a geotechnical assessment of the subsurface conditions. Borehole data requires interpretation by R. J. Burnside & Associates Limited personnel before use by others. SAMPLE TYPE AC MONITORING WELL DATA Auger Cutting ss \succeq LEGEND Split Spoon ▼ Water found @ time of drilling cs 🗀 Continuous AR ∐ 51 mm dia. PVC Air Rotary

Rock Core

WC

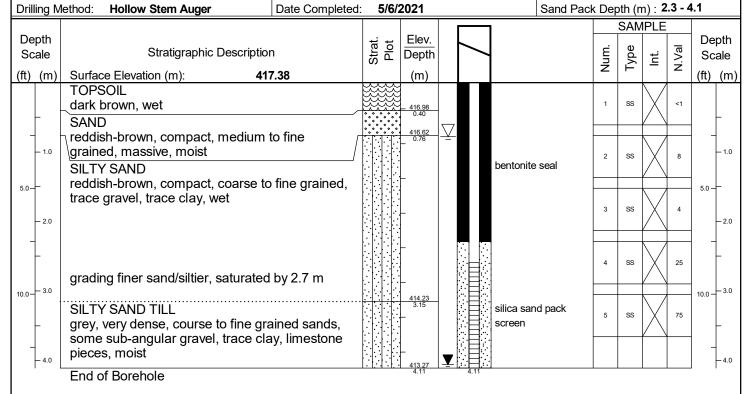
Wash Cuttings

51 mm dia. PVC #10 slot

Screen:

BURNSIDE

R.J. Burnside & Associates Limited 292 Speedvale Avenue West, Unit 20, Guelph, Ontario, N1H 1C4 telephone (519) 823-4995 fax (519) 836-5447


Page 1 of 1

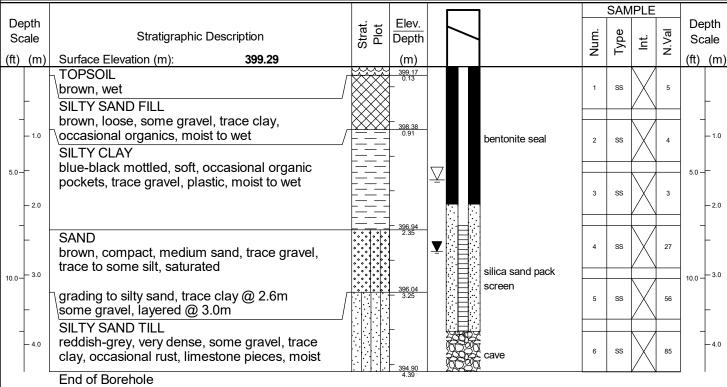
MW2

Client: Mattamy Homes Project Name: Hydrogeological Study Logged by: E. Pentney
Project No.: 300052075.0002 Location: Erin, ON Ground (m amsl): 417.38

Drilling Co.: Orbit Garant Drilling Date Started: 5/6/2021 Static Water Level Depth (m): 0.78

Drilling Method: Hollow Stem Auger Date Completed: 5/6/2021 Sand Pack Depth (m): 2.3 - 4.1

Prepared By: J. Donkersgoed Checked By: S. Charity Date Prepared: 5/15/2021 This borehole log was prepared for hydrogeological and/or environmental purposes and does not necessarily contain information suitable for a geotechnical assessment of the subsurface conditions. Borehole data requires interpretation by R. J. Burnside & Associates Limited personnel before use by others. SAMPLE TYPE AC LEGEND MONITORING WELL DATA Auger Cutting ss \geq Split Spoon ▼ Water found @ time of drilling 51 mm dia. PVC CS Continuous AR L Air Rotary ∑ Static Water Level - 5/21/2021 WC Wash Cuttings Screen: 51 mm dia. PVC #10 slot Rock Core


BURNSIDE

R.J. Burnside & Associates Limited 292 Speedvale Avenue West, Unit 20, Guelph, Ontario, N1H 1C4 telephone (519) 823-4995 fax (519) 836-5447

Page **1** of **1**

MW3

Client: Mattamy Homes J. Donkersgoed Project Name: Hydrogeological Study Logged by: Project No.: 300052075.0002 Location: Erin, ON Ground (m amsl): 399.29 Static Water Level Depth (m): 1.63 Drilling Co.: Orbit Garant Drilling Date Started: 5/7/2021 Sand Pack Depth (m): 2.0 - 3.8 Drilling Method: **Hollow Stem Auger** Date Completed: 5/7/2021

Prepared By: J. Donkersgoed Checked By: S. Charity Date Prepared: 5/15/2021 This borehole log was prepared for hydrogeological and/or environmental purposes and does not necessarily contain information suitable for a geotechnical assessment of the subsurface conditions. Borehole data requires interpretation by R. J. Burnside & Associates Limited personnel before use by others. SAMPLE TYPE AC LEGEND MONITORING WELL DATA Auger Cutting SS Split Spoon ▼ Water found @ time of drilling 51 mm dia. PVC CS Continuous AR 📙 Air Rotary ∑ Static Water Level - 5/21/2021 Wash Cuttings Screen: 51 mm dia. PVC #10 slot Rock Core WC

BURNSIDE

∑ Static Water Level - 5/21/2021

Screen:

51 mm dia. PVC #10 slot

LOG OF DRILLING OPERATIONS

MW5

Wash Cuttings

Rock Core

WC

R.J. Burnside & Associates Limited

292 Speedvale Avenue West, Unit 20, Guelph, Ontario, N1H 1C4 telephone (519) 823-4995 fax (519) 836-5447 Page 1 of 1 Client: Mattamy Homes Project Name: Hydrogeological Study Logged by: E. Pentney Project No.: 300052075.0002 Erin, ON Ground (m amsl): 437.26 Location: Drilling Co.: Orbit Garant Drilling Date Started: Static Water Level Depth (m): 4.81 5/6/2021 Sand Pack Depth (m): 5.1 - 6.9 Drilling Method: Solid Stem Auger Date Completed: 5/6/2021 SAMPLE Depth Elev. Depth Strat. Plot N.Val Num. Stratigraphic Description Scale Depth Scale ħ. Surface Elevation (m): 437.26 (ft) (m) (ft) (m) (m)**TOPSOIL** brown, moist SS SANDY GRAVEL brown, compact, well-graded sand, sub-angular gravel, trace silt, moist 1.0 2 SS 5.0 -5.0 3 SS 20 2.0 bentonite seal SS 21 Ò - 3.0 3.0 434.21 3.05 10.0 10.0 SILTY SAND 24 brown, compact to dense, medium to fine sand, some gravel, massive, moist 4.0 4.0 15.0 15.0 6 SS >50 - 5.0 5.0 silica sand pack 20.0 20.0 SANDY GRAVEL screen grey, compact, well-graded sand, sub-angular SS 74 gravel, trace silt, wet SANDY GRAVEL TILL grey-brown, dense, well-graded sand, sub-angular gravel, limestone pieces, some silt, End of Borehole Prepared By: J. Donkersgoed Checked By: S. Charity Date Prepared: 5/15/2021 This borehole log was prepared for hydrogeological and/or environmental purposes and does not necessarily contain information suitable for a geotechnical assessment of the subsurface conditions. Borehole data requires interpretation by R. J. Burnside & Associates Limited personnel before use by others. SAMPLE TYPE AC LEGEND MONITORING WELL DATA Auger Cutting SS Split Spoon ▼ Water found @ time of drilling CS 51 mm dia. PVC Continuous AR 📙 Air Rotary

▼ Water found @ time of drilling

51 mm dia. PVC

51 mm dia. PVC #10 slot

LOG OF DRILLING OPERATIONS

MW6d

wc 🗠

Wash Cuttings

Rock Core

	(3000)		292 Speedvale Aventelephone (519) 823-	ue West, Unit 20, 0	Guelph, Ontario, N1F i-5447	1 1C4		Ρ	age_	<u>1</u> c	of _2	<u> </u>
Client: M	attamy Homes		Project Name: H	ydrogeological	Study	Logged by	/: .	J. Do	nkers	goed	1	
Project N	lo.: 300052075.0002		Location: Erin	ON		Ground (m	n ams	sl): 4	430.2	9		
Drilling C	o.: Orbit Garant Drilling	3	Date Started:	5/4/2021		Static Wat	er Le	vel D	epth	(m):	Dry	
Drilling M	lethod: Hollow Stem A	uger	Date Completed:	5/4/2021		Sand Pacl	< Dep	oth (m	1) : 10).0 - 1	2.0	
						•		SAM	PLE			_
Depth Scale	_	aphic Description	ı	Strat. Plot Debth			Num.	Type	i;		Dept Scal	
(ft) (m)	Surface Elevation (m):	430).29	(m)			_	'		((ft) (ı	m)
	TOPSOIL dark brown, moist SILTY SAND			429.99			1	ss	X	4		
_ _ 1.0	brown, loose, moist organics			429.53			2	ss		12	+	1.0
5.0-	SILTY SAND TILL brown, fine to mediu clay, loose to very de		gravel, trace								5.0	
- 2.0	occasional cobble grading finer sand/si						3	ss	X	5	-2	2.0
-							4	SS	X	45	-	
10.0 - 3.0							5	SS		58	10.0 - 3	3.0
- 4.0												4.0
15.0											15.0 —	
- 5.0	grading finer sand/si	tier trace grav	vel @ 5.0m		bento	nite seal	6	SS	X	72		5.0
_	g.c.agc. caa.c.	,									-	
20.0							7	ss	X	64	20.0	6.0
_ _ 7.0											-7	7.0
25.0 — — 8.0					dry af	ter ruction	8	SS	X	90	25.0 -	8.0
+											+	
30.0 —							9	ss .		97	30.0	9.0
Prepare	ed By: J. Donkersgo	ed	Checked By:	S. Charity		Date P	repa		5/ ²	15/20)21	=
This bore geotechn	chole log was prepared fo nical assessment of the su se by others.	r hydrogeologica	l and/or environm	ental purposes	and does not ned pretation by R. J	cessarily conta	in info	orma	tion s	uitable	e for a	a el
EGEND		MONITORING WE	LL DATA	SAMPLE TY	PE AC	Auger Cutting	SS	<u> </u>	⊴ ;	Split Sp	poon	

silica sand pack screen

MW6d

tolephone (010) 020	-4995 fax	(519) 836	-5447			Р	age	2	of <u>2</u>
Project Name: H	lydroged	ological	Study	Logged by	/:	J. Do	nker	sgoe	d
Location: Erin	, ON			Ground (m	n ams	sl):	430.2	29	
Date Started:	5/4/202	1		Static Wat	ter Le	evel D	epth	ı (m):	Dry
Date Completed	: 5/4/2	2021		Sand Pack	k Dep	oth (n	ո) ։ 1	0.0 -	12.0
						SAM	IPLE		
	Strat. Plot	Elev. Depth			Num.	Type	Int.	N.Val	Depth Scale (ft) (m)
100.23			bentonite	e seal			X		-10.0
= i -	Location: Erin Date Started:	Location: Erin, ON Date Started: 5/4/202 Date Completed: 5/4/ iption iption	Location: Erin, ON Date Started: 5/4/2021 Date Completed: 5/4/2021 iption Date Completed: 5/4/2021 Elev. Depth	Date Started: 5/4/2021 Date Completed: 5/4/2021 iption tilde of the complete of th	Location: Erin, ON Ground (m Date Started: 5/4/2021 Static Wat Date Completed: 5/4/2021 Sand Pace iption Elev. Depth	Location: Erin, ON Date Started: 5/4/2021 Date Completed: 5/4/2021 Sand Pack Deption 430.29 Ground (m ams	Location: Erin, ON Date Started: 5/4/2021 Date Completed: 5/4/2021 Sand Pack Depth (note) Elev. Depth (m) Ground (m amsl): Static Water Level D Sand Pack Depth (note) SAM Elev. Depth (m)	Location: Erin, ON Date Started: 5/4/2021 Date Completed: 5/4/2021 Static Water Level Depth Sand Pack Depth (m): 1 SAMPLE iption 430.29 Ground (m amsl): 430.2	Location: Erin, ON Date Started: 5/4/2021 Date Completed: 5/4/2021 Static Water Level Depth (m): 10.0 - SAMPLE iption 430.29 Completed: 5/4/2021 Static Water Level Depth (m): 10.0 - SAMPLE SAMPL

End of Borehole (Practical Refusal)

Prepared By: J. Donkersgoed Checked By: S. Charity Date Prepared: 5/15/2021
This borehole log was prepared for hydrogeological and/or environmental purposes and does not necessarily contain information suitable for a geotechnical assessment of the subsurface conditions. Borehole data requires interpretation by R. J. Burnside & Associates Limited personnel before use by others.

SAMPLE TYPE AC ss \succeq LEGEND MONITORING WELL DATA **Auger Cutting** Split Spoon Water found @ time of drilling 51 mm dia. PVC Continuous AR L Air Rotary ∑ Static Water Level - 5/21/2021 51 mm dia. PVC #10 slot Rock Core WC Wash Cuttings Screen:

▼ Water found @ time of drilling

51 mm dia. PVC

51 mm dia. PVC #10 slot

LOG OF DRILLING OPERATIONS

MW6s

wc 🗠

Wash Cuttings

Rock Core

			292 Speedvale Aven telephone (519) 823-		Page_ 1 _ c									
Client: M	lattamy Homes		Project Name: H	ydrogeol	ogical Stu	udy		Logged by: J. Donkersgoed						
Project N	No.: 300052075.0002		Location: Erin	, ON				Ground (m amsl): 430.29						
Drilling C	co.: Orbit Garant Drilling	9	Date Started:	5/4/2021				Static Wa	Static Water Level Depth (m): Dry					
Drilling M	Method: Hollow Stem A	.uger	Date Completed	5/4/20)21			Sand Pac	k Der	oth (n	n) : 7	.3 - 9	.1	
							1	SAMPLE						
Depth Scale	Stratigra	aphic Descriptior	ı	1 W O I -	Elev. Depth				Num.	Type	lnt.	N.Val	Depth Scale	
(ft) (m)	Surface Elevation (m):	430).29		(m)								(ft) (m)	
	TOPSOIL ∖dark brown, moist		_		429.99 0.30									
-	SILTY SAND		/		0.30								F	
4	brown, loose, moist		Г		429.53 0.76								4	
- 1.0	organics				0.70								- 1.0	
	SILTY SAND TILL													
5.0	brown, fine to mediu		gravel, trace										5.0	
	clay, loose to very de	ense, moist												
- 2.0	occasional cobble	ltion @ 1 0m											-2.0	
	grading finer sand/si	illei @ 1.om												
-													-	
10.0 - 3.0													10.0 - 3.0	
L I													F	
							bentonit	e seal						
- 4.0													-4.0	
15.0													15.0	
													10.0	
- 5.0	aredina finer cond/si	ltion troop and	(a) (a) F 0 ma				dry after						- 5.0	
	grading finer sand/si	iller, trace grav	/ei @ 5.0m				construc	ction						
-													F	
20.0 - 6.0													20.0 - 6.0	
20.0													20.0	
-													-	
- 7.0													7.0	
							,							
25.0													25.0	
25.0													25.0	
- 8.0													-8.0	
							silica sa	nd pack						
7							screen						7	
9.0					421.19								9.0	
	End of Borehole				9.10	9.10								
Prepare	ed By: J. Donkersgo ehole log was prepared fo	ed or bydrogeologics	Checked By:	S. Cha	arity	l door	not noon	Date P	repa	red:		15/2		
geotechr	nical assessment of the su	ubsurface conditi	ons. Borehole da	ta require	s interpre	tation b	by R. J. I	Burnside & A	Assoc	iates	Limit	ed pe	ersonnel	
	se by others.						· 				_			
LEGEND		MONITORING WE	LL DATA	SAMI	PLE TYPE	AC [A	uger Cutting	SS	$\overline{\triangleright}$		Split S	Spoon	
	-			1		- ~ :		5		_	_	,		

BURNSIDE

▼ Water found @ time of drilling

∑ Static Water Level - 5/21/2021

51 mm dia. PVC

51 mm dia. PVC #10 slot

Screen:

LOG OF DRILLING OPERATIONS

MW7

R.J. Burnside & Associates Limited 292 Speedvale Avenue West, Unit 20, Guelph, Ontario, N1H 1C4

Page 1 of 2 telephone (519) 823-4995 fax (519) 836-5447 Client: Mattamy Homes Project Name: Hydrogeological Study Logged by: E. Pentney Project No.: 300052075.0002 Erin, ON Ground (m amsl): 451.06 Location: Static Water Level Depth (m): Dry Drilling Co.: Orbit Garant Drilling Date Started: 5/5/2021 Sand Pack Depth (m): 9.9 - 12.0 Drilling Method: Solid Stem Auger Date Completed: 5/5/2021 SAMPLE Depth Elev. Depth N.Val Num. Stratigraphic Description Scale Depth Scale ħ. Surface Elevation (m): 451.06 (ft) (m) (m)(ft) (m) **TOPSOIL** brown, moist SS SILTY SAND brown, compact, medium sand, silt, some gravel, moist to dry 1.0 1.0 2 SS 5.0 5.0 -SILTY SAND grey-brown, loose, fine sand, massive, moist to 3 SS 24 2.0 2.0 dry some coarse sand, layered @ 1.9 m SS 10.0 - 3.0 3.0 10.0 59 4.0 4.0 15.0 15.0 SANDY SILT bentonite seal grey-brown, dense, fine sand, small silt SS - 5.0 5.0 inclusions, massive, moist increase in silt content @ 5.1 m, hard 20.0-20.0 SS >50 some medium sand, layered @ 6.1 m - 7 N 7.0 25.0-25.0 SAND AND SILT SS >50 grey, dense, fine sand, massive, moist to dry dry after - 8.0 - 8.0 construction 9.0 S. Charity Prepared By: J. Donkersgoed Checked By: Date Prepared: 5/15/2021 This borehole log was prepared for hydrogeological and/or environmental purposes and does not necessarily contain information suitable for a geotechnical assessment of the subsurface conditions. Borehole data requires interpretation by R. J. Burnside & Associates Limited personnel before use by others. SAMPLE TYPE AC LEGEND MONITORING WELL DATA Auger Cutting SS Split Spoon

CS

Continuous

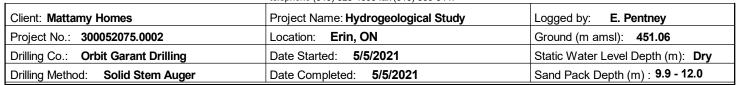
Rock Core

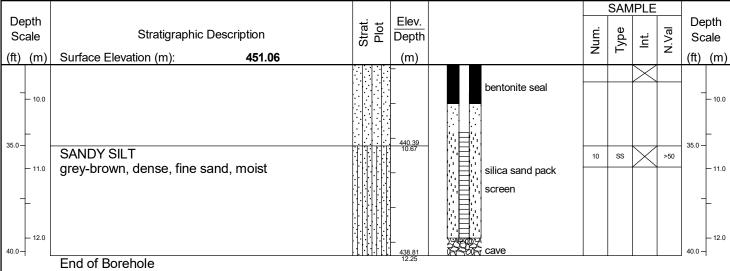
ar 🛚

WC

Air Rotary

Wash Cuttings


BURNSIDE


LOG OF DRILLING OPERATIONS

<u>MW7</u>

R.J. Burnside & Associates Limited 292 Speedvale Avenue West, Unit 20, Guelph, Ontario, N1H 1C4 telephone (519) 823-4995 fax (519) 836-5447

Page 2 of 2

Prepared By: J. Donkersgoed Checked By: S. Charity Date Prepared: 5/15/2021

This borehole log was prepared for hydrogeological and/or environmental purposes and does not necessarily contain information suitable for a geotechnical assessment of the subsurface conditions. Borehole data requires interpretation by R. J. Burnside & Associates Limited personnel before use by others.

SAMPLE TYPE AC LEGEND MONITORING WELL DATA Auger Cutting SS Split Spoon ▼ Water found @ time of drilling Continuous 51 mm dia. PVC CS AR L Air Rotary ∑ Static Water Level - 5/21/2021 WC Wash Cuttings Screen: 51 mm dia. PVC #10 slot Rock Core

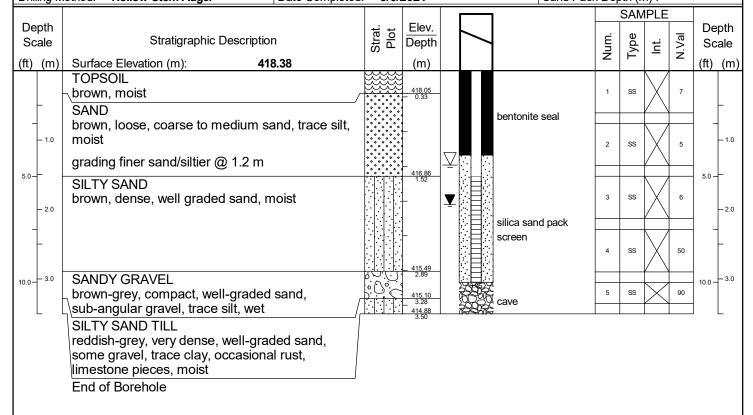
WC

Rock Core

Wash Cuttings

BURNSIDE

∑ Static Water Level - 5/21/2021


Screen:

R.J. Burnside & Associates Limited 292 Speedvale Avenue West, Unit 20, Guelph, Ontario, N1H 1C4 telephone (519) 823-4995 fax (519) 836-5447

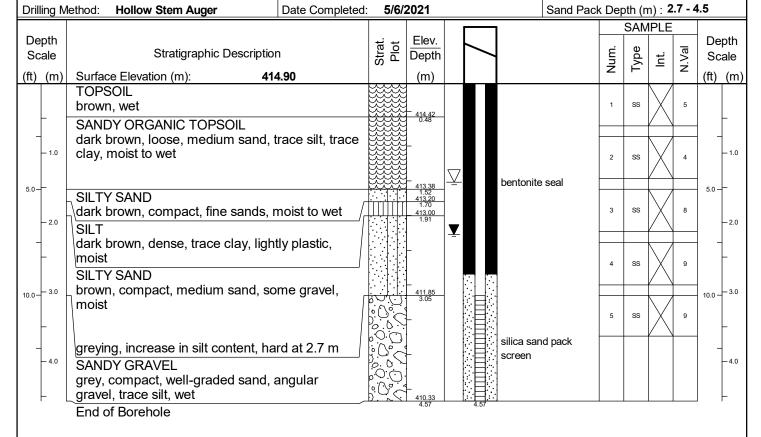
Page 1 of 1

8WM

Client: Mattamy Homes Project Name: Hydrogeological Study Logged by: E. Pentney Project No.: 300052075.0002 Erin, ON Ground (m amsl): 418.38 Location: Date Started: Static Water Level Depth (m): 1.36 Drilling Co.: Orbit Garant Drilling 5/5/2021 Sand Pack Depth (m): 1.2 - 3.0 Drilling Method: **Hollow Stem Auger** Date Completed: 5/6/2021

Prepared By: J. Donkersgoed Checked By: S. Charity Date Prepared: 5/15/2021 This borehole log was prepared for hydrogeological and/or environmental purposes and does not necessarily contain information suitable for a geotechnical assessment of the subsurface conditions. Borehole data requires interpretation by R. J. Burnside & Associates Limited personnel before use by others. SAMPLE TYPE AC LEGEND MONITORING WELL DATA Auger Cutting SS Split Spoon ▼ Water found @ time of drilling 51 mm dia. PVC Continuous AR 📙 Air Rotary

51 mm dia. PVC #10 slot


R.J. Burnside & Associates Limited 292 Speedvale Avenue West, Unit 20, Guelph, Ontario, N1H 1C4 telephone (519) 823-4995 fax (519) 836-5447

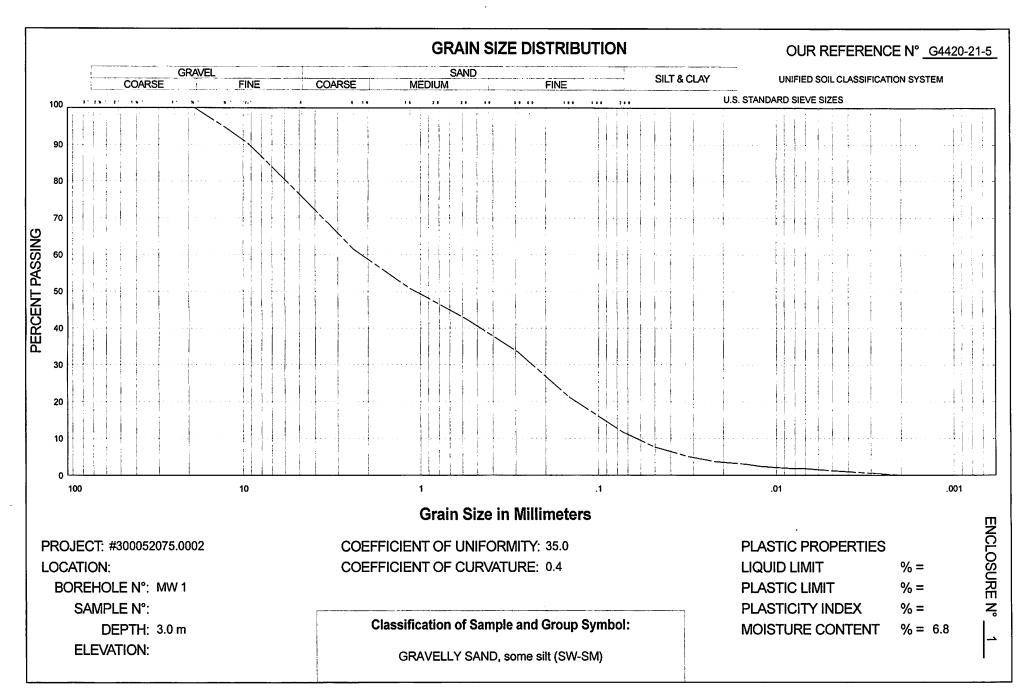
<u>MW9</u>

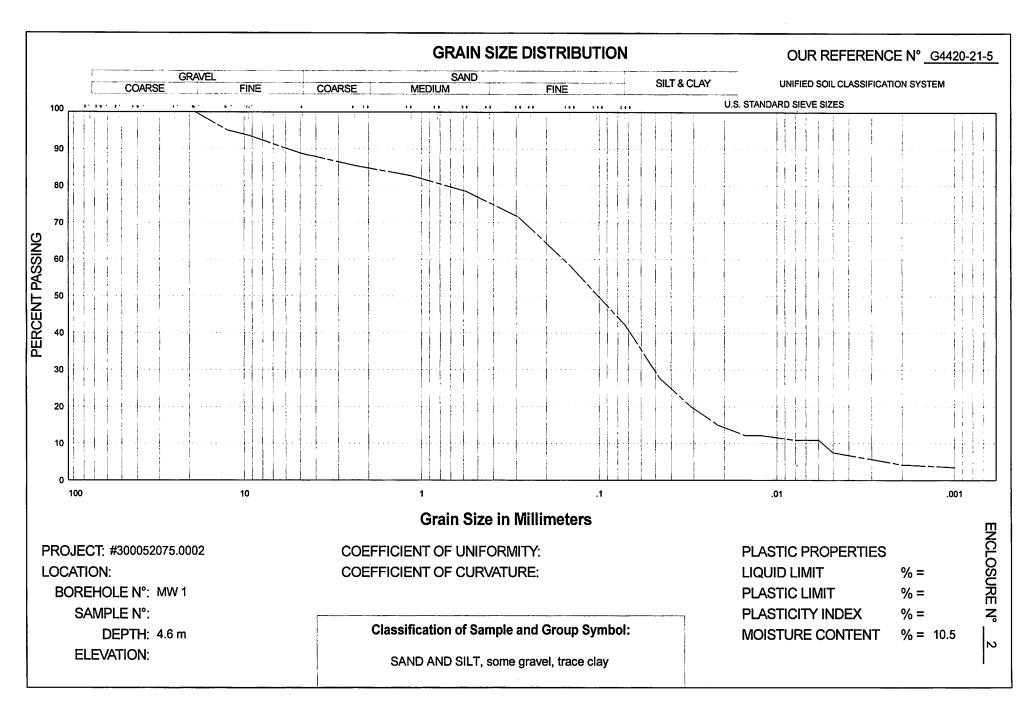
Page 1 of 1

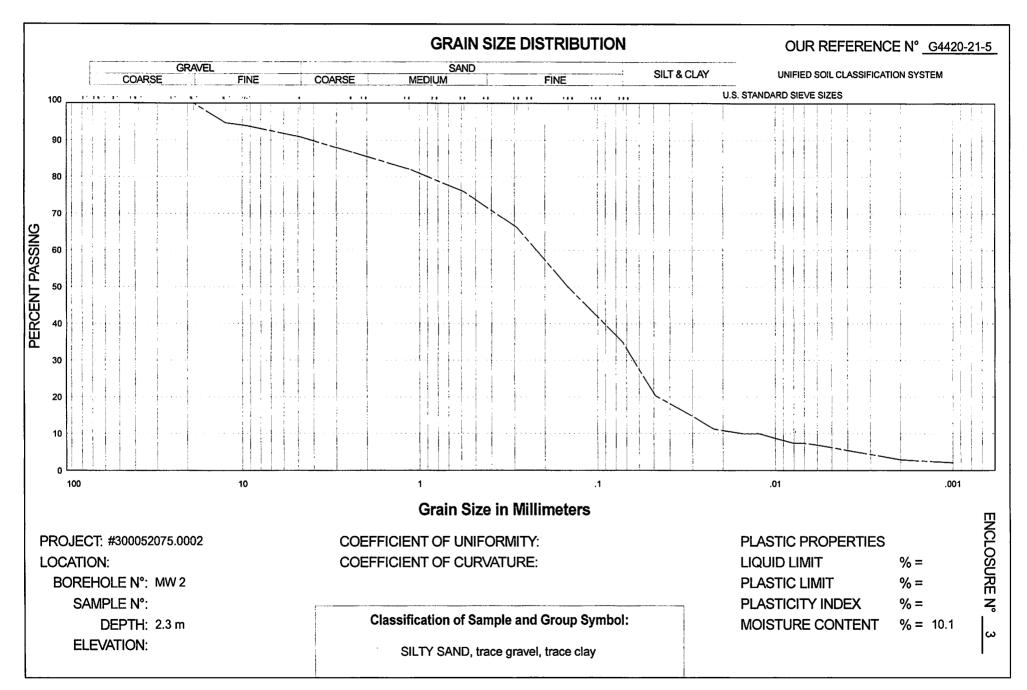
Client: Mattamy Homes Project Name: Hydrogeological Study Logged by: E. Pentney
Project No.: 300052075.0002 Location: Erin, ON Ground (m amsl): 414.90

Drilling Co.: Orbit Garant Drilling Date Started: 5/6/2021 Static Water Level Depth (m): 1.42

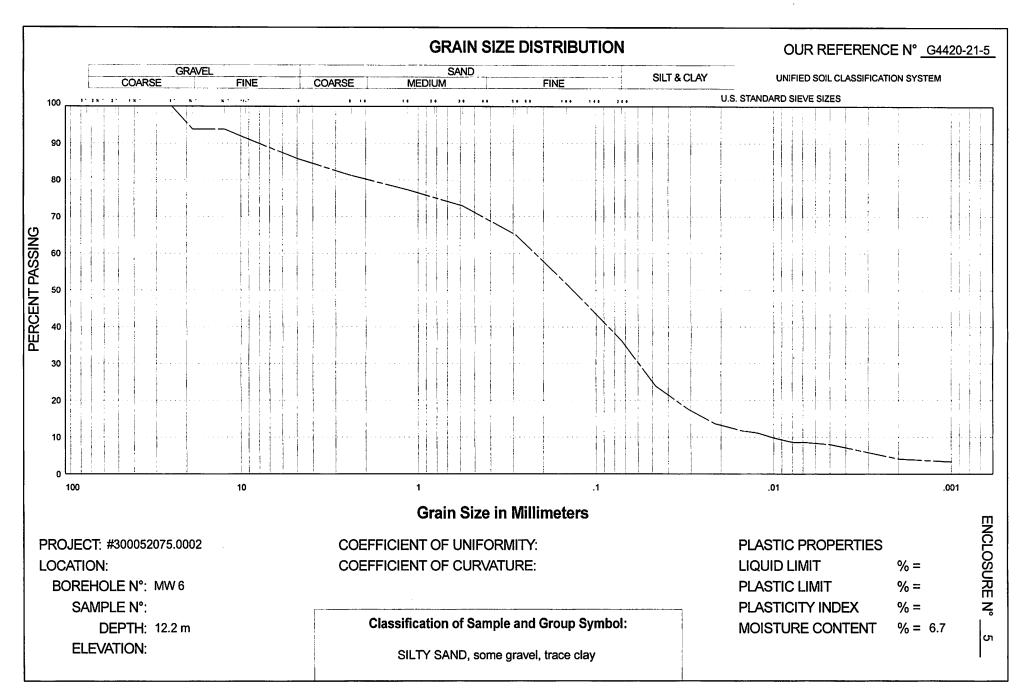
Prepared By: J. Donkersgoed Checked By: S. Charity Date Prepared: 5/15/2021 This borehole log was prepared for hydrogeological and/or environmental purposes and does not necessarily contain information suitable for a geotechnical assessment of the subsurface conditions. Borehole data requires interpretation by R. J. Burnside & Associates Limited personnel before use by others. SAMPLE TYPE AC LEGEND MONITORING WELL DATA Auger Cutting SS Split Spoon ▼ Water found @ time of drilling CS 51 mm dia. PVC Continuous AR 📙 Air Rotary ∑ Static Water Level - 5/21/2021 WC Wash Cuttings Screen: 51 mm dia. PVC #10 slot Rock Core

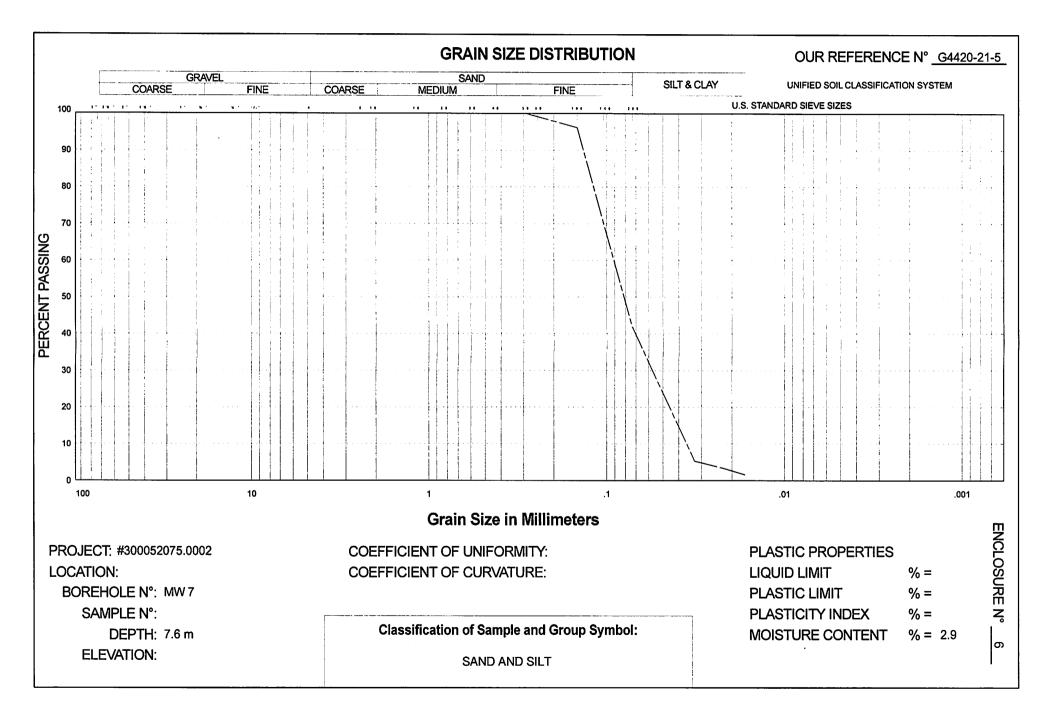

Appendix C

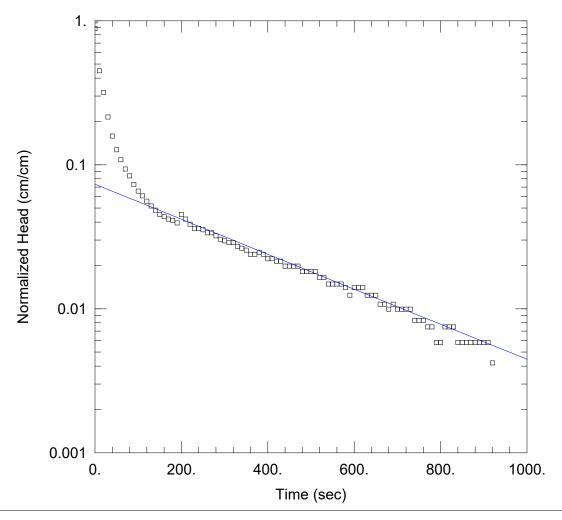

Grainsize and Hydraulic Conductivity



Appendix C-1


Grainsize Analysis





Appendix C-2

Hydraulic Conductivity

HYDRAULIC CONDUCTIVITY TEST AT MW1S - SCREENED IN GRAVELLY SAND

PROJECT INFORMATION

Company: R.J. Burnside Client: Erin Developments

Project: 300052075 Test Well: MW1s

Test Date: June 30, 2021

AQUIFER DATA

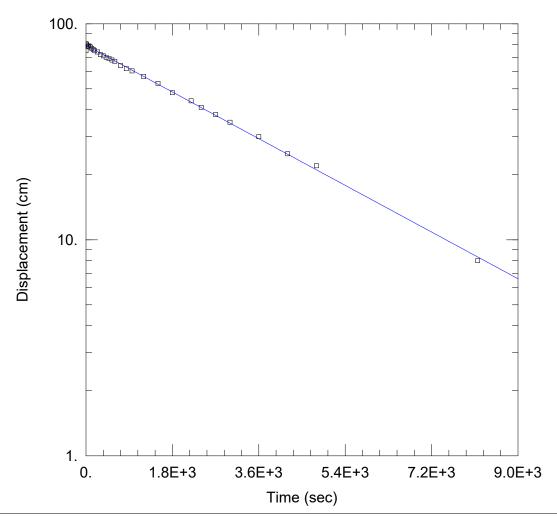
Saturated Thickness: 127. cm Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (MW1s)

Initial Displacement: 122. cm

Total Well Penetration Depth: 152. cm

Casing Radius: 2.54 cm


Static Water Column Height: 127. cm

Screen Length: 152. cm Well Radius: 7.62 cm Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 0.001281 cm/sec y0 = 8.941 cm

HYDRAULIC CONDUCTIVITY TEST AT MW1D - SCREENED IN SILTY SAND TILL

PROJECT INFORMATION

Company: R.J. Burnside
Client: Erin Developments Inc

Project: 300052075 Test Well: MW1d

Test Date: June 30, 2021

AQUIFER DATA

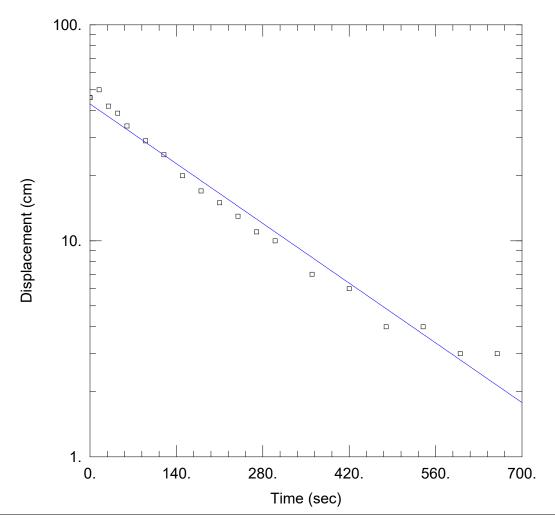
Saturated Thickness: 604. cm Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW1d)

Initial Displacement: 75. cm

Total Well Penetration Depth: 604. cm

Casing Radius: 2.54 cm


Static Water Column Height: 604. cm

Screen Length: <u>152.</u> cm Well Radius: 7.62 cm

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 2.163E-5 cm/sec y0 = 79.49 cm

HYDRAULIC CONDUCTIVITY TEST AT MW2 - SCREENED IN SILTY SAND

PROJECT INFORMATION

Company: R.J. Burnside
Client: Erin Developments Inc

Project: 300052075 Test Well: MW2

Test Date: June 30, 2021

AQUIFER DATA

Saturated Thickness: 286. cm Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW2)

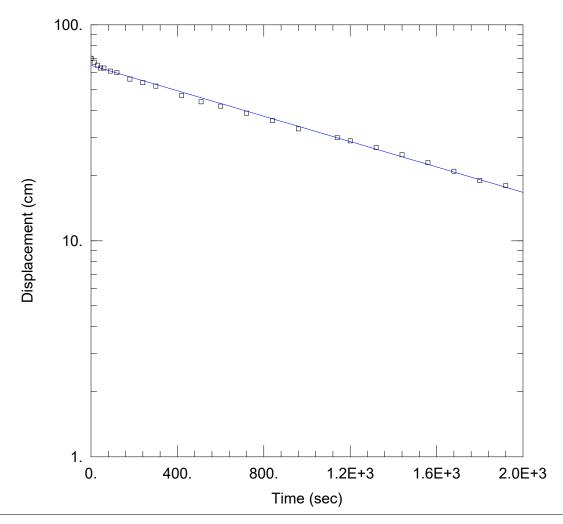
Initial Displacement: 46. cm

Total Well Penetration Depth: 286. cm

Casing Radius: 2.54 cm

Static Water Column Height: 286. cm

Screen Length: <u>152.</u> cm Well Radius: 7.62 cm


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 0.0003558 cm/sec

y0 = 42.99 cm

HYDRAULIC CONDUCTIVITY TEST AT MW3 - SCREENED IN SAND/SILTY SAND TILL

PROJECT INFORMATION

Company: R.J. Burnside
Client: Erin Developments Inc

Project: 300052075 Test Well: MW3

Test Date: June 30, 2021

AQUIFER DATA

Saturated Thickness: 252. cm Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW3)

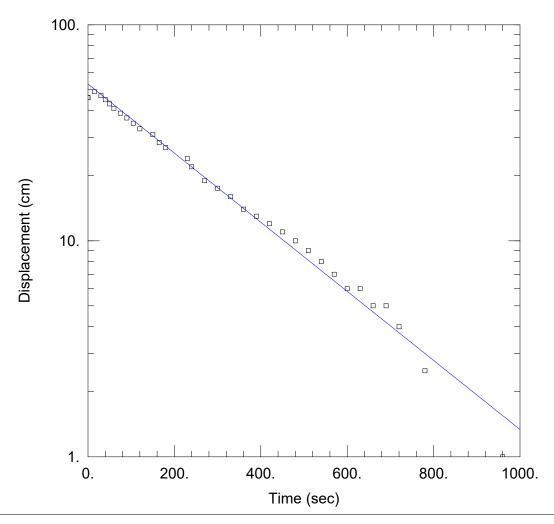
Initial Displacement: 70. cm

Total Well Penetration Depth: 252. cm

Casing Radius: 2.54 cm

Static Water Column Height: 252. cm

Screen Length: <u>152.</u> cm Well Radius: 7.62 cm


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 5.295E-5 cm/sec

y0 = 64.86 cm

HYDRAULIC CONDUCTIVITY TEST AT MW9 - SCREENED IN SANDY GRAVEL

PROJECT INFORMATION

Company: R.J. Burnside
Client: Erin Developments Inc

Project: 300052075 Test Well: MW9

Test Date: June 30, 2021

AQUIFER DATA

Saturated Thickness: 290. cm Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW9)

Initial Displacement: 46. cm

Total Well Penetration Depth: 290. cm

Casing Radius: 2.54 cm

Static Water Column Height: 290. cm

Screen Length: <u>152.</u> cm Well Radius: 7.62 cm

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 0.0002881 cm/sec y0 = 53.13 cm

Appendix D

Groundwater Levels

Table D-1
Groundwater Elevations - Monitoring Wells and Piezometers

			21-M	ay-21	30-J	un-21	12-J	ul-21	28-J	ul-21
Monitoring Well and Piezometer	Well Depth (mbgl)	Ground Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)
MW1s	4.26	408.38	2.48	405.90	2.90	405.48	3.03	405.36	3.18	405.20
MW1d	8.99	408.46	2.55	405.91	2.95	405.51	3.08	405.38	3.22	405.24
MW2	3.71	417.38	0.72	416.66	0.85	416.53			1.02	416.36
MW3	4.77	399.29	1.63	397.66	2.25	397.04	2.36	396.93	2.53	396.76
MW4	19.67	442.41	Dry	Dry	19.64	422.77			Dry	Dry
MW5	6.92	437.26	4.75	432.51	6.91	430.35			6.76	430.50
MW6s	9.32	430.10	Dry	Dry	Dry	Dry	Dry	Dry	9.24	420.86
MW6d	11.99	430.29	Dry	Dry	Dry	Dry	11.80	418.49	11.85	418.44
MW7	11.86	451.06	Dry	Dry	Dry	Dry			Dry	Dry
MW8	3.17	418.38	1.36	417.03	1.78	416.60			2.08	416.30
MW9	4.54	414.90	1.40	413.50	1.65	413.25	1.73	413.17	1.86	413.04
PZ1s	0.74	406.80	-0.02	406.82	-0.06	406.86			-0.06	406.86
PZ1d	1.46	406.83	0.57	406.26	0.04	406.79			-0.08	406.91
PZ2s	0.77	414.56	-	-	-	-	-	-	Dry	Dry
PZ2d	1.55	414.59	1.20	413.39	0.95	413.64	-		1.12	413.47
PZ3	1.40	424.92	-	-	-	-	-	-	-0.08	425.00

masl - metres above sea level

^{&#}x27; - ' - instrument not installed

Table D-1
Groundwater Elevations - Monitoring Wells and Piezometers

			31-A	ug-21	12-C	oct-21	05-Nov-21		17-Dec-21	
Monitoring Well and Piezometer	Well Depth (mbgl)	Ground Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)
MW1s	4.26	408.38	3.49	404.89	3.08	405.30	2.64	405.74	2.09	406.29
MW1d	8.99	408.46	3.52	404.94	3.09	405.37	2.67	405.79	2.13	406.33
MW2	3.71	417.38	0.87	416.51	0.24	417.14	0.18	417.20	0.16	417.22
MW3	4.77	399.29	2.65	396.64	1.43	397.86	1.03	398.26	0.66	398.63
MW4	19.67	442.41	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
MW5	6.92	437.26	6.78	430.48	6.79	430.47	6.81	430.45	5.53	431.73
MW6s	9.32	430.10	Dry	Dry	8.92	421.18	Dry	Dry	Dry	Dry
MW6d	11.99	430.29	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
MW7	11.86	451.06	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
MW8	3.17	418.38	2.56	415.82	1.23	417.15	1.04	417.34	0.65	417.73
MW9	4.54	414.90	1.72	413.18	0.88	414.02	0.92	413.98	0.85	414.05
PZ1s	0.74	406.80	-0.03	406.83	-0.08	406.88	-0.08	406.88	-0.09	406.89
PZ1d	1.46	406.83	-0.14	406.97	-0.22	407.05	-0.25	407.08	-0.29	407.12
PZ2s	0.77	414.56	Dry	Dry	Dry	Dry	0.11	414.45	-0.01	414.57
PZ2d	1.55	414.59	Dry	Dry	0.95	413.64	0.18	414.41	0.04	414.55
PZ3	1.40	424.92	0.32	424.60	0.21	424.71	0.07	424.85	-0.26	425.18

masl - metres above sea level

^{&#}x27; - ' - instrument not installed

^{&#}x27; -- ' - data that was not collected

Table D-1
Groundwater Elevations - Monitoring Wells and Piezometers

			26-J	an-22	11-F	eb-22	07-M	lar-22	26-Apr-22	
Monitoring Well and Piezometer	Well Depth (mbgl)	Ground Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)
MW1s	4.26	408.38	2.39	405.99	2.58	405.80	1.95	406.43	1.32	407.06
MW1d	8.99	408.46	2.58	405.88	2.63	405.83	1.94	406.52	1.40	407.06
MW2	3.71	417.38	0.08	417.30	0.15	417.23	0.08	417.30	0.12	417.26
MW3	4.77	399.29	1.90	397.39	1.57	397.72	0.39	398.90	0.41	398.88
MW4	19.67	442.41	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
MW5	6.92	437.26	4.79	432.47	5.17	432.09	4.28	432.98	2.34	434.92
MW6s	9.32	430.10	Dry	Dry	Dry	Dry	8.97	421.13	8.00	422.10
MW6d	11.99	430.29	10.57	419.72			10.07	420.22	9.07	421.22
MW7	11.86	451.06			Dry	Dry	Dry	Dry	Dry	Dry
MW8	3.17	418.38	1.17	417.21	1.16	417.22	0.24	418.14	0.23	418.15
MW9	4.54	414.90	1.21	413.69	1.14	413.76	0.44	414.46	0.76	414.14
PZ1s	0.74	406.80	Frozen	Frozen	Frozen	Frozen	-0.07	406.87	-0.08	406.88
PZ1d	1.46	406.83	Frozen	Frozen	Frozen	Frozen	Frozen	Frozen	-0.30	407.13
PZ2s	0.77	414.56	0.38	414.18	0.40	414.16	0.54	414.02	-0.01	414.57
PZ2d	1.55	414.59	Frozen	Frozen	0.10	414.49	0.12	414.47	-0.01	414.60
PZ3	1.40	424.92	Frozen	Frozen	Frozen	Frozen	Frozen	Frozen		

masl - metres above sea level

^{&#}x27; - ' - instrument not installed

Table D-1
Groundwater Elevations - Monitoring Wells and Piezometers

			19-M	ay-22	29-J	un-22	21-J	ul-22	22-A	ug-22
Monitoring Well and Piezometer	Well Depth (mbgl)	Ground Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)
MW1s	4.26	408.38	1.78	406.60	2.41	405.97	2.80	405.58	3.27	405.11
MW1d	8.99	408.46	1.87	406.59	2.52	405.94	2.91	405.55	3.34	405.12
MW2	3.71	417.38	0.51	416.87	1.25	416.13	1.41	415.97	1.67	415.71
MW3	4.77	399.29	0.92	398.37	1.84	397.45	2.27	397.02	2.64	396.65
MW4	19.67	442.41	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
MW5	6.92	437.26	3.45	433.81	5.48	431.78	6.75	430.51	6.79	430.47
MW6s	9.32	430.10	8.34	421.76	Dry	Dry	Dry	Dry	9.22	420.88
MW6d	11.99	430.29	9.42	420.87	10.86	419.43	11.51	418.78	11.91	418.38
MW7	11.86	451.06	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
MW8	3.17	418.38	0.70	417.68	1.54	416.84	1.86	416.52	2.33	416.05
MW9	4.54	414.90	1.25	413.65	1.86	413.04	2.17	412.73	2.34	412.56
PZ1s	0.74	406.80	-0.09	406.89	-0.09	406.89	-0.04	406.84	-0.03	406.83
PZ1d	1.46	406.83	-0.30	407.13	-0.33	407.16	-0.32	407.15	-0.35	407.18
PZ2s	0.77	414.56	0.01	414.55	Dry	Dry	Dry	Dry	Dry	Dry
PZ2d	1.55	414.59	-0.02	414.61	0.57	414.02	Dry	Dry	Dry	Dry
PZ3	1.40	424.92			-	-	-0.51	425.43	-0.09	425.01

masl - metres above sea level

^{&#}x27; - ' - instrument not installed

Table D-1
Groundwater Elevations - Monitoring Wells and Piezometers

			23-S	ep-22	21-C	ct-22	25-N	ov-22	19-D	ec-22
Monitoring Well and Piezometer	Well Depth (mbgl)	Ground Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)
MW1s	4.26	408.38	3.59	404.79	3.77	404.61	3.92	404.46	3.95	404.43
MW1d	8.99	408.46	3.63	404.83	3.80	404.66	3.93	404.53	3.95	404.51
MW2	3.71	417.38	1.62	415.76	1.22	416.16	0.96	416.42	0.83	416.55
MW3	4.77	399.29	2.79	396.50	2.83	396.46	2.89	396.40	2.76	396.53
MW4	19.67	442.41	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
MW5	6.92	437.26	6.90	430.36	6.88	430.38	6.81	430.45	Dry	Dry
MW6s	9.32	430.10	9.22	420.88	9.21	420.89	9.21	420.89	Dry	Dry
MW6d	11.99	430.29	11.93	418.36	11.92	418.37	Dry	Dry	11.92	418.37
MW7	11.86	451.06	11.77	439.29	11.75	439.31	11.75	439.31	11.74	439.32
MW8	3.17	418.38	2.75	415.63	Dry	Dry	3.09	415.29	3.09	415.29
MW9	4.54	414.90	2.36	412.54	2.09	412.81	1.96	412.94	1.76	413.14
PZ1s	0.74	406.80	-0.03	406.83	-0.06	406.86	-0.08	406.88	-0.06	406.86
PZ1d	1.46	406.83	-0.37	407.20	-0.39	407.22	-0.35	407.18	Frozen	Frozen
PZ2s	0.77	414.56	Dry	Dry	Dry	Dry	0.76	413.80	Dry	Dry
PZ2d	1.55	414.59	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
PZ3	1.40	424.92	0.44	424.48	0.74	424.18	1.07	423.85	0.97	423.95

masl - metres above sea level

^{&#}x27; - ' - instrument not installed

Table D-1
Groundwater Elevations - Monitoring Wells and Piezometers

			27-J	an-23	17-F	eb-23	31-M	lar-23	28-Apr-23	
Monitoring Well and Piezometer	Well Depth (mbgl)	Ground Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)
MW1s	4.26	408.38	3.30	405.08	3.03	405.35	2.01	406.37	1.39	406.99
MW1d	8.99	408.46	3.34	405.12	3.08	405.38	2.06	406.40	1.51	406.95
MW2	3.71	417.38	0.30	417.08	0.13	417.25	0.12	417.26	0.25	417.13
MW3	4.77	399.29	1.84	397.45	0.90	398.39	0.24	399.05	0.32	398.97
MW4	19.67	442.41	Dry	Dry	Dry	Dry	Dry	Dry	19.56	422.85
MW5	6.92	437.26	Dry	Dry	Dry	Dry	4.02	433.24	1.21	436.05
MW6s	9.32	430.10	9.22	420.88	9.22	420.88	9.22	420.88	9.22	420.88
MW6d	11.99	430.29	11.93	418.36	11.93	418.36	11.93	418.36	11.87	418.42
MW7	11.86	451.06	11.76	439.30	11.76	439.30	11.76	439.30	11.75	439.31
MW8	3.17	418.38	1.68	416.70	0.79	417.59	0.51	417.87	0.36	418.02
MW9	4.54	414.90	1.11	413.79	0.56	414.34	0.55	414.35	0.91	413.99
PZ1s	0.74	406.80	-0.07	406.87	Frozen	Frozen	-0.09	406.89	-0.09	406.89
PZ1d	1.46	406.83	Frozen	Frozen	Frozen	Frozen	Frozen	Frozen	-0.35	407.18
PZ2s	0.77	414.56	Dry	Dry	Frozen	Frozen	-0.02	414.58	-0.02	414.58
PZ2d	1.55	414.59	Dry	Dry	0.02	414.57	0.01	414.58	0.01	414.58
PZ3	1.40	424.92	0.71	424.21	Frozen	Frozen	Frozen	Frozen	Flooded	Flooded

masl - metres above sea level

^{&#}x27; - ' - instrument not installed

Table D-1
Groundwater Elevations - Monitoring Wells and Piezometers

			26-M	ay-23	23-J	un-23	28-J	ul-23	25-Aug-23	
Monitoring Well and Piezometer	Well Depth (mbgl)	Ground Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)
MW1s	4.26	408.38	1.76	406.62	2.36	406.02	2.72	405.66	2.87	405.51
MW1d	8.99	408.46	1.88	406.58	2.47	405.99	2.78	405.68	2.93	405.53
MW2	3.71	417.38	0.61	416.77	1.12	416.26	0.76	416.62	0.89	416.49
MW3	4.77	399.29	0.77	398.52	1.64	397.65	2.00	397.29	2.26	397.03
MW4	19.67	442.41	19.44	422.97	19.53	422.88	DRY	DRY	DRY	DRY
MW5	6.92	437.26	1.90	435.36	3.56	433.70	5.35	431.91	6.77	430.49
MW6s	9.32	430.10	8.00	422.10	8.58	421.52	9.20	420.90	9.24	420.86
MW6d	11.99	430.29	9.42	420.87	9.82	420.47	10.46	419.83	10.92	419.37
MW7	11.86	451.06	11.75	439.31	11.75	439.31	11.75	439.31	11.75	439.31
MW8	3.17	418.38	0.70	417.68	1.31	417.07	1.21	417.17	1.64	416.74
MW9	4.54	414.90	1.24	413.66	1.69	413.21	1.50	413.40	1.73	413.17
PZ1s	0.74	406.80	-0.08	406.88	-0.07	406.87	-0.09	406.89	-0.07	406.87
PZ1d	1.46	406.83	-0.38	407.21	-0.39	407.22	-0.47	407.30	-	-
PZ2s	0.77	414.56	0.01	414.55	0.69	413.87	0.46	414.10	DRY	DRY
PZ2d	1.55	414.59	0.02	414.57	0.61	413.98	0.56	414.03	DRY	DRY
PZ3	1.40	424.92	Flooded	Flooded	Flooded	Flooded	Flooded	Flooded	-0.47	425.39

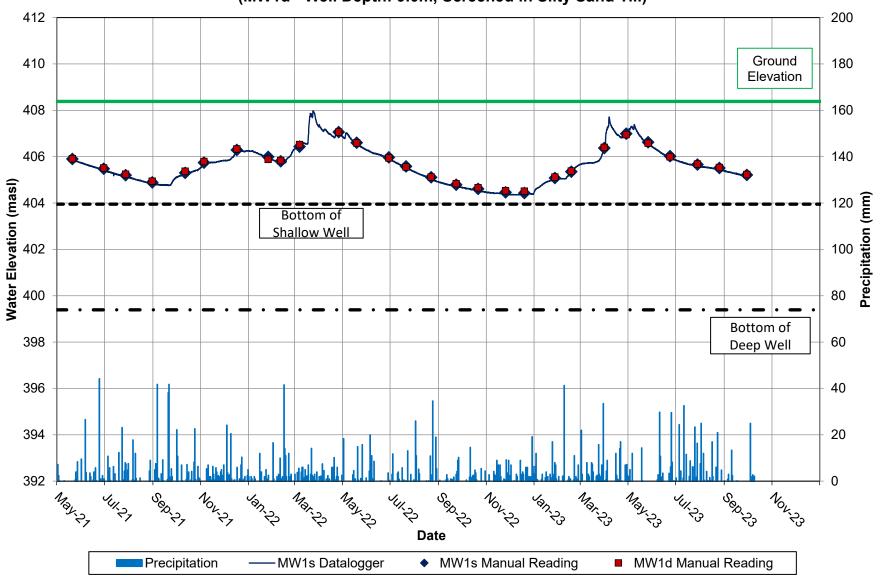
masl - metres above sea level

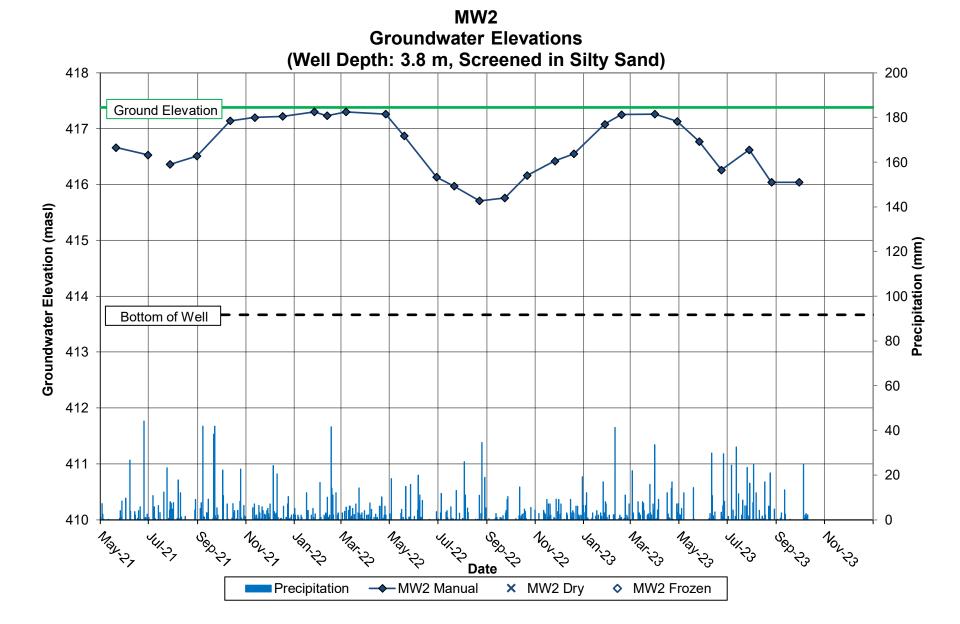
^{&#}x27; - ' - instrument not installed

Table D-1 Groundwater Elevations - Monitoring Wells and Piezometers

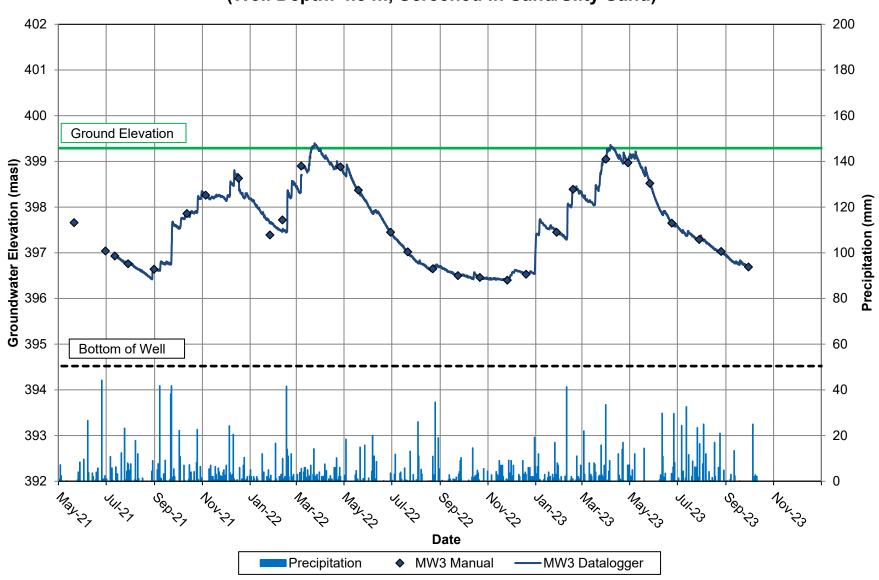
			29-S	ep-23
Monitoring Well and Piezometer	Well Depth (mbgl)	Ground Elevation (masl)	Water Level (mbgl)	Water Elevation (masl)
MW1s	4.26	408.38	3.17	405.21
MW1d	8.99	408.46	3.23	405.23
MW2	3.71	417.38	1.34	416.04
MW3	4.77	399.29	2.60	396.69
MW4	19.67	442.41	DRY	DRY
MW5	6.92	437.26	6.79	430.47
MW6s	9.32	430.10	9.24	420.86
MW6d	11.99	430.29	11.50	418.79
MW7	11.86	451.06	11.75	439.31
MW8	3.17	418.38	2.02	416.36
MW9	4.54	414.90	2.05	412.85
PZ1s	0.74	406.80	-0.08	406.88
PZ1d	1.46	406.83	-0.46	407.29
PZ2s	0.77	414.56	DRY	DRY
PZ2d	1.55	414.59	DRY	DRY
PZ3	1.40	424.92	-0.03	424.95

mbgl - metres below ground level

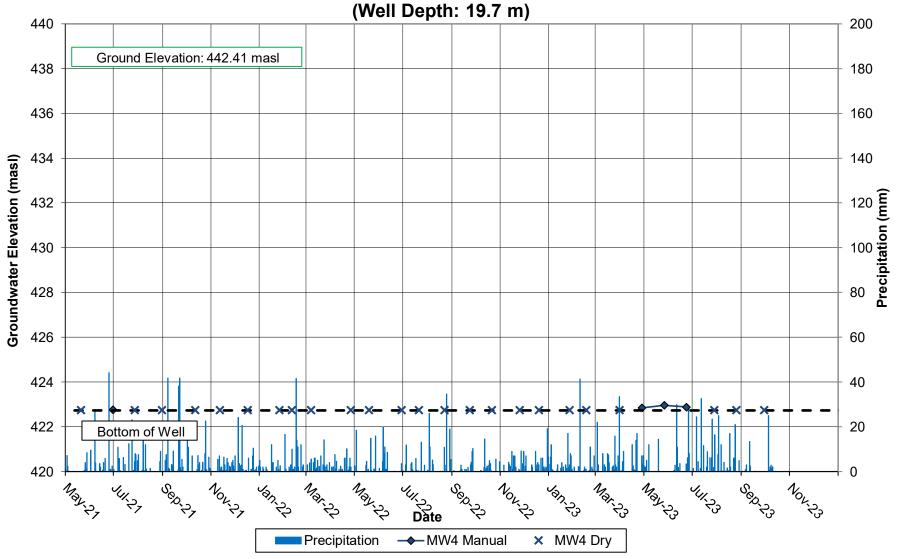

masl - metres above sea level


^{&#}x27; - ' - instrument not installed

^{&#}x27; -- ' - data that was not collected


MW1s/d Groundwater Elevations

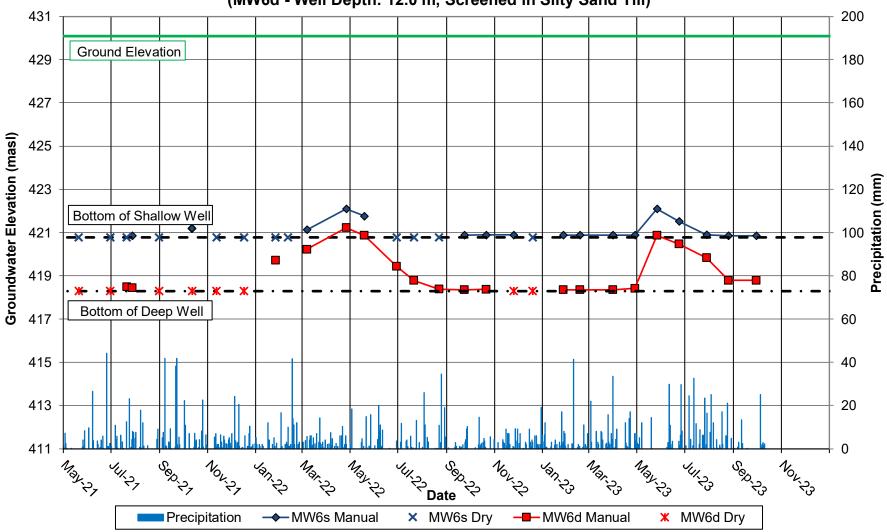
(MW1s - Well Depth: 4.4m, Screened in Gravelly Sand) (MW1d - Well Depth: 9.0m, Screened in Silty Sand Till)



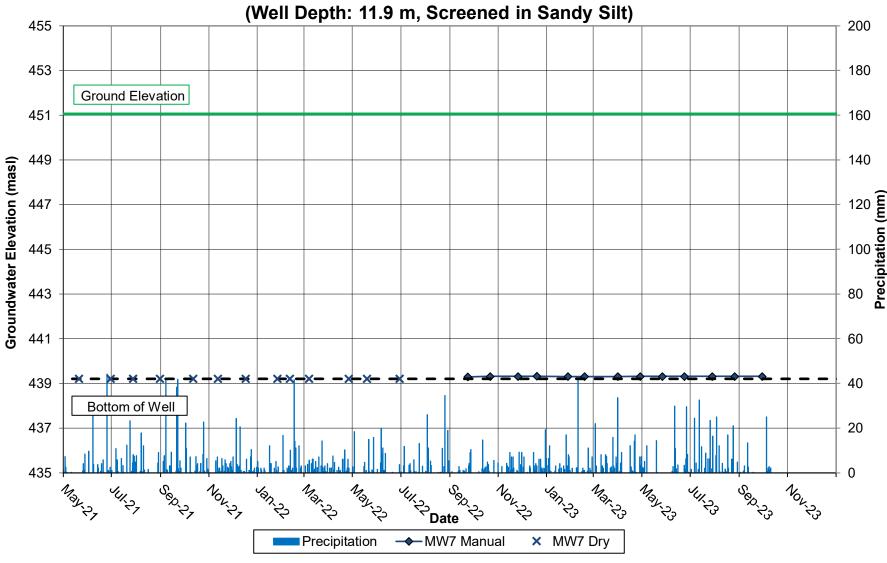
MW3
Groundwater Elevation
(Well Depth: 4.8 m, Screened in Sand/Silty Sand)

MW4
Groundwater Elevations
(Woll Donth: 19.7 m)

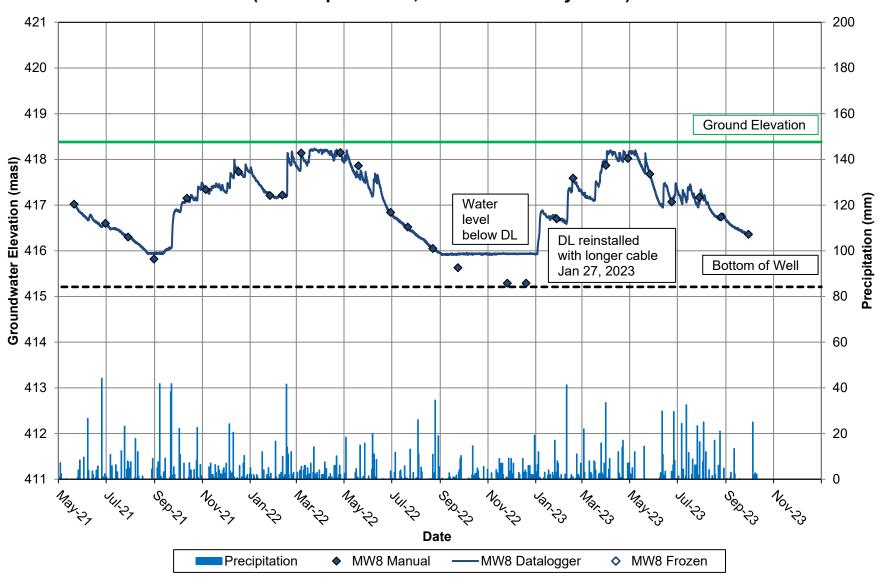
MW5 **Groundwater Elevations** (Well Depth: 7.0 m, Screened in Silty Sand/Sandy Gravel) 440 200 180 438 **Ground Elevation** 436 160 434 140 Groundwater Elevation (masl) 120 no 100 lb 10 432 430 Bottom of Well 428 426 60 424 40 422 20 420 الراري <u>Date</u> `


→ MW5 Manual

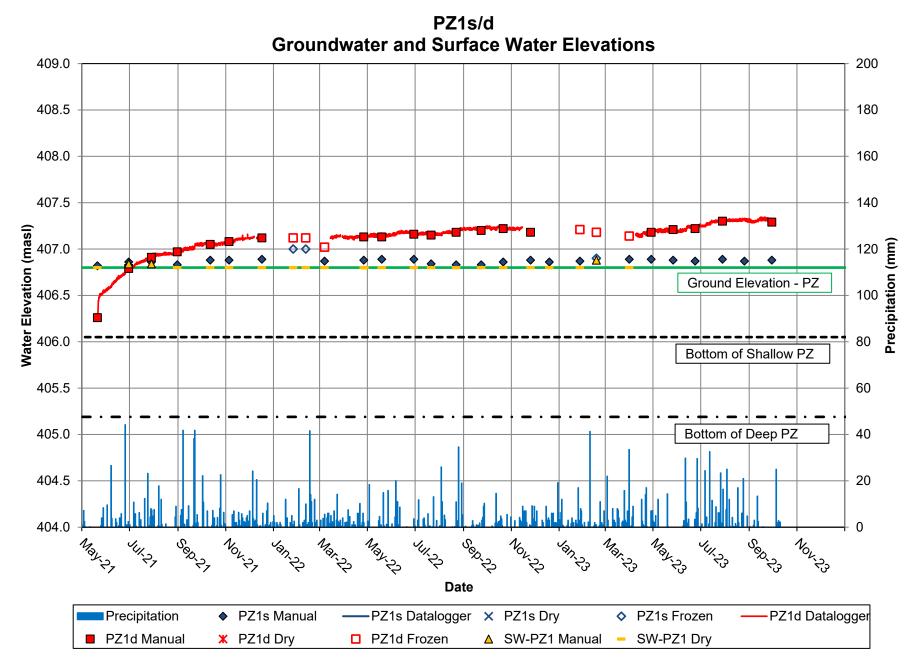
× MW5 Dry


Precipitation

MW6s/d Groundwater Elevations


(MW6s - Well Depth: 9.3 m, Screened in Silty Sand Till) (MW6d - Well Depth: 12.0 m, Screened in Silty Sand Till)

MW7
Groundwater Elevations



MW8
Groundwater Elevation
(Well Depth: 3.2 m, Screened in Silty Sand)

MW9 **Groundwater Elevations** (Well Depth: 4.6 m, Screened in Sandy Gravel) 420 200 418 180 416 160 Ground Elevation 140 414 Groundwater Elevation (masl) 120 no 100 lb 10 412 410 Bottom of Well 408 406 60 404 40 402 20 400 Oate ` MILES SEDES NOVES Precipitation → MW9 Manual

R.J. Burnside & Associates Limited 300052075

PZ2s/d **Groundwater and Surface Water Elevations** 416.0 200 415.5 180 415.0 160 **Ground Elevation** 414.5 140 Water Elevation (masl) 120 no 100 Lacibitation (mm) Bottom of 414.0 Shallow PZ 413.5 Water Level Below DL 413.0 Bottom of Deep PZ 412.5 60 412.0 40 411.5 20 411.0 JUKZI NOVE Van 22 Marina Date Precipitation PZ2s Manual -PZ2s Datalogger × PZ2s Dry PZ2s Frozen -PZ2d Datalogger ■ PZ2d Manual X PZ2d Dry □ PZ2d Frozen △ SW-PZ2 Manual SW-PZ2 Dry

PZ3 **Groundwater and Surface Water Elevations** 427.0 200 No access to SG or PZ 426.5 180 426.0 160 425.5 140 Water Elevation (masl) Δ 120 no 100 Lacibitation (mm) 425.0 Ground 424.5 Elevation - PZ 424.0 423.5 60 Bottom of PZ 423.0 40 422.5 20 422.0 Date Nov. 23 Non Py Jan 22 Marina ♦ PZ3 Manual × PZ1s Dry Precipitation PZ3 Datalogger PZ3 Frozen △ SW-PZ3 Manual - SW-PZ3 Dry △ SW-PZ3 Frozen

Appendix E

Surface Water Monitoring

Table E-1
Surface Water Flow

Date	Flow Rate (L/s) at SW1
21-May-21	Dry
30-Jun-21	Dry
28-Jul-21	Dry
31-Aug-21	Dry
10-Oct-21	Dry
12-Nov-21	Dry
17-Dec-21	Dry
26-Jan-22	Dry
11-Feb-22	Dry
7-Mar-22	Dry
26-Apr-22	<0.5

Note:

[&]quot;<0.5" minimal flow not measurable with equipment (estimated)

Table E-2 -Surface Water Elevations

Staff Gauge	s	G1	sw	-PZ1	SW	-PZ2	sw	/-PZ3
Ground Elevation (masl)	39	9.72	40	6.83	41	4.59	42	4.92
Date	Water Level (mags)	Water Elevation (masl)	Water Level (mags)	Water Elevation (masl)	Water Level (mags)	Water Elevation (masl)	Water Level (mags)	Water Elevation (masl)
21-May-21	0.11	399.83	Dry	Dry	Dry	Dry	0.3	425.22
30-Jun-21	0.34	400.06	0.04	406.87	Dry	Dry	0.18	425.10
28-Jul-21	0.20	399.92	0.04	406.87	Dry	Dry	Dry	Dry
31-Aug-21	0.04	399.76	Dry	Dry	Dry	Dry	Dry	Dry
10-Oct-21	0.20	399.92	Dry	Dry	Dry	Dry	Dry	Dry
12-Nov-21	0.30	400.02	Dry	Dry	Dry	Dry	Dry	Dry
17-Dec-21	0.57	400.29	Dry	Dry	Dry	Dry	0.16	425.08
26-Jan-22	Frozen	Frozen	Dry	Dry	Dry	Dry	Frozen	Frozen
11-Feb-22	Frozen	Frozen	Dry	Dry	Frozen	Dry	Frozen	Frozen
7-Mar-22	Frozen	Frozen	Dry	Dry	Frozen	Dry	Frozen	Frozen
26-Apr-22	0.75	400.47	Dry	Dry	1.00	415.59	0.15	425.07
19-May-22	0.65	400.37	Dry	Dry	1.00	415.59	0.20	425.12
29-Jun-22	0.60	400.32	Dry	Dry	Dry	Dry	Dry	Dry
21-Jul-22	0.45	400.17	Dry	Dry	Dry	Dry	0.55	425.47
22-Aug-22	0.34	400.06	Dry	Dry	Dry	Dry	0.15	425.07
23-Sep-22	0.15	399.87	Dry	Dry	Dry	Dry	Dry	Dry
21-Oct-22	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
25-Nov-22	Staff Guag	e Destroyed	Dry	Dry	Dry	Dry	Dry	Dry
19-Dec-22	-	-	Dry	Dry	Dry	Dry	Dry	Dry
27-Jan-23	-	-	Dry	Dry	Dry	Dry	Dry	Dry
17-Feb-23	-	-	0.08	406.91	Dry	Dry	Dry	Dry
31-Mar-23	=	-	Dry	Dry	Dry	Dry	Frozen	Frozen
28-Apr-23	-	-	Min	Min	Min	Min	Flooded	Flooded
26-May-23	=	-	Min	Min	Min	Min	Flooded	Flooded
23-Jun-23	=	-	Min	Min	Dry	Dry	Flooded	Flooded
28-Jul-23	-	-	Min	Min	Dry	Dry	Flooded	Flooded
25-Aug-23	-	-	Min	Min	Dry	Dry	0.94	425.86
29-Sep-23	-	-	Min	Min	Dry	Dry	1.31	426.23

mags - metres above ground surface masl - metres above sea level

Ground surface elevations surveyed by RP-E Surving Ltd. (Aug. 24, 2021)

Appendix F

Water Quality

Table F-1 **Groundwater Quality**

		Sample D	escription	MW1d	MW9
			e Sampled	12-June-21	12-June-21
Parameter	Unit	ODWQS	RDL		
Electrical Conductivity	μS/cm	•	2	499	527
pH	pH Units	(6.5-8.5)	NA	8.13	8.02
Saturation pH (Calculated)		()		7.01	7.03
Langelier Index (Calculated)				1.12	0.992
Hardness (as CaCO3) (Calculated)	mg/L	(80-100)	0.5	267	270
Total Dissolved Solids	mg/L	(500)	10	284	310
Alkalinity (as CaCO3)	mg/L	(30-500)	5	245	252
Bicarbonate (as CaCO3)	mg/L	,	5	245	252
Carbonate (as CaCO3)	mg/L		5	<5	<5
Hydroxide (as CaCO3)	mg/L		5	<5	<5
Fluoride	mg/L	1.5	0.05	0.09	<0.05
Chloride	mg/L	(250)	0.10	11.2	5.31
Nitrate as N	mg/L	10	0.05	<0.05	0.43
Nitrite as N	mg/L	1	0.05	<0.05	<0.05
Bromide	mg/L		0.05	<0.05	<0.05
Sulphate	mg/L	(500)	0.10	18.7	26.8
Ortho Phosphate as P	mg/L		0.10	<0.10	<0.10
Ammonia as N	mg/L		0.02	<0.02	<0.02
Total Phosphorus	mg/L		0.02	<0.02	<0.02
Total Organic Carbon	mg/L		0.5	17.7	4.8
True Colour	TCU	(5)	5	<5	<5
Turbidity	NTU	(5)	0.5	21300	33600
Dissolved Calcium	mg/L		0.05	42.2	68.4
Dissolved Magnesium	mg/L		0.05	39.3	24.0
Dissolved Potassium	mg/L		0.50	4.33	1.85
Dissolved Sodium	mg/L	20 (200)	0.05	9.03	3.62
Dissolved Aluminum	mg/L		0.004	0.020	0.039
Dissolved Antimony	mg/L	0.006	0.001	<0.001	<0.001
Dissolved Arsenic	mg/L	0.025	0.001	0.001	<0.001
Dissolved Barium	mg/L	1	0.002	0.064	0.086
Dissolved Beryllium	mg/L		0.0005	<0.0005	<0.0005
Dissolved Boron	mg/L	5	0.010	0.052	0.018
Dissolved Cadmium	mg/L	0.005	0.0001	<0.0001	<0.0001
Dissolved Chromium	mg/L	0.05	0.002	<0.002	<0.002
Dissolved Cobalt	mg/L		0.0005	0.0012	<0.0005
Dissolved Copper	mg/L	(1)	0.001	0.001	0.001
Dissolved Iron	mg/L	(0.3)	0.010	<0.010	0.019
Dissolved Lead	mg/L	0.01	0.0005	<0.0005	<0.0005
Dissolved Manganese	mg/L	(0.05)	0.002	0.097	0.005
Dissolved Mercury	mg/L	0.001	0.0001	<0.0001	<0.0001
Dissolved Molybdenum	mg/L		0.002	0.014	0.002
Dissolved Nickel	mg/L	0.04	0.003	0.007	<0.003
Dissolved Selenium	mg/L	0.01	0.001	<0.001	0.003
Dissolved Silver	mg/L		0.0001	<0.0001	<0.0001
Dissolved Strontium	mg/L		0.005	0.278	0.147
Dissolved Thallium	mg/L		0.0003	<0.0003	<0.0003
Dissolved Tin	mg/L		0.002	<0.002	<0.002
Dissolved Titanium	mg/L		0.002	0.002	<0.002
Dissolved Tungsten	mg/L	0.00	0.010	<0.010	<0.010
Dissolved Uranium	mg/L	0.02	0.0005	0.0012	0.0016
Dissolved Vanadium	mg/L	/E\	0.002	<0.002	<0.002
Dissolved Zinc	mg/L	(5)	0.005	<0.005	<0.005
Dissolved Zirconium	mg/L		0.004	<0.004	<0.004

Notes

ODWQS - Ontario Drinking Water Quality Standards - MAC and (AO & OG)
RDL - Reporting Detection Limit
Bold indicates an exceedance of the ODWQS

Table F-2 **Surface Water Quality**

		Sampl	e Location	Surface Water at PZ1sd
			e Sampled	12-June-21
Parameter	Unit	PWQO	RDL	
Electrical Conductivity	μS/cm		2	587
рН	pH Units	6.5-8.5	NA	8.11
Saturation pH (Calculated)				6.80
Langelier Index (Calculated)				1.31
Hardness (as CaCO3) (Calculated)	mg/L		0.5	363
Total Dissolved Solids	mg/L		10	360
Alkalinity (as CaCO3)	mg/L		5	315
Bicarbonate (as CaCO3)	mg/L		5	315
Carbonate (as CaCO3)	mg/L		5	<5
Hydroxide (as CaCO3)	mg/L		5	<5
Fluoride	mg/L		0.05	0.15
Chloride	mg/L		0.10	3.52
Nitrate as N	mg/L		0.05	1.01
Nitrite as N	mg/L		0.05	<0.05
Bromide	mg/L		0.05	<0.05
Sulphate	mg/L		0.10	5.68
Ortho Phosphate as P	mg/L		0.10	<0.10
Ammonia as N	mg/L	0.00	0.02	0.04
Ammonia-Un-ionized (Calculated)	mg/L	0.02	0.000002	0.00315
Total Phosphorus	mg/L	0.03	0.02	0.07
Total Organic Carbon	mg/L		0.5	5.9
True Colour	TCU NTU		5 0.5	23 49.6
Turbidity Total Calcium			0.5	100
Total Magnesium	mg/L mg/L		0.16	27.6
Total Potassium	mg/L		0.17	0.75
Dissolved Aluminum	mg/L		0.004	0.006
Total Sodium	mg/L		0.004	2.57
Total Antimony	mg/L	0.020	0.002	<0.002
Total Artimory Total Arsenic	mg/L	0.020	0.002	<0.002
Total Barium	mg/L	0.1	0.004	0.093
Total Beryllium	mg/L	1.1	0.0010	<0.0010
Total Boron	mg/L	0.2	0.020	0.028
Total Cadmium	mg/L	0.0002	0.0002	0.0003
Total Chromium	mg/L	0.0002	0.006	<0.006
Total Cobalt	mg/L	0.0009	0.0010	0.0015
Total Copper	mg/L	0.005	0.002	0.006
Total Iron	mg/L	0.3	0.020	12.1
Total Lead	mg/L	0.005	0.002	0.008
Total Manganese	mg/L		0.004	1.16
Dissolved Mercury	mg/L	0.0002	0.0001	<0.0001
Total Molybdenum	mg/L	0.040	0.004	<0.004
Total Nickel	mg/L	0.025	0.006	<0.006
Total Selenium	mg/L	0.1	0.004	<0.004
Total Silver	mg/L	0.0001	0.0002	<0.0002
Total Strontium	mg/L		0.010	0.192
Total Thallium	mg/L	0.0003	0.0006	<0.0006
Total Tin	mg/L		0.004	<0.004
Total Titanium	mg/L		0.004	0.048
Total Tungsten	mg/L	0.030	0.020	<0.020
Total Uranium	mg/L	0.005	0.004	<0.004
Total Vanadium	mg/L	0.006	0.004	0.006
Total Zinc	mg/L	0.030	0.010	0.123
Total Zirconium	mg/L	0.004	0.008	<0.008

Notes
PWQO - Provincial Water Quality Objectives
RDL - Reporting Detection Limit
Bold - exceeds PWQO

Appendix G

Water Balance

Hydrogeological Assessment - Langen Property Erin, ON PROJECT No.300052075

TABLE G-1

Water Balance Components

Based on Thornthwaite's Soil Moisture Balance Approach with a Soil Moisture Retention of 150 mm (moderately-rooted vegetation in sandy loam soils)

Precipitation data from Fergus Shand Dam Climate Station (1981 - 2010)

		1				1	1	1		1		1	
Potential Evapotranspiration Calculation	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
Average Temperature (Degree C)	-7.4	-6.3	-1.9	5.7	12.2	17.5	20.0	19.0	14.9	8.3	2.1	-3.9	6.7
Heat index: $i = (t/5)^{1.514}$	0.00	0.00	0.00	1.22	3.86	6.66	8.16	7.55	5.22	2.15	0.27	0.00	35.1
Unadjusted Daily Potential Evapotranspiration U (mm)	0.00	0.00	0.00	26.65	59.36	86.76	99.85	94.61	73.26	39.58	9.32	0.00	489
Adjusting Factor for U (Latitude 43° 44' N)	0.81	0.82	1.02	1.13	1.27	1.29	1.3	1.2	1.04	0.95	8.0	0.76	
Adjusted Potential Evapotranspiration PET (mm)	0	0	0	30	75	112	130	114	76	38	7	0	582
WATER BALANCE COMPONENTS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
Precipitation (P)	68	56	60	74	87	84	89	97	93	77	93	69	946
Potential Evapotranspiration (PET)	0	0	0	30	75	112	130	114	76	38	7	0	582
P - PET	68	56	60	44	12	-28	-41	-17	17	40	86	69	364
Change in Soil Moisture Storage	0	0	0	0	0	-28	-41	-17	17	40	29	0	0
Soil Moisture Storage max 150 mm	150	150	150	150	150	122	81	64	81	121	150	150	
Actual Evapotranspiration (AET)	0	0	0	30	75	112	130	114	76	38	7	0	582
Soil Moisture Deficit max 150 mm	0	0	0	0	0	28	69	86	69	29	0	0	
Water Surplus - available for infiltration or runoff	68	56	60	44	12	0	0	0	0	0	56	69	364
Potential Infiltration (based on MOE metholodogy*; independent of temperature)	41	34	36	26	7	0	0	0	0	0	34	41	218
Potential Direct Surface Water Runoff (independent of temperature)	27	22	24	18	5	0	0	0	0	0	23	27	146
IMPERVIOUS AREA WATER SURPLUS													
Precipitation (P)	946	mm/year											
Potential Evaporation (PE) from impervious areas (assume 15%)	142	mm/year											
P-PE (surplus available for runoff from impervious areas)	804	mm/year											

43 ^O N.

Assume January storage is 100% of Soil Moisture Storage Soil Moisture Storage	150 mr
*MOE SWM infiltration calculations	
topography - hilly	0.1
soils - sandy loam	0.4
cover - predominantly cultivated land	0.1
Infiltration factor	0.6

Latitude of site (or climate station)

<-- See "Water Holding Capacity" values in Table 3.1, MOE SWMPDM, 2003

<-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

 $^{{\}mbox{<--}}$ Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

<-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

Hydrogeological Assessment - Langen Property Erin, ON PROJECT No.300052075

TABLE G-2

Water Balance Components

Based on Thornthwaite's Soil Moisture Balance Approach with a Soil Moisture Retention of 300 mm (wooded areas in sandy loam soils)

Precipitation data from Fergus Shand Dam Climate Station (1981 - 2010)

Potential Evapotranspiration Calculation	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
Average Temperature (Degree C)	-7.4	-6.3	-1.9	5.7	12.2	17.5	20.0	19.0	14.9	8.3	2.1	-3.9	6.7
Heat index: i = (t/5) ^{1.514}	0.00	0.00	0.00	1.22	3.86	6.66	8.16	7.55	5.22	2.15	0.27	0.00	35.1
Unadjusted Daily Potential Evapotranspiration U (mm)	0.00	0.00	0.00	26.65	59.36	86.76	99.85	94.61	73.26	39.58	9.32	0.00	489
Adjusting Factor for U (Latitude 43° 44' N)	0.81	0.82	1.02	1.13	1.27	1.29	1.3	1.2	1.04	0.95	0.8	0.76	
Adjusted Potential Evapotranspiration PET (mm)	0	0	0	30	75	112	130	114	76	38	7	0	582
WATER BALANCE COMPONENTS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
Precipitation (P)	68	56	60	74	87	84	89	97	93	77	93	69	946
Potential Evapotranspiration (PET)	0	0	0	30	75	112	130	114	76	38	7	0	582
P - PET	68	56	60	44	12	-28	-41	-17	17	40	86	69	364
Change in Soil Moisture Storage	0	0	0	0	0	-28	-41	-17	17	40	29	0	0
Soil Moisture Storage max 300 mm	300	300	300	300	300	272	231	214	231	271	300	300	
Actual Evapotranspiration (AET)	0	0	0	30	75	112	130	114	76	38	7	0	582
Soil Moisture Deficit max 300 mm	0	0	0	0	0	28	69	86	69	29	0	0	
Water Surplus - available for infiltration or runoff	68	56	60	44	12	0	0	0	0	0	56	69	364
Potential Infiltration (based on MOE metholodogy*; independent of temperature)	48	39	42	31	8	0	0	0	0	0	39	48	255
Potential Direct Surface Water Runoff (independent of temperature)	20	17	18	13	3	0	0	0	0	0	17	21	109
IMPERVIOUS AREA WATER SURPLUS													
Precipitation (P)	946	mm/year											
Potential Evaporation (PE) from impervious areas (assume 15%)	142	mm/year											
P-PE (surplus available for runoff from impervious areas)	804	mm/year											

43 ^O N.

Assume January storage is 100% of Soil Moisture Storage Soil Moisture Storage	300 mi
*MOE SWM infiltration calculations	
topography - hilly land	0.1
soils - sandy loam	0.4
cover - woodlands	0.2
Infiltration factor	0.7

Latitude of site (or climate station)

<-- See "Water Holding Capacity" values in Table 3.1, MOE SWMPDM, 2003

<-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

 $^{{\}mbox{<--}}$ Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

<-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

Hydrogeological Assessment - Langen Property Erin, ON PROJECT No.300052075

TABLE G-3

Post-Development Water Balance Components

Based on Thornthwaite's Soil Moisture Balance Approach with a Soil Moisture Retention of 75 mm (shallow rooted/urban lawn in sandy loam soils)

Precipitation data from Fergus Shand Dam Climate Station (1981 - 2010)

Potential Evapotranspiration Calculation	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
Average Temperature (Degree C)	-7.4	-6.3	-1.9	5.7	12.2	17.5	20.0	19.0	14.9	8.3	2.1	-3.9	6.7
Heat index: i = (t/5) ^{1.514}	0.00	0.00	0.00	1.22	3.86	6.66	8.16	7.55	5.22	2.15	0.27	0.00	35.1
Unadjusted Daily Potential Evapotranspiration U (mm)	0.00	0.00	0.00	26.65	59.36	86.76	99.85	94.61	73.26	39.58	9.32	0.00	489
Adjusting Factor for U (Latitude 43° 44' N)	0.81	0.82	1.02	1.13	1.27	1.29	1.3	1.2	1.04	0.95	0.8	0.76	
Adjusted Potential Evapotranspiration PET (mm)	0	0	0	30	75	112	130	114	76	38	7	0	582
WATER BALANCE COMPONENTS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
Precipitation (P)	68	56	60	74	87	84	89	97	93	77	93	69	946
Potential Evapotranspiration (PET)	0	0	0	30	75	112	130	114	76	38	7	0	582
P - PET	68	56	60	44	12	-28	-41	-17	17	40	86	69	364
Change in Soil Moisture Storage	0	0	0	0	0	-28	-41	-6	17	40	18	0	0
Soil Moisture Storage max 75 mm	75	75	75	75	75	47	6	0	17	57	75	75	
Actual Evapotranspiration (AET)	0	0	0	30	75	112	130	103	76	38	7	0	571
Soil Moisture Deficit max 75 mm	0	0	0	0	0	28	69	75	58	18	0	0	
Water Surplus - available for infiltration or runoff	68	56	60	44	12	0	0	0	0	0	67	69	375
Potential Infiltration (based on MOE metholodogy*; independent of temperature)	41	34	36	26	7	0	0	0	0	0	40	41	225
Potential Direct Surface Water Runoff (independent of temperature)	27	22	24	18	5	0	0	0	0	0	27	27	150
IMPERVIOUS AREA WATER SURPLUS													
Precipitation (P)	946	mm/year											
Potential Evaporation (PE) from impervious areas (assume 15%)	142	mm/year											
P-PE (surplus available for runoff from impervious areas)	804	mm/year										·	

43 ^O N.

Assume January storage is 100% of Soil Moisture Storage Soil Moisture Storage	75 mm
*MOE SWM infiltration calculations	
topography - hilly land	0.1
soils - sandy loam	0.4
cover - urban lawn	0.1
Infiltration factor	0.6

Latitude of site (or climate station)

<-- See "Water Holding Capacity" values in Table 3.1, MOE SWMPDM, 2003

<-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

 $^{{\}mbox{<--}}$ Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

<-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

Hydrogeological Assessment - Langen Property Erin, ON PROJECT No.300052075

TABLE G-4

Water Balance for Pre- and Post-Development Land Use Conditions (with no SWM/LID measures in place) - 5552 Eighth Line

	Approx. Land Area (m²)	Estimated Impervious Fraction for Land Use	Estimated Impervious Area (m²)	Runoff from Impervious Area** (m/a)	Runoff Volume from Impervious Area (m³/a)	Estimated Pervious Area (m²)	Runoff from Pervious Area** (m/a)	Runoff Volume from Pervious Area (m³/a)	Infiltration from Pervious Area** (m/a)	Infiltration Volume from Pervious Area (m³/a)	Total Runoff Volume (m³/a)	Total Infiltration Volume (m³/a)
Pre-Development Land Use												
Agricultural	156,000	0.00	0	0.804	0	156,000	0.146	22,706	0.218	34,060	22,706	34,060
Rural Open Space/ Meadow	93,034	0.00	0	0.804	0	93,034	0.146	13,541	0.225	20,907	13,541	20,907
Woodland/Wetlands	22,388	0.00	0	0.804	0	22,388	0.109	2,444	0.255	5,703	2,444	5,703
TOTAL PRE-DEVELOPMENT	271,422		0		0	271,422		38,692		60,670	38,692	60,670
Post-Development Land Use (wi	th no LID measure	es in place)										
Single Detached	71,478	0.64	45,746	0.804	36,780	25,732	0.150	3,855	0.225	5,783	40,635	5,783
Townhouse	24,500	0.71	17,395	0.804	13,986	7,105	0.150	1,064	0.225	1,597	15,050	1,597
Medium Density Block	32,000	1.00	32,000	0.804	25,728	0	0.150	0	0.225	0	25,728	0
Pump Station	1,500	1.00	1,500	0.804	1,206	0	0.150	0	0.225	0	1,206	0
Grading Transition	10,422	0.00	0	0.804	0	10,422	0.150	1,561	0.225	2,342	1,561	2,342
Open Space	4,000	0.00	0	0.804	0	4,000	0.150	599	0.225	899	599	899
NHS	32,600	0.00	0	0.804	0	32,600	0.109	3,559	0.255	8,304	3,559	8,304
Parks	19,600	0.36	7,056	0.804	5,673	12,544	0.150	1,879	0.225	2,819	7,552	2,819
Roads	42,422	0.86	36,483	0.804	29,333	5,939	0.150	890	0.225	1,335	30,223	1,335
SWM Pond	32,900	0.50	16,450	0.804	13,226	16,450	0.150	2,465	0.225	3,697	15,691	3,697
TOTAL POST-DEVELOPMENT	271,422		156,630		77,701	114,792		15,873		26,775	141,805	26,775
		•		•					% Change	from Pre to Post	366	56
								Effect of c	levelopment (v	vith no mitigation)	3.7 times increase in runoff	56% reduction of infiltration

To balance pre- to post-, the infiltration target (m³/a)=

** figures from Tables G-1, G-2 and G-3.

33,895

Hydrogeological Assessment - Langen Property Erin, ON PROJECT No.300052075

TABLE G-5

Water Balance for Pre- and Post-Development Land Use Conditions (with no SWM/LID measures in place) - 5520 Eighth Line

	Approx. Land Area (m²)	Estimated Impervious Fraction for Land Use	Estimated Impervious Area (m²)	Runoff from Impervious Area** (m/a)	Runoff Volume from Impervious Area (m³/a)	Estimated Pervious Area (m²)	Runoff from Pervious Area** (m/a)	Runoff Volume from Pervious Area (m³/a)	Infiltration from Pervious Area** (m/a)	Infiltration Volume from Pervious Area (m³/a)	Total Runoff Volume (m³/a)	Total Infiltration Volume (m³/a)
Pre-Development Land Use												
Agricultural	91,540	0.00	0	0.804	0	91,540	0.146	13,324	0.218	19,986	13,324	19,986
Rural Open Space/ Meadow	43,000	0.00	0	0.804	0	43,000	0.146	6,259	0.225	9,663	6,259	9,663
Woodland/Wetlands	225,610	0.00	0	0.804	0	225,610	0.109	24,629	0.255	57,467	24,629	57,467
TOTAL PRE-DEVELOPMENT	360,150		0		0	360,150		44,212		87,117	44,212	87,117
Post-Development Land Use (w	ith no LID measu	res in place)										
Single Detached	67,951	0.64	43,489	0.804	34,965	24,462	0.150	3,665	0.225	5,497	38,630	5,497
Grading Transition	21,349	0.00	0	0.804	0	21,349	0.150	3,199	0.225	4,798	3,199	4,798
Open Space	3,500	0.00	0	0.804	0	3,500	0.150	524	0.225	787	524	787
NHS	240,300	0.00	0	0.804	0	240,300	0.109	26,232	0.255	61,209	26,232	61,209
Roads	27,050	0.86	23,263	0.804	18,704	3,787	0.150	567	0.225	851	19,271	851
TOTAL POST-DEVELOPMENT	360,150		66,752		34,965	293,398		34,188		73,142	87,857	73,142
									% Change	from Pre to Post	199	16
						Effect of development (with no mitigation)						

To balance pre- to post-, the infiltration target (m³/a)=

** figures from Tables G-1, G-2 and G-3.

13,975

Hydrogeological Assessment - Langen Property Erin, ON PROJECT No.300052075

TABLE G-6

Water Balance for Pre- and Post-Development Land Use Conditions (with SWM/LID measures) - 5552 Eighth Line

	Approx. Land Area (m²)	Estimated Impervious Fraction for Land Use	Estimated Impervious Area (m²)	Runoff from Impervious Area** (m/a)	Runoff Volume from Impervious Area (m³/a)	Estimated Pervious Area (m²)	Runoff from Pervious Area** (m/a)	Runoff Volume from Pervious Area (m³/a)	Infiltration from Pervious Area** (m/a)	Infiltration Volume from Pervious Area (m³/a)	Total Runoff Volume (m³/a)	Total Infiltration Volume (m³/a)
Pre-Development Land Use			•	•								•
Agricultural	156,000	0.00	0	0.804	0	156,000	0.146	22,706	0.218	34,060	22,706	34,060
Rural Open Space/ Meadow	93,034	0.00	0	0.804	0	93,034	0.146	13,541	0.225	20,907	13,541	20,907
Woodland/Wetlands	22,388	0.00	0	0.804	0	22,388	0.109	2,444	0.255	5,703	2,444	5,703
TOTAL PRE-DEVELOPMENT	271,422		0		0	271,422		38,692		60,670	38,692	60,670
Post-Development Land Use	•	•										
Single Detached	71,478	0.64	45,746	0.804	36,780	25,732	0.150	3,855	0.225	5,783	22,245	5,783
Roof leader disconnection (assume 50% of runoff volume infiltrates) ^a											0	18,390
Townhouse	24,500	0.71	17,395	0.804	13,986	7,105	0.150	1,064	0.225	1,597	8,057	1,597
Roof leader disconnection (assume 50% of runoff volume infiltrates) ^a											0	6,993
Medium Density Block	32,000	1.00	32,000	0.804	25,728	0	0.150	0	0.225	0	25,728	0
Pump Station	1,500	1.00	1,500	0.804	1,206	0	0.150	0	0.225	0	1,206	0
Grading Transition	10,422	0.00	0	0.804	0	10,422	0.150	1,561	0.225	2,342	1,561	2,342
Open Space	4,000	0.00	0	0.804	0	4,000	0.150	599	0.225	899	599	899
NHS	32,600	0.00	0	0.804	0	32,600	0.109	3,559	0.255	8,304	3,559	8,304
Parks	19,600	0.36	7,056	0.804	5,673	12,544	0.150	1,879	0.225	2,819	7,552	2,819
Roads	42,422	0.86	36,483	0.804	29,333	5,939	0.150	890	0.225	1,335	30,223	1,335
SWM Pond	32,900	0.50	16,450	0.804	13,226	16,450	0.150	2,465	0.225	3,697	15,691	3,697
TOTAL POST-DEVELOPMENT	271,422		156,630		77,701	114,792		15,873		26,775	116,422	52,158
	1		ı		ı	1	1	ı	% Change t	rom Pre to Post	301	14
								Effect o	of development	(with mitigation)	3.0 times increase in runoff	14% reduction

^{**} figures from Tables G-1, G-2 and G-3.

^a - based on estimation in LID SWM Planning and Design Guide for soils of hydrologic group A & B (CVC & TRCA, 2010)

Hydrogeological Assessment - Langen Property Erin, ON PROJECT No.300052075

TABLE G-7

Water Balance for Pre- and Post-Development Land Use Conditions (with SWM/LID measures) - 5520 Eighth Line

	Approx. Land Area (m²)	Estimated Impervious Fraction for Land Use	Estimated Impervious Area (m²)	Runoff from Impervious Area** (m/a)	Runoff Volume from Impervious Area (m³/a)	Estimated Pervious Area (m²)	Runoff from Pervious Area** (m/a)	Runoff Volume from Pervious Area (m³/a)	Infiltration from Pervious Area** (m/a)	Infiltration Volume from Pervious Area (m³/a)	Total Runoff Volume (m³/a)	Total Infiltration Volume (m³/a)
Pre-Development Land Use												•
Agricultural	91,540	0.00	0	0.804	0	91,540	0.146	13,324	0.218	19,986	13,324	19,986
Rural Open Space/ Meadow	43,000	0.00	0	0.804	0	43,000	0.146	6,259	0.225	9,663	6,259	9,663
Woodland/Wetlands	225,610	0.00	0	0.804	0	225,610	0.109	24,629	0.255	57,467	24,629	57,467
TOTAL PRE-DEVELOPMENT	360,150		0		0	360,150		44,212		87,117	44,212	87,117
Post-Development Land Use	•			•				•	•			
Single Detached	67,951	0.64	43,489	0.804	34,965	24,462	0.150	3,665	0.225	5,497	21,148	5,497
Roof leader disconnection (assume 50% of runoff volume infiltrates) ^a											0	17,483
Grading Transition	21,349	0.00	0	0.804	0	21,349	0.150	3,199	0.225	4,798	3,199	4,798
Open Space	3,500	0.00	0	0.804	0	3,500	0.150	524	0.225	787	524	787
NHS	240,300	0.00	0	0.804	0	240,300	0.109	26,232	0.255	61,209	26,232	61,209
Roads	27,050	0.86	23,263	0.804	18,704	3,787	0.150	567	0.225	851	19,271	851
TOTAL POST-DEVELOPMENT	360,150		66,752		34,965	293,398		34,188		73,142	70,374	90,625
	•			•				•	% Change f	from Pre to Post	159	-4
										1.6 times increase in runoff	4% increase in infiltration	

^{**} figures from Tables G-1, G-2 and G-3.

^a - based on estimation in LID SWM Planning and Design Guide for soils of hydrologic group A & B (CVC & TRCA, 2010)

Change in infiltration (m³/a)=

3.508

